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Abstract: Longitudinal data, while often limited, contain valuable insights into features impacting
clinical outcomes. To predict the progression of chronic kidney disease (CKD) in patients with
metabolic syndrome, particularly those transitioning from stage 3a to 3b, where data are scarce,
utilizing feature ensemble techniques can be advantageous. It can effectively identify crucial risk
factors, influencing CKD progression, thereby enhancing model performance. Machine learning (ML)
methods have gained popularity due to their ability to perform feature selection and handle complex
feature interactions more effectively than traditional approaches. However, different ML methods
yield varying feature importance information. This study proposes a multiphase hybrid risk factor
evaluation scheme to consider the diverse feature information generated by ML methods. The scheme
incorporates variable ensemble rules (VERs) to combine feature importance information, thereby
aiding in the identification of important features influencing CKD progression and supporting clinical
decision making. In the proposed scheme, we employ six ML models—Lasso, RF, MARS, LightGBM,
XGBoost, and CatBoost—each renowned for its distinct feature selection mechanisms and widespread
usage in clinical studies. By implementing our proposed scheme, thirteen features affecting CKD
progression are identified, and a promising AUC score of 0.883 can be achieved when constructing a
model with them.

Keywords: chronic kidney disease; metabolic syndrome; feature ensemble; machine learning;
longitudinal data; health screening

1. Introduction

A sub-health condition (SHC) or sub-optimal health status refers to a condition charac-
terized by decreased vitality, physiological function, and capacity for adaptation. However,
it is yet to be medically diagnosed as a disease or functional somatic syndrome [1]. It is im-
perative to consider all SHC indicators to prevent chronic diseases and achieve better health
outcomes. Metabolic syndrome (MetS) is a collection of indicators that define SHC risk
and can assist in formulating strategies for preventing disease progression [2,3]. Metabolic
factors, such as being overweight or obese and having hypertension, hyperlipidemia, and
hyperglycemia, are critical metabolic changes that can increase the risk of chronic illness [4].
MetS increases the risk of developing various chronic diseases, such as a 2.5-fold higher
risk of chronic kidney disease (CKD) [5], a 2.5-fold higher risk of myocardial infarction [4],
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a 2–4-fold higher risk of cardiovascular stroke, and a 5-fold higher risk of type II diabetes
mellitus [6,7].

CKD is characterized by abnormal kidney function and is stratified into stages 1, 2,
3a, 3b, 4, and 5 according to the Kidney Disease Improving Global Outcomes’ (KDIGO)
guideline [8]. Kidney diseases have become a major public health issue as they affect around
850 million individuals worldwide [9,10]. Patients with CKD often develop complications
and MetS, accelerating their renal function deterioration, shortening the kidney lifespan,
and ultimately increasing the incidence of CKD and intensifying its progression [11,12].
Both MetS and CKD are important risk factors for diverse complications [13,14]. Studies
have demonstrated a positive correlation between MetS and CKD [15,16], and a MetS
diagnosis effectively predicts CKD risk [16,17]. Among the existing studies, conventional
statistical method usage is the approach that is commonly taken.

Machine learning (ML) approaches, being relatively unaffected by the limitations of
conventional statistical methods that rely on predefined assumptions and hypotheses, have
found widespread use in detecting and predicting diseases at various stages, demonstrating
promising performance [18,19]. ML approaches can proficiently analyze latent and intricate
relationships and information that underlie multiple predictor variables/risk factors and
outcomes [20]. Based on the feature selection results obtained from ML methods, the
employment of the variable ensemble rule (VER) can aid in assessing the predictor variables
of models to improve analytical outcomes. The VER consolidates the selection results of
different variables using various approaches or principles to enhance the robustness of
variable selection outcomes [21].

Stage 3 CKD can be divided into Stages 3a and 3b, representing mild and moderate
renal function impairment, respectively. Both substages are vital in assessing whether a
patient should undergo kidney dialysis, and they are associated with different mortality
risks and clinical features [22,23]. However, only a few studies have explored how metabolic
syndrome (MetS) affects Stage 3a and 3b CKD in patients and their shared risk factors [17].
While clinical health data, in general, can accumulate into a substantial amount of big data,
in practice, whether addressing preventive healthcare for chronic diseases, including MetS,
or assisting in the assessment of CKD at stages 3a-3b for high-risk diagnosis, establishing
a risk prediction model for clinical use requires the incorporation of more appropriate or
rational limited longitudinal healthcare data into research analysis. Collecting such data is
essential for building predictive models and thereby identifying relevant risk factors more
accurately, facilitating specialized physicians in clinical diagnosis, and aiding in medical
decision making.

When dealing with limited medical datasets that are small or medium-sized, estab-
lishing conditional data under various variable ensemble rules can be beneficial in model
building. ML algorithms, when applied with various variable ensemble rules, can com-
pensate for the limitation of a small sample size, achieving a simultaneous improvement
in predictive capabilities. Existing CKD analyses are primarily based on the findings of
cross-sectional studies [24,25], which have mainly discussed CKD and evaluated its risk
factors. The analysis of health examination data requires consideration of trends in the
continuous change of data. That is, when conducting longitudinal data analysis, it is
essential to give precedence to scrutinizing the trend and variability of the data, rather than
exclusively depending on baseline data. Therefore, we generated four extended variables
to gather trend and variability information from each of the predictor variables. These
extended variables can provide a wide range of information and can be used as predictor
variables for constructing the ML prediction model.

Given the significance of MetS as a risk factor for CKD and its pertinent role in CKD
development mechanisms over times, evaluating the risk factors for CKD in patients
with MetS using longitudinal data is a vital step in effectively managing and preventing
CKD. This study aimed to use ML methods and VER schemes to identify the important
risk factors for CKD in longitudinal data for patients with MetS diagnosed with stages
3a or 3b CKD. It assesses six effective ML methods—random forest (RF), multivariate
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adaptive regression splines (MARS), least absolute shrinkage and selection operator (Lasso),
extreme gradient boosting (XGBoost), gradient boosting with categorical features support
(CatBoost), and light gradient boosting machine (LightGBM)—as they are already being
successfully utilized in various healthcare and medical applications [26–29], and five VERs
in feature engineering—maximum aggregation (MA), arithmetic mean aggregation (AMA),
geometric mean aggregation (GMA), Borda count aggregation (BCA), and ranking mean
aggregation (RMA). Using these methods, we develop an ML- and VER-based hybrid
multiphase CKD prediction scheme for evaluating and consolidating the key risk factors
for patients with MetS and CKD.

The proposed scheme first aggregates the scoring generated from corresponding ML
methods via the five VERs. Because each machine learning model can provide feature
importance scores on both numerical and categorical scales, the corresponding Variable
Explanation Ratio (VER) is chosen based on these scores, allowing for the consideration of a
wider range of information. Then, a union operation is employed to create a final selection
of the most important features. By implementing the proposed scheme, we can reduce the
complexity associated with a large number of features, thereby providing clinicians with
crucial information to support medical decision making. Furthermore, as the proposed
scheme can select important features, model performance can be improved when using
these selected features.

The accumulation of clinical health data often leads to big data challenges. However,
creating effective risk prediction models for chronic diseases, such as MetS and high-risk
CKD stages 3a-3b requires, focused longitudinal healthcare data analysis, which is often
limited to small datasets. The limited longitudinal healthcare data make it challenging
to build effective models in health promotion fields. This study innovates by proposing
an effective scheme to enhance predictive accuracy with traditional machine learning
algorithms, even with smaller datasets. The proposed scheme can effectively find features
influencing CKD progression while improving the performance of the model in classifying
CKD progression transitioning from stage 3a to 3b.

2. Materials and Methods
2.1. Data

This study used the regular health examination records of 71,108 patients in the Mei
Jhao (MJ) Health Checkup-Based Population Database (MJPD), a Taiwanese long-term and
continuous patient follow-up database, from 2005 to 2017. This timeframe was chosen to
accumulate a sufficient number of consecutive samples. This decision was driven by the
focus on a high-risk population with both CKD stages 3a to 3b and MetS. They included
201,807 health examination indicators and questionnaire records. We identified patients
with MetS and stage 3a or 3b CKD using the MetS definition of the Health Promotion
Administration (HPA) of the Ministry of Health and Welfare of Taiwan [30] and the KDIGO
guidelines and references. This study was approved by the Institutional Review Board of the
Far Eastern Memorial Hospital (approval number: 110027-E; approval date: 3 March 2021) and
the MJ Health Research Foundation (authorization code: MJHRF2023004A) and was registered
at ClinicalTrials.gov ID:NCT05225454, https://beta.clinicaltrials.gov/study/NCT05225454
(accessed on 27 February 2024).

2.2. Definitions of the Longitudinal Variables and Subjects

This study constructed the longitudinal variables and their data by using each subject’s
first two examination results to predict their third CKD examination results. We collected
subjects’ 12-year examination records (from 2005 to 2017). Consistent with the prediction
goals and conversion principles of the longitudinal data (each subject completed one
examination annually), we excluded subjects with less than 3 or more than 12 examination
records, leaving 33,533 subjects (125,641 health examination records). The data may include
patients on dialysis, and they were not within the scope of this study, so we excluded
11 subjects whose estimated glomerular filtration rate (eGFR) was below 15 (42 records in

https://beta.clinicaltrials.gov/study/NCT05225454
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total), leaving 33,522 subjects (125,599 records). We grouped these subjects based on the
definition and eGFR criterion of CKD into an experimental group, a control group, and an
“others” group. The experimental group comprised subjects with two consecutive eGFR
values ≥60 in their health examination records; in total, 33 subjects met the definition of
stage 3a CKD as their eGFR was ≥30 and <45. The control group comprised 302 subjects
who met the definition of stage 3b CKD. The remaining 33,187 subjects were placed in the
others group as they did not meet the criteria for the experimental or control group. After a
multiphase processing of all subjects’ data, there were 335 eligible subjects. The process of
identifying the longitudinal subjects is shown in Figure 1.
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Figure 1. The process of identifying the longitudinal subjects.

Among all 335 subjects, for each one, a total of three records were collected. As the aim
of this study was to predict the relationship between each subject’s third CKD examination
result and their risk factors, each subject’s previous two examination results were used as
longitudinal predictor variables. Table 1 provides detailed descriptions and definitions
of the predictor and target variables in the longitudinal data. The predictor variable Vi,t
represents the result of the ith variable at the tth examination (for example, the variable
V1,1 is the BF value at the first examination), and the objective variable Y represents the
CKD result at the third examination. This study used 19 risk factors as predictor variables
and can be further defined as Equation (1).

Vi,t, ∀i, t ∈ N
where i = 1, 2, . . . , 19; t = 1, 2.

(1)

To generate extended variables, the four statistics involving the closest value, mean
value, standard deviation (SD) value, and difference value of a predictor variable are
considered. The closest value of a predictor variable uses the subjects’ latest examination
results, which is the second examination in this study (Vi,2). The predictor variable (ViC)
generated based on the closest value is defined as Equation (2). For example, V1C is the BF
record (V1,2) at the second examination, and it can be abbreviated as BF(C).The predictor
variable (Vi M) generated using the mean value of a predictor variable is the mean of the
previous two examination results (Vi,1, Vi,2), and it can be defined as Equation (3). For
example, V1M is generated by obtaining the mean BF value of the last two examinations,
and it can be abbreviated as BF(M). The predictor variable (ViS) is the SD of the last two
examination results (Vi,1, Vi,2) of a predictor variable, and it can be defined as Equation (4).
For example, V1S is generated by obtaining the SD of the BF result (V1S) at the first and
second examinations. V1S can be abbreviated as BF(S). A predictor variable (ViD) is the
difference between the last two examination results (Vi,1, Vi,2) of a predictor variable, and it
can be defined as Equation (5). For example, V1D is generated by subtracting the BF results
of the first and second examinations. V1D can be abbreviated as BF(D).
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All four of the statistical approaches to generating extended variables are applied to all
19 predictor variables to generate the predictor variables for analysis. Therefore, a total of
76 predictor variables are considered, and they are also used to construct the ML prediction
model. The demographics of the 19 variables from the subjects’ latest examination (ViC)
are shown in Table S1 in the Supplementary Materials.

ViC = Vi,2 (2)

Vi M =
Vi,1 + Vi,2

2
(3)

ViS =

√
(Vi,1 − Vi M)2 + (Vi,2 − Vi M)2

2 − 1
(4)

ViD = Vi,2 − Vi,1 (5)

Table 1. Definitions and descriptions of the predictor and target variables.

Variable Description Unit

V1,t Body Fat (BF) BF of subject at tth examination %
V2,t Body Mass Index (BMI) BMI of subject at tth examination kg/m2

V3,t Blood Urea Nitrogen (BUN) BUN of subject at tth examination mg/dL
V4,t Diastolic Blood Pressure (DBP) DBP of subject at tth examination mmHg
V5,t Fasting Plasma Glucose (FPG) FPG of subject at tth examination mg/dL
V6,t Hemoglobin (Hb) Hb of subject at tth examination g/dL
V7,t Hip Circumference (HC) HC of subject at tth examination cm
V8,t High-Density Lipoprotein Cholesterol (HDL) HDL of subject at tth examination mg/dL
V9,t Intraocular Pressure (IOP) IOP of subject at tth examination mmHg
V10,t Low-Density Lipoprotein Cholesterol (LDL) LDL of subject at tth examination mg/dL
V11,t Mean Cell Volume (MCV) MCV of subject at tth examination fl
V12,t Red Blood Cells (RBCs) RBCs of subject at tth examination 106/µL
V13,t Gamma Glutamyl Transpeptidase (r-GT) r-GT of subject at tth examination U/L
V14,t Systolic Blood Pressure (SBP) SBP of subject at tth examination mmHg
V15,t Serum Glutamic Oxaloacetic Transaminase (SGOT) SGOT of subject at tth examination U/L
V16,t Serum Glutamic Pyruvic Transaminase (SGPT) SGPT of subject at tth examination U/L
V17,t Triglyceride (TG) TG of subject at tth examination mg/dL
V18,t Uric Acid (UA) UA of subject at tth examination mg/dL
V19,t Waist Circumference (WC) WC of subject at tth examination cm

Y Chronic Kidney Disease (CKD) CKD result of subject at the third examination

2.3. Proposed Multiphase Hybrid Risk Factor Evaluation Scheme

In order to predict CKD outcomes and identify the key risk factors for CKD, this study
proposes a multiphase hybrid CKD prediction scheme grounded in six ML algorithms (RF,
MARS, Lasso, XGBoost, CatBoost, and LightGBM) that utilize the longitudinal variables
generated in the previous section. RF is an ensemble learning method that consists of
decision trees combined by bagging (bootstrap aggregation) [31]. MARS is a multivari-
ate, nonlinear, nonparametric regression method combining recursive partitioning and
piecewise polynomial functions [32]. Lasso shrinks predictor variables with weaker contri-
butions to zero to control the trade-off between the bias and the variance in model fitting
while reducing the likelihood of overfitting [33].

XGBoost is an ensemble learning method based on gradient boosting [34]. CatBoost
is an improved decision tree algorithm that combines ordered boosting, gradient boost-
ing, and classification features [35]. LightGBM is a histogram-based distributed gradient
boosting framework algorithm that restricts the maximum depth of the decision trees [36].
These ML methods have been used successfully in various healthcare and medical applica-
tions [26–29], and all of them have the ability to select features while providing importance
scoring to the input features. To evaluate the performance of the ML models, the balanced
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accuracy (BA), sensitivity (SEN), specificity (SPE), and area under the receiver operating
characteristic (ROC) curve (AUC) are used. Furthermore, as it is widely utilized in many
clinical-related studies, logistic regression (LGR) is also considered as the benchmark in
this study to ensure all six of the ML models have reasonable performance.

The procedure of the hybrid multiphase CKD prediction scheme is shown in Figure 2.
As shown in the figure, after obtaining the data with the generated longitudinal variables,
ML models are constructed using the data. Additionally, an oversampling technique
is utilized to address the class imbalance issue in the data. With the built ML models,
the relevant importance value of each variable can be extracted from each ML model.
Because each model has different hyper-parameters required to be tuned, 10-fold nested
cross-validation (10f-NCV) is utilized for hyper-parameter tuning. Under the structure of
10f-NCV, in one iteration, the data are randomly split into 10 folds, where 1 fold is used for
testing and the rest of the 9 folds are used for testing. During training, the 9 folds of the data
will be further split into 8 folds for training and 1 fold for validation. Training ends when
all of the 9 folds of data are used for validation once and the optimized hyper-parameter
sets are found; then, the testing fold is used for evaluation. The entire 10f-NCV process is
finished when all folds are used for testing once (a total of 10 iterations).

After constructing valid ML models, each can generate relevant information for each
variable according to its model rules, thus generating two variable importance values:
the ratio-scale-based relative importance value (RIV) and the ordinal-scale-based ordinal
ranking value (ORV). In the RIV, the values of the most and least important variables are 100
and 0, respectively. The RIV is ordered from highest to lowest, and the given ranking value
is the ORV. The most important variable, whose RIV is the highest or equal to 100, is placed
at the top; the least important variable, whose RIV is the lowest or equal to 0, is placed at
the bottom. Values can be repeated, which means that the variable importance of two or
more variables may be similar. As each optimal ML method was repeated 10 times, there
will be 10 corresponding variable importance values that are distinctive to each method.
Each method’s mean importance was calculated to yield its single merged RIV and ORV.

Because a single selection variable algorithm has the propensity to choose a locally
optimal solution, the ensemble variable has more opportunities to better approximate the
optimal solution by averaging different assumptions [37]. To derive more stable results,
different VER approaches are considered. VER approaches can provide more robust
variable selection results than a single variable selection method and reduce bias and
variance. It has shown excellent results across various research domains [38,39]. Hence,
MA, AMA, GMA, BCA, and RMA are used in this study as they are widely utilized in
many studies [37,40]. Moreover, because different VER approaches are only applicable to a
specific variable measurement scale, the RIV variable integration is based on MA, AMA,
and GMA, whereas ORV is based on AMA, BCA, and RMA. The equations of each VER
approach used are as follows:

AMAFi =
1
j

j

∑
k=1

rik =
1
j
(
ri1 + ri2 + · · ·+ rij

)
(6)

GMAFi =

(
j

∏
k=1

rik

) 1
j

= j
√

ri1ri2 . . . rij (7)

MAFi = Max
(
ri1, ri2, . . . , rij

)
(8)

RMAFi = Median
(
ri1, ri2, . . . , rij

)
(9)

BCAFi = Mode
(
Count

(
ri1, ri2, . . . , rij

))
(10)

where rij is the RIV or ORV of the ith variable in the jth method. After aggregation via
VER approaches, six sets of variable importance rankings are generated, namely RIV-AMA,
RIV-GMA, RIV-MA, ORV-AMA, ORV-RMA, and ORV-BCA. Finally, union operation is
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used to integrate and compare the six importance ranking sets and to identify the most
important risk factors for discussion.
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This study used the R programming language (version 4.0.5; http://www.R-project.
org (accessed on 27 February 2024)) and RStudio software (version 1.1.453; https://www.
rstudio.com/products/rstudio/ (accessed on 27 February 2024)) to construct an effective
ML model. All of the algorithm equations and estimated optimal hyperparameters of
the models were built using R-related software packages. The package information is as
following: The RF, LGR, MARS, Lasso, XGBoost, CatBoost, and LightGBM models were
created using the randomForest (version 4.7-1.1) [41], stats (version 4.0.5), earth (version
5.3.1) [42], glmnet (version 4.1-7) [43], xgboost (version 1.6.0.1) [44], catboost (version

http://www.R-project.org
http://www.R-project.org
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0.25.1) [45], and lightgbm (version 3.3.2) [46] packages, respectively. Lastly, the optimal
hyperparameters were estimated for all models using the caret package (version 6.0-93) [47].

3. Results

Table 2 shows the average performance of each ML model after 10f-NCV. As shown in
the table, Lasso had the best BA of 0.813, LightGBM had the best SEN of 0.791, and RF had
the best SPE of 0.898. Lasso had the best AUC of 0.800, and all six ML models had greater
scores of AUC than the benchmark LGR model (AUC 0.669). This can also be found in the
ROC curve presented in Figure 3. Overall, according to the results in Table 2 and Figure 3,
the usage of all six ML models for ensemble to identify important variables is reasonable.

Table 2. Average performance of each ML model after 10f-NCV.

Model BA (SD) SEN (SD) SPE (SD) AUC (SD)

LGR 0.704 (0.09) 0.656 (0.32) 0.752 (0.19) 0.669 (0.10)
RF 0.798 (0.04) 0.699 (0.12) 0.898 (0.15) 0.797 (0.04)

MARS 0.766 (0.04) 0.752 (0.09) 0.780 (0.12) 0.717 (0.07)
Lasso 0.813 (0.05) 0.769 (0.06) 0.856 (0.12) 0.800 (0.08)

XGBoost 0.769 (0.05) 0.741 (0.13) 0.797 (0.18) 0.763 (0.06)
CatBoost 0.763 (0.06) 0.777 (0.16) 0.750 (0.14) 0.708 (0.07)

LightGBM 0.780 (0.10) 0.791 (0.15) 0.770 (0.17) 0.781 (0.12)
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Figure 3. ROC curves of each ML model.

The variable importance value of each variable generated from each ML model in
terms of RIV (Table 3) and ORV (Table 4) can be found in the tables. In Table 3, the
first 12 variables are presented. As different ML models analyze the data with different
approaches and mechanisms, it can be seen that each ML model yields a different RIV for
each variable. For example, both Lasso and LightGBM yield the lowest RIV of zero to V1(S),
whereas the other four ML methods yield a relatively higher RIV. The same concept can be
found in Table 4. For example, V3(M) is ranked relatively lower by MARS (ORV 26) than
the other five ML methods. Next, in order to derive more stable results and considerations
when identifying important variables, the results of RIV and ORV are aggregated via the
VER approaches, which are presented in Table 5.
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Table 3. First 12 RIVs of each variable from the six used ML models.

Vars RF MARS Lasso XGBoost CatBoost LightGBM

V1(C) 24.00 1.41 0.22 9.22 10.43 3.78

V1(M) 23.37 13.20 0.00 9.30 14.07 0.43

V1(S) 9.36 1.12 0.00 2.88 12.38 0.00

V1(D) 12.09 6.95 0.00 10.31 17.16 1.40

V2(C) 10.92 0.00 0.00 1.92 2.34 0.02

V2(M) 8.10 3.70 0.00 1.08 8.57 0.11

V2(S) 9.58 8.35 0.00 1.81 16.79 0.12

V2(D) 15.97 0.00 0.00 8.56 10.91 0.31

V3(C) 22.97 24.22 0.00 3.04 17.98 2.38

V3(M) 56.80 48.17 10.73 40.22 46.50 11.82

V3(S) 99.03 100.00 53.95 100.00 94.22 100.00

V3(D) 17.44 31.61 0.00 4.85 6.83 0.66

. . . . . . . . . . . . . . . . . . . . .

Table 4. First 12 ORVs of each variable from the six used ML models.

Vars RF MARS Lasso XGBoost CatBoost LightGBM

V1(C) 18 70 70 25 39 34

V1(M) 23 62 76 16 34 42

V1(S) 51 70 76 46 41 71

V1(D) 37 64 76 18 41 38

V2(C) 43 76 76 50 62 67

V2(M) 57 70 76 61 48 66

V2(S) 44 64 76 53 21 64

V2(D) 29 76 76 25 40 60

V3(C) 10 37 76 48 34 50

V3(M) 2 26 4 3 6 11

V3(S) 2 1 3 1 2 1

V3(D) 21 36 76 32 43 47

. . . . . . . . . . . . . . . . . . . . .

Table 5 presents the first 12 variables’ aggregation results from RIVs and ORVs via
different VER approaches. As the characteristic of RIV, the aggregated importance values
are generated from the six ML models with the corresponding VER equations. The aggre-
gated importance value ranges between 0 and 100, and more important variables will have
higher values. This concept suits all of the aggregated RIVs (RIV-AMA, RIV-GMA, and
RIV-MA). Both the aggregations of ORV-AMA and ORV-RMA have similar concepts as
RIVs, but with slight differences due to the characteristics of ORV. As the most important
variable will be assigned the rank of one under the structure of ORV, the more important
variable will have a value closer to one after aggregation. Under ORV-BCA, when two or
more ML models are assigned the same ranking to a variable, that specific ranking will
be the aggregated value of the variable. Taking ORVs of V1(C) in Table 4 as an example,
because both MARS and Lasso assigned the ranking of 70 to V1(C), the aggregated value
of V1(C) in ORV-BCA is 70, and this can also be seen in Table 5. Furthermore, if all six ML
models have assigned separate rankings to a variable, the worst-case scenario will be taken
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into consideration, in which the aggregated value will be the worst-ranking value. For
example, V3(M) in Table 4 can be found with separated rankings assigned from each ML
model. Because the worst ranking of V3(M) is 26, the ORV-BCA of V3(M) is 26. Overall,
as shown in Table 5, with VER approaches, different information regarding the variables
analyzed by each ML method can be brought into consideration. To better compare and
interpret the rankings of each variable via VER approaches, the results in Table 5 can be
further organized into Table 6.

Table 5. First 12 aggregated RIVs and ORVs via VER approaches of each variable.

Vars RIV-AMA RIV-GMA RIV-MA ORV-AMA ORV-RMA ORV-BCA

V1(C) 8.18 3.73 24.00 42.67 36.50 70

V1(M) 10.06 0.00 23.37 42.17 38.00 76

V1(S) 4.29 0.00 12.38 59.17 60.50 76

V1(D) 7.98 0.00 17.16 45.67 39.50 76

V2(C) 2.53 0.00 10.92 62.33 64.50 76

V2(M) 3.59 0.00 8.57 63.00 63.50 76

V2(S) 6.11 0.00 16.79 53.67 58.50 76

V2(D) 5.96 0.00 15.97 51.00 50.00 76

V3(C) 11.76 0.00 24.22 42.50 42.50 76

V3(M) 35.71 29.42 56.80 8.67 5.00 26

V3(S) 91.20 89.19 100.00 1.67 1.50 1

V3(D) 10.23 0.00 31.61 42.50 39.50 76

. . . . . . . . . . . . . . . . . . . . .

Table 6. Top 12 ranking variables of RIV and ORV with different VER approaches.

RIV ORV

Rule/Rank RIV-AMA RIV-GMA RIV-MA ORV-AMA ORV-RMA ORV-BCA

1 BUN(S) BUN(S) BUN(S) BUN(S) BUN(S) BUN(S)
2 BUN(M) BUN(M) Hb(S) BUN(M) BUN(M) BUN(M)
3 Hb(S) Hb(S) BUN(M) Hb(S) Hb(S) LDL(M)
4 RBC(S) RBC(S) r-GT(M) RBC(S) FPG(D) HDL(S)
5 r-GT(M) RBC(M) RBC(S) FPG(D) RBC(S) TG(S)
6 HDL(S) UA(S) HDL(S) HDL(S) HDL(S) HC(S)
7 BUN(C) SBP(S) r-GT(D) RBC(M) RBC(M) UA(S)
8 RBC(M) FPG(D) BUN(D) SBP(S) Hb(M) BMI(S)
9 r-GT(D) BF(C) RBC(M) r-GT(M) SBP(M) DBP(D)
10 LDL(D) SBP(C) WC(C) SBP(M) BF(C) Hb(M)
11 FPG(D) Hb(M) LDL(D) Hb(M) UA(S) SGOT(D)
12 BUN(D) DBP(S) RBC(C) BF(M) BF(M) BF(C)

Table 6 presents the top 12 ranking variables of RIV and ORV based on the correspond-
ing VER approaches. As shown in the table, BUN(S) is the most important variable across
all six aggregation results utilizing VER approaches; BUN(M) is the second most important
variable, which only ranked the third in RIV-MA. Overall, the top three ranking important
variables are similar and begin to vary in lower rankings.

To examine the association between important variables using different VER ap-
proaches, union operation is performed on Table 6, and the results are organized into
Table 7. As presented in the table, important variables identified after union operation in
different ranking combinations can be seen. Five conditions of the combination for union
operation are used, which are within the first 4 rankings, within the first 6 rankings, within
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the first 8 rankings, within the first 10 rankings, and within the first 12 rankings. Taking
the first condition (within the first four rankings) for the RIV rule as an example, the first
four ranking variables from each aggregation rule in Table 6 have to be identified first,
then, with union operation, BUN(S), BUN(M), Hb(S), RBC(S), and r-GT(M) can be found,
thus satisfying the condition in Table 7. The same process is performed for all of the other
conditions for both rules.

Table 7. Important Variables identified after union operation in different ranking combinations.

Rules Variable Combination Conditions Selected Important Variables after Union Operation

RIV

Within the first 4 rankings BUN(S), BUN(M), Hb(S), RBC(S), r-GT(M)

Within the first 6 rankings BUN(S), BUN(M), Hb(S), RBC(S), r-GT(M), RBC(M), HDL(S), UA(S)

Within the first 8 rankings BUN(S), BUN(M), Hb(S), RBC(S), r-GT(M), RBC(M), HDL(S), UA(S),
BUN(C), SBP(S), r-GT(D), FPG(D), BUN(D)

Within the first 10 rankings BUN(S), BUN(M), Hb(S), RBC(S), r-GT(M), RBC(M), HDL(S), UA(S),
BUN(C), SBP(S), r-GT(D), FPG(D), BUN(D), BF(C), LDL(D), SBP(C), WC(C)

Within the first 12 rankings
BUN(S), BUN(M), Hb(S), RBC(S), r-GT(M), RBC(M), HDL(S), UA(S),

BUN(C), SBP(S), r-GT(D), FPG(D), BUN(D), BF(C), LDL(D), SBP(C), WC(C),
Hb(M), DBP(S), RBC(C)

ORV

Within the first 4 rankings BUN(S), BUN(M), Hb(S), LDL(M), RBC(S), FPG(D), HDL(S)

Within the first 6 rankings BUN(S), BUN(M), Hb(S), LDL(M), RBC(S), FPG(D), HDL(S), TG(S), HC(S)

Within the first 8 rankings BUN(S), BUN(M), Hb(S), LDL(M), RBC(S), FPG(D), HDL(S), TG(S), HC(S),
RBC(M), UA(S), SBP(S), Hb(M), BMI(S)

Within the first 10 rankings BUN(S), BUN(M), Hb(S), LDL(M), RBC(S), FPG(D), HDL(S), TG(S), HC(S),
RBC(M), UA(S), SBP(S), Hb(M), BMI(S), r-GT(M), SBP(M), DBP(D), BF(C)

Within the first 12 rankings
BUN(S), BUN(M), Hb(S), LDL(M), RBC(S), FPG(D), HDL(S), TG(S), HC(S),
RBC(M), UA(S), SBP(S), Hb(M), BMI(S), r-GT(M), SBP(M), DBP(D), BF(C),

SGOT(D), BF(M)

To evaluate the stability of the union operation results of the selected variable sets
under the two proposed aggregation rules, Lasso is constructed based on variables selected
in each variable combination condition of RIV and ORV from Table 7, as the preliminary
ML model performance results revealed that Lasso is the best one in this study. The
performance of Lasso with different variable combination condition sets is shown in Table 8.
According to the table, all AUCs of the union operations of the ranked variables under
the two rules were greater than 0.804. Notably, variables within the first eight ranking
conditions of RIV yield the best AUC of 0.883. Lasso uses 13 variables in total under the best
variable combination condition; on the other hand, Lasso using all 76 variables has lower
performance, with an AUC of 0.800. Therefore, the results are improved after variable
selection, which greatly improves the overall prediction performance.

Figure 4 shows the AUC values of Lasso using different variable combination condi-
tions with RIV and ORV. As shown in the figure, both RIV and ORV have increasing AUC
values from the condition within the first four rankings to within the first eight rankings,
and then both of their AUCs begin to decrease. ORV has better performance in AUC
than RIV when the conditions are within the first four rankings and within the first six
rankings; after that, RIV is superior to ORV in AUC when the amount of variables increases.
In summary, the stability of the union operation is confirmed, and it indicates that the
proposed risk factor evaluation scheme of this study can provide promising results.
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Table 8. AUC of Lasso with different variable combinations according to the results in Table 7.

Rule Variable Combination Conditions (Number of the Selected Variable) AUC

RIV

Within the first 4 rankings (5) 0.804
Within the first 6 rankings (8) 0.843

Within the first 8 rankings (13) * 0.883
Within the first 10 rankings (17) 0.855
Within the first 12 rankings (20) 0.825

ORV

Within the first 4 rankings (7) 0.835
Within the first 6 rankings (9) 0.850

Within the first 8 rankings (14) 0.870
Within the first 10 rankings (20) 0.844
Within the first 12 rankings (19) 0.821

* represents the best AUC value.
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4. Discussion

While clinical health data, in general, can accumulate into a substantial amount of big
data, in practice, whether addressing preventive healthcare for chronic diseases, including
metabolic syndrome (MetS), or assisting in the assessment of chronic kidney disease (CKD)
at stages 3a-3b for high-risk diagnosis, the establishment of a risk prediction model for
clinical use requires more appropriate or rational limited longitudinal healthcare data for
research analysis. Collecting such data is essential to build predictive models, thereby
identifying relevant risk factors more accurately, facilitating specialized physicians in
clinical diagnosis, and aiding in medical decision making.

The analysis of clinical data often faces the challenge of dealing with limited sample
sizes and complex variable interactions. Employing methods that consider multiple aspects
can help compensate for these limitations. As the information can vary from different ML
methods, consideration of VERs and union operation to aggregate them could enhance
the overall predictive capability. Moreover, aggregated information, such as important
features, can support healthcare or actual clinical scenarios. Furthermore, the analysis of
health examination data requires consideration of the trends in the continuous change of
data. Analyzing longitudinal data that meet the conditions is of greater research value and
contributes to the subsequent predictive benefits of this study. Predicting CKD progression
risk is a vital task in clinical management.

CKD is a progressive kidney disease characterized by deteriorating renal function. ML
methods have been successfully used to predict CKD risk. This study used ML methods
and feature engineering to construct a longitudinal variable set scheme to identify patients
with MetS diagnosed with stages 3a or 3b CKD. Its results are highly significant for patients.
For example, early CKD detection is conducive to providing effective interventions and
measures to high-risk patients. Early treatment often leads to favorable treatment outcomes
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in the disease course. Next, in our longitudinal analysis, all six ML methods outperformed
conventional LGR, and the Lasso model was the best, as reflected by its AUC of 0.800,
which was 2.8% and 13.1% higher than that of conventional LGR. Our findings corroborate
those of previous studies. Indeed, ML methods, especially Lasso [48], can be used to resolve
the classification bias in several categories while showing strong prediction performance
with imbalanced data [18].

In addition, this study used variable ensemble and union operation to integrate the
ML-selected variable results and analyzed the Lasso-selected variables. Its experimental re-
sults demonstrated that the variable ensemble methods and union operation all effectively
improved the Lasso model’s prediction performance. We offer reliable estimations of CKD
risk factors based on different VERs. Specifically, we reduced the number of cross-sectional
variables from 76 to 13 through variable selection, enhancing prediction performance. As
reflected by the AUC, prediction performance increased from 5.6% to 8.3% after variable
selection with Lasso. Like previous studies, the proposed hybrid scheme outperformed
standalone schemes, as variable selection identified the important CKD variables and in-
creased the model’s prediction performance [49–51]. The results with the selected variables
were similar to those of existing clinical studies. For example, Lasso identified BUN, Hb,
RBC, r-GT, HDL, UA, SBP, and FPG as key risk factors for CKD based on the cross-sectional
results. The associations between these risk factors and CKD are elaborated based on
previous studies.

Past related publications have not emphasized the analysis of longitudinal data in
small to medium-sized samples. For health or clinical data with two or more real instances,
the consideration of statistics like closest (C), mean (M), standard deviation (S), and dif-
ference (D) among variables has been lacking. In this study, not only did we identify the
significance of these variables (Hb, RBC, BUN, r-GT, HDL, UA, SBP, and FPG) again, but
we also delved deeper to explore which statistical values among these continuous data
variables hold more meaning. Hb or RBCs are important indicators of the blood’s oxygen-
carrying capacity. An excessively low value can lead to anemia, a common complication
of CKD and a recognized risk factor for CKD deterioration [52,53]. A survey found that
41% of 209,311 patients with CKD had anemia [54]. Accordingly, study results found that
in longitudinal data, the two variable statistical patterns, Hb(S), RBCs(M), and RBC(S),
possess greater predictive capabilities.

BUN is an independent risk factor for CKD [27]. Increasing studies have examined
the relationship between CKD and BUN. For example, BUN and CKD are positively
correlated. Moreover, Seki et al. (2019) also reported that BUN may predict kidney disease
development [55]. This study found that in longitudinal data, the important variable BUN
may be more meaningfully assessed through the BUN(C), BUN(D), BUN(S), and BUN(M)
values of each examination. Many studies have stressed the importance of UA in CKD. One
of those studies identified the UA level as an important predictor of CKD [56]. A recent
study observed that higher UA levels correlated significantly with CKD in middle-aged
men regardless of their BMI [57]. Based on the findings of this study, it was discovered
that in longitudinal data, the important variable UA may be more meaningfully assessed
through the standard deviation “UA(S)” values of its multiple examinations.

r-GT is an enzyme found on the cell surface of all tissues. It is a typical indicator of
alcohol consumption and hepatic impairment. Increasing studies have identified r-GT as
an independent risk factor for CKD and ESRD [58]. For example, two Japanese studies
concurred that increased r-GT correlates positively with CKD [59,60]. A study on male
South Korean workers found that r-GT and CKD correlated positively, and r-GT may
predict early CKD [61]. The research results indicate that exploring the mean value r-GT(M)
of the variable r-GT(D) over longitudinal data may be more meaningful.

A recent 7472 person-years follow-up study in Korea showed that in patients with
CKD, higher SBP and DBP levels were associated with a higher risk of a composite kidney
outcome reflecting CKD progression. SBP had a greater association with adverse kidney
outcomes than DBP [62]. Blood pressure control is undoubtedly an important risk factor
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for CKD, but for the CKD high-risk group during 3a to 3b, the variability of systolic blood
pressure DBP(S) may be cause for concern. There exists strong evidence that HDL is
associated with patients with impairment of kidney function and/or progression of CKD.
HDL-C concentrations, the composition of HDL particles, disturbances in functionality, and
especially the reverse cholesterol transport, might be different between various stages of
kidney impairment, especially between patients with and without nephrotic syndrome [63].
Furthermore, a Mendelian randomization study showed HDL-C, LDL-C, and Triglycerides
as CKD risk factors [64]. Therefore, the variance of HDL(S) may cause concern for CKD
during 3a to 3b.

To summarize, blood sugar management is conducive to preventing diabetes, nephropa-
thy, and other diabetic microvascular complications. Research has identified FPG as an
important risk factor for CKD [52]. A retrospective study by Cao et al. (2022) [65] identified
age, sex, BMI, T2DM, FPG, stroke, and hypertension as risk factors for CKD. Regard-
ing the FPG values, the results of this study indicate that investigating the difference in
“FPG(D)” from the previous test as a research variable may have a higher predictive value
for risk assessment.

5. Limitations and Future Recommendations

While this study utilized innovative applications and a set of ensemble variable
analyses for continuous data in small and medium-sized health data samples, clinical
validation requires consideration of regional and ethnic differences. These variations
may affect the construction of models and lead to differences in research outcomes across
different regions and ethnic groups in subsequent studies. Due to the limitation of the
research dataset, not every subject has completed, multi-year data, so only the most recent
three data points from the longitudinal data are selected. Additionally, the proposed
scheme is restricted to the ML methods’ mechanism having the ability to provide feature
importance scoring. Some methods, such as neural network or k-nearest neighbor, may not
be applicable to our scheme, as their algorithm design cannot provide feature importance
scoring. Future research can consider more points of data analysis. Avoiding the biases
in data collection or model assumptions would strengthen the validity of the findings.
Exploring the potential for future research directions, such as validation of the predictive
model in a clinical setting or investigating the impact of early intervention based on the
identified risk factors, could add depth to the study’s implications. Regarding concerns
about ethnic and regional differences and recommendations from clinical guidelines, follow-
up research can apply the prediction model of this study to other healthcare settings or
patient populations to improve scalability and generalizability; at the same time, based
on the identified risk factors discovered in this study, an evaluation of the impact of early
intervention could be performed.

6. Conclusions

The analysis of health screening data requires consideration of the trends in the con-
tinuous change of data. Analyzing longitudinal data that meet the conditions is of greater
research value and contributes to the subsequent predictive benefits of this study. The
hybrid multiphase scheme for predicting CKD in patients with MetS developed in this
study through ML methods and feature engineering showed strong prediction performance.
The limited longitudinal health screening data based on different feature ensembles demon-
strated that the hybrid multiphase scheme effectively improved ML predictive performance.
This study also examined common risk factors affecting CKD in patients with MetS using
different models and ranked their importance for future reference. These rankings not
only facilitate kidney condition assessment based on the risk factors but also the detection
of other underlying diseases that patients with CKD might have. Moreover, our results
are generalizable to a certain extent and may be used to enhance the understanding and
treatment of other diseases by using the same ML methods and similar hybrid schemes.
For healthcare professionals, information on how to incorporate the findings of this study
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into their clinical practice or decision-making processes would be beneficial. Based on the
analysis results of this case study, for preventing CKD in the sub-healthy population with
MetS, it is predictable that well-known factors like BUN, UA, and PFG play crucial roles.
However, lesser-discussed factors, such as Hb, RBCs, or r-GT, should receive more attention
in clinical practice or decision-making processes, which could be beneficial. Additionally,
observing the mean, standard deviation, and difference of different variables across three
consecutive data points carries distinct implications. The study’s findings may inform
personalized medicine and targeted interventions for potential patients with high-risk
CKD, thereby identifying clinical implications of risk factors and real-world healthcare
applications. Validating the prediction model in a clinical setting and externally aligns with
existing guidelines, potentially enhancing current CKD management practices.
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