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Abstract: This study aimed to develop a predictive model for intensive care unit (ICU) admission 
by using heart rate variability (HRV) data. This retrospective case‒control study used two datasets 
(emergency department [ED] patients admitted to the ICU, and patients in the operating room with-
out ICU admission) from a single academic tertiary hospital. HRV metrics were measured every 5 
min using R-peak-to-R-peak (R-R) intervals. We developed a generalized linear mixed model to 
predict ICU admission and assessed the area under the receiver operating characteristic curve 
(AUC). Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated from the coefficients. 
We analyzed 610 (ICU: 122; non-ICU: 488) patients, and the factors influencing the odds of ICU 
admission included a history of diabetes mellitus (OR [95% CI]: 3.33 [1.71–6.48]); a higher heart rate 
(OR [95% CI]: 3.40 [2.97–3.90] per 10-unit increase); a higher root mean square of successive R-R 
interval differences (RMSSD; OR [95% CI]: 1.36 [1.22–1.51] per 10-unit increase); and a lower stand-
ard deviation of R-R intervals (SDRR; OR [95% CI], 0.68 [0.60–0.78] per 10-unit increase). The final 
model achieved an AUC of 0.947 (95% CI: 0.906–0.987). The developed model effectively predicted 
ICU admission among a mixed population from the ED and operating room. 

Keywords: intensive care units; forecasting; heart rate variability; emergency service; case–control 
studies 
 

1. Introduction 
The number of emergency department (ED) visits has surged over the past several 

decades, with approximately 150 million annual visits recorded in the United States, and 
10 million visits recorded in Korea [1–3]. This increase has given rise to challenges such 
as overcrowding in EDs and resource shortages [4]. Furthermore, ED crowding is associ-
ated with the delayed detection of patients deteriorating into critical conditions while 
awaiting treatment [5]. Moreover, the availability of ED beds for patient monitoring is 
constrained, and a limited number of health care providers are available to check the 
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status of all patients. Hence, it is crucial to develop accessible methods for identifying 
critically ill patients who are not under rigorous monitoring. 

Heart rate variability (HRV) quantifies the fluctuation in time intervals between suc-
cessive heartbeats and can be assessed using various methods. Time domain metrics in-
clude the standard deviation of R-R intervals (SDRR) and the root mean square of succes-
sive R-R interval differences (RMSSD). The frequency domain metrics include low-fre-
quency (LF) power, high-frequency (HF) power, and LF/HF ratio. While HRV can be as-
sessed over ultra-short-term (less than 5 min), short-term (approximately 5 min), and 
long-term (approximately 24 h) durations, short-term measurement is most commonly 
employed due to its convenience in data acquisition and its ability to capture slow fluctu-
ations in heart rate [6]. 

HRV is recognized for its representation of cardiovascular function and autonomic 
balance. It has been identified to be associated with various severe illnesses, which are 
accompanied by a decline in cardiovascular function and a disruption in autonomic bal-
ance [7–10]. One study demonstrated that a low SDRR predicted mortality in sepsis pa-
tients in the intensive care unit (ICU) [9]. Another study demonstrated that a decrease in 
the LF and an increase in the HF signal were associated with the severity of sepsis in pa-
tients in the ED [7]. In another study, multiple HRV metrics were used to predict in-hos-
pital cardiac arrest [10]. As demonstrated in previous research, HRV serves as a pivotal 
marker of physiologic compensation in critically ill patients. 

The accurate identification of critically ill patients in the ED who require ICU admis-
sion is crucial for ensuring early treatment and adequate preparation of ICU resources. 
Therefore, the aim of this study was to develop and validate a model using heart rate (HR) 
and HRV data to predict ICU admission. By utilizing a concise set of variables that can be 
easily obtained through electrocardiography (ECG) or photoplethysmography (PPG) sen-
sors, we developed a model applicable to patients not undergoing comprehensive vital 
sign monitoring. 

2. Materials and Methods 
2.1. Ethical Statement 

This study was conducted according to the guidelines of the Declaration of Helsinki 
and approved by the Institutional Review Board of Seoul National University Hospital 
(IRB number: 2307-147-1452; date of approval: 28 July 2023). Patient consent was waived 
due to its retrospective design and the anonymization of patient data. 

2.2. Study Design and Setting 
This retrospective case‒control study utilized two datasets derived from a single ur-

ban tertiary hospital in Seoul, South Korea. The ED-VitalDB dataset encompasses adult 
(18 years or older) ED patients triaged to the highest acuity (level 1) and subsequently 
assigned to the resuscitation room. The study hospital uses the Korean Triage and Acuity 
Scale (KTAS), which is a 5-level ED triage scale developed based on the Canadian Triage 
and Acuity Scale [11]. Continuous PPG and ECG monitoring were applied to most of the 
patients who entered the resuscitation room. Invasive monitoring (including arterial 
blood pressure) was applied and treatment decisions were made at the discretion of the 
attending ED physician. Vital sign data were recorded using VitalRecorder (Ver. 1.11.12.0, 
accessed on 20 December 2021), which is a free software designed for recording biosignal 
waveforms and vital signs [12]. Trained reviewers retrieved patient demographic, ED 
evaluation, diagnosis, management, and disposition data by reviewing hospital medical 
records. If vital sign data corresponding to a patient were identified, the patient’s data 
were incorporated into the ED-VitalDB dataset after anonymization. 

The OR-VitalDB dataset (available at https://vitaldb.net/dataset/ accessed on 20 De-
cember 2021) is an open dataset comprising patient data from operating rooms of the 
study institution collected from August 2016 to June 2017 [13]. This dataset encompasses 
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vital sign data recorded during surgery, patient demographics, surgical details, and out-
comes. 

2.3. Study Population 
Among the patients in the ED-VitalDB dataset, individuals who presented to the ED 

from April 2018 to December 2021, who were triaged to level 1, and who were admitted 
to the ICU were designated case patients. Additionally, patients who died in the ED were 
categorized as ICU-admitted patients. We excluded individuals with less than 5 min of 
ECG waveform data, those in a cardiac arrest state, those transferred to another hospital, 
and those aged 75 years or older. 

Individuals in the OR-VitalDB dataset without critical conditions served as the con-
trol group. Patients with less than 5 min of ECG waveform data, those who underwent 
emergency surgery, individuals admitted to the ICU, those who died in hospital, and 
those aged 75 years or older were excluded from the analysis. The rationale for selecting 
patients from the OR-VitalDB dataset as the control group was that noncritical patients 
with stable vital signs are usually not subject to continuous vital sign monitoring in the 
ED. 

Case‒control matching was performed using a 1:4 ratio based on age (<20, 20–24, 25–
29, …, 70–74 years) and sex. The decision to exclude patients 75 years or older was made 
due to an insufficient number of individuals within this age range in the OR-VitalDB da-
taset, thus preventing a complete match. 

2.4. Variables and Measurements 
For each patient, we calculated the SDRR, RMSSD, normalized LF power, normalized 

HF power, LF/HF ratio, and HR at 5 min intervals for up to two hours following ED arrival 
(for case patients) or at the start of the operation (for control patients). HRV was calculated 
through the following steps. Initially, the Lead II ECG signal was sampled at 125 Hz, and 
intervals were removed if no meaningful ECG signal was observed upon visual inspec-
tion. Subsequently, the ECG signal was split into 5 min intervals and passed through a 0.5 
Hz fifth-order Butterworth highpass filter to eliminate noise. Afterwards, the R peaks were 
identified, and the RR intervals were measured. Finally, the SDRR, RMSSD, normalized 
LF power, normalized HF power, and LF/HF ratio were computed from the RR intervals 
by using the NeuroKit2 Library [14]. The normalized LF and HF power were determined 
by calculating the percentage of LF and HF power in relation to the total power, respec-
tively. The LF/HF ratio was calculated by dividing the LF power by the HF power. 

Information including age, sex, comorbidities, cause of ICU admission, intubation 
status, time of ED arrival, and time of intubation in the case group was acquired through 
medical record review performed by trained medical record reviewers. Demographic in-
formation for the control group patients was obtained from the OR-VitalDB dataset. 

2.5. Model Development 
The case‒control matched dataset was randomly divided into a derivation set (75%) 

and a validation set (25%). Therefore, patients did not overlap between the two sets. The 
derivation set was exclusively utilized for constructing the model, whereas the validation 
set was reserved solely for the purpose of validating the model’s performance. 

Given the repeated 5 min interval HR and HRV measurements for each patient, we 
constructed a generalized linear mixed model (GLMM) using all of the available repeated 
measurements. The following variables were considered fixed effects for the model: age, 
sex, hypertension history, diabetes mellitus history, HR, SDRR, RMSSD, normalized LF 
power, normalized HF power, and LF/HF ratio. Backward elimination was employed to 
eliminate nonsignificant variables. Consequently, we developed a GLMM (Model 1) that 
included diabetes mellitus, HR, SDRR, and RMSSD as fixed effects, with patients treated 
as a random effect. 
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A previous study demonstrated improved predictive performance for sepsis severity 
with HRV metrics adjusted by reference values of the same age and sex [7]. By using a 
similar approach, we computed adjusted SDRR and RMSSD values by subtracting the ref-
erence values of the same age and sex from a patient’s SDRR and RMSSD values. The 
reference values were obtained from a previous study that analyzed 5 min HRV measure-
ments of 8 million individuals (Appendix A) [15]. As a result, another GLMM (Model 2) 
that included diabetes mellitus incidence, HR, adjusted SDRR, and adjusted RMSSD as 
fixed effects was constructed, with patient treatment as a random effect. 

2.6. Outcomes 
The main outcome of this study was the area under the receiver operating character-

istic curve (AUC) of the models for predicting ICU admission. Secondary outcomes in-
cluded the sensitivity and specificity of the models. Predicting ICU admission is equiva-
lent to predicting case patients, as all case patients were admitted to the ICU or faced ED 
mortality, whereas none of the control patients were admitted to the ICU or faced in-hos-
pital mortality. 

2.7. Statistical Analysis 
Categorical variables are presented as numbers and proportions, and comparisons 

were conducted by using the chi-square test. Continuous variables are expressed as me-
dians and interquartile ranges (IQRs), and comparisons were made by using the Wilcoxon 
rank-sum test. The mean values of the repeatedly measured HR and HRV metrics for each 
patient were compared between groups. Odds ratios (ORs) with 95% confidence intervals 
(CIs) were analyzed by using the coefficients of the fixed effects of the GLMM. The vari-
ance inflation factor (VIF) was assessed to evaluate multicollinearity among the included 
variables. 

We calculated the AUC, sensitivity, specificity, and 95% CIs by using the following 
three approaches with data from the validation set: the first data point for each patient, 
the last data point for each patient, and a single randomly sampled data point at any time 
for each patient. Sensitivity and specificity were determined by maximizing Youden’s in-
dex. Model calibration was assessed by using calibration plots. 

We assessed the applicability of the developed models in scenarios where HR and 
HRV metrics were measured by using a PPG sensor. By adopting the approach of a pre-
vious study, we estimated the beat-to-beat intervals from 5 min PPG signals. The subse-
quent steps paralleled those used for obtaining HRV metrics from an ECG sensor. 

We conducted a sensitivity analysis focusing solely on patients in the derivation set 
who were intubated and sedated. This was to determine whether the association between 
HRV metrics and ICU admission persisted regardless of intubation and sedation. For the 
case group, only patients who were intubated (with sedation) were selected, and HR and 
HRV data collected post-intubation were analyzed. In the control group, we included only 
the data from patients who were under general anesthesia. GLMMs using the same vari-
ables as Model 1 and Model 2 were fitted, and the ORs with 95% CIs of the fixed effects 
were analyzed. 

A two-sided p value less than 0.05 was considered to indicate statistical significance. 
Statistical analyses were performed by using Python (Python Software Foundation, Wil-
mington, DE, USA) version 3.9.16, NeuroKit2 version 0.2.7, and SAS version 9.4 (SAS In-
stitute, Inc., Cary, NC, USA). 

3. Results 
A total of 122 patients from the case group and 4167 patients from the control group 

met the inclusion criteria. Among these, 122 patients from the case group and 488 patients 
from the control group were matched and included in the analysis, respectively (Figure 
1). The case group exhibited a greater mean HR (median [IQR]: 105.4 [91.5–116.7] vs. 69.5 
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[63.3–77.1]) and lower mean SDRR (median [IQR]: 41.6 [24.3–61.8] vs. 66.2 [45.3–89.2]) and 
RMSSD (median [IQR]: 51.0 [25.6–81.0] vs. 60.3 [35.1–90.2]) than the control group (Table 
1). 

 
Figure 1. Study flowchart. Abbreviations: HRV, heart rate variability; ICU, intensive care unit. 

Table 1. Demographics and vital sign measurements of patients who were or were not admitted to 
the intensive care unit. 

 Total Case Group Control Group p-Value 
Number of patients 610 122 488  

Number of data points 10,189 1594 8595  

Age, years 63 (56–69) 63 (56–69) 63 (56–69) 0.78 
Sex, male 400 (65.6) 80 (65.6) 320 (65.6) 1.00 

Hypertension 198 (32.5) 37 (30.3) 161 (33.0) 0.57 
Diabetes mellitus 75 (12.3) 26 (21.3) 49 (10.0) <0.01 
HR, beats/min * 72.1 (64.8–84.4) 105.4 (91.5–116.7) 69.5 (63.3–77.1) <0.01 

SDRR, ms * 61.3 (41.0–86.4) 41.6 (24.3–61.8) 66.2 (45.3–89.2) <0.01 
Adjusted SDRR, ms * 20.6 (−1.5–46.4) 1.8 (−15.5–21.1) 24.4 (3.4–49.2) <0.01 

RMSSD, ms * 59.5 (32.3–89.7) 51.0 (25.6–81.0) 60.3 (35.1–90.2) 0.04 
Adjusted RMSSD, ms * 31.2 (6.2–63.0) 24.0 (−1.2–54.4) 33.1 (7.9–65.0) 0.04 

Normalized LF power, % * 23.6 (19.0–27.6) 22.4 (16.1–28.8) 23.9 (19.4–27.3) 0.13 
Normalized HF power, % * 40.8 (31.9–48.1) 41.3 (31.3–48.1) 40.7 (32.0–48.2) 0.98 

LF/HF ratio 0.81 (0.51–1.31) 0.62 (0.42–1.00) 0.87 (0.53–1.39) <0.01 
* The means of the measured HR and HRV metrics for each patient were calculated and compared. 
Categorical variables are presented as numbers and proportions, while continuous variables are 
presented as medians and interquartile ranges. Abbreviations: HR, heart rate; SDRR, standard de-
viation of R-R intervals; RMSSD, root mean square of successive R-R interval differences; LF, low 
frequency; HF, high frequency. 

Among the 122 patients in the case group, 37 patients were admitted due to sepsis, 
15 due to respiratory causes, 27 due to major bleeding, 22 due to major trauma, and 21 
due to other causes. Among the 488 patients in the control group, 458 (93.9%) underwent 
surgery under general anesthesia, whereas 30 (6.1%) underwent surgery under spinal an-
esthesia. Demographics and vital sign measurements of patients in the derivation (n = 457) 
and validation (n = 153) sets showed no significant differences (Appendix B). 

By analyzing the coefficients of the GLMM, we observed that a history of diabetes 
mellitus (OR [95% CI]: 3.33 [1.71–6.48]), a higher HR (OR [95% CI]: 3.40 [2.97–3.90] for 
every 10 increase), and a higher RMSSD (OR [95% CI]: 1.36 [1.22–1.51] for every 10 in-
crease) increased the odds of ICU admission. In contrast, a higher SDRR decreased the 
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odds of ICU admission (OR [95% CI]: 0.68 [0.60–0.78] for every 10 increase). Although the 
SDRR and RMSSD demonstrated a positive correlation, the VIFs for all of the fixed-effect 
variables remained below 10, thus suggesting the absence of significant multicollinearity 
(Appendix C). The ORs remained similar when age- and sex-adjusted values were used 
for the SDRR and RMSSD (Table 2). 

Table 2. Odds ratios for each fixed-effect variable in the GLMM. 

 OR (95% CI) 
Model 1  

Diabetes mellitus, yes vs. no 3.33 (1.71–6.48) 
HR (for every 10 increase) 3.40 (2.97–3.90) 

SDRR (for every 10 increase) 0.68 (0.60–0.78) 
RMSSD (for every 10 increase) 1.36 (1.22–1.51) 

Model 2  

Diabetes mellitus, yes vs. no 3.27 (1.69–6.36) 
HR (for every 10 increase) 3.44 (3.00–3.95) 

Adjusted SDRR (for every 10 increase) 0.72 (0.63–0.82) 
Adjusted RMSSD (for every 10 increase) 1.33 (1.20–1.48) 

Abbreviations: OR, odds ratio; CI, confidence interval; HR, heart rate; SDRR, standard deviation of 
R-R intervals; RMSSD, root mean square of successive R-R interval differences. 

When evaluated by using randomly sampled data points from each patient in the 
validation set, the AUC for predicting ICU admission was 0.942 (95% CI: 0.897–0.987) for 
Model 1 and 0.947 (95% CI: 0.906–0.987) for Model 2 (Figure 2a,b). The sensitivity and 
specificity of both models were 0.871 (95% CI: 0.753–0.989) and 0.910 (95% CI: 0.859–0.961), 
respectively (Table 3). The models tended to slightly underestimate the probability within 
the predicted probability range of 0.4 to 0.8 (Figure 2c,d). 

Table 3. Discriminative performance for each model using data from different time points of the 
validation set. 

 AUC 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Model 1    

Randomly sampled data 
point 0.942 (0.897–0.987) 0.871 (0.753–0.989) 0.910 (0.859–0.961) 

First data point 0.921 (0.852–0.989) 0.807 (0.667–0.946) 0.943 (0.901–0.984) 
Last data point 0.883 (0.806–0.961) 0.871 (0.753–0.989) 0.812 (0.742–0.881) 

Model 2    

Randomly sampled data 
point 

0.947 (0.906–0.987) 0.871 (0.753–0.989) 0.910 (0.859–0.961) 

First data point 0.923 (0.855–0.990) 0.807 (0.667–0.946) 0.943 (0.901–0.984) 
Last data point 0.886 (0.809–0.962) 0.839 (0.709–0.968) 0.861 (0.799–0.922) 

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval. 
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Figure 2. Receiver operating characteristic curves and calibration plots for (a,c) Model 1 and (b,d) 
Model 2. 

With respect to the validation set of 153 patients, we successfully acquired PPG-de-
rived HRV measurements for 133 patients. The discriminative performance of the models 
was consistent when these PPG-derived metrics were used instead of ECG-derived HRV 
data. When evaluated with randomly sampled data points from each patient, the AUC for 
predicting ICU admission was 0.928 (95% CI: 0.855–1.000) for Model 1 and 0.926 (95% CI: 
0.853–0.998) for Model 2 (Table 4). 

Table 4. Discriminative performance for each model using heart rate variability metrics derived 
from photoplethysmography. 

 AUC  
(95% CI) 

Sensitivity  
(95% CI) 

Specificity 
(95% CI) 

Model 1    

Randomly sampled data 
point 

0.928 (0.855–1.000) 0.929 (0.794–1.000) 0.824 (0.755–0.892) 

First data point 0.920 (0.828–1.000) 0.929 (0.794–1.000) 0.832 (0.765–0.899) 
Last data point 0.911 (0.838–0.984) 0.786 (0.571–1.000) 0.916 (0.866–0.966) 

Model 2    

Randomly sampled data 
point 

0.926 (0.853–0.998) 0.929 (0.794–1.000) 0.807 (0.736–0.878) 

First data point 0.920 (0.830–1.000) 0.857 (0.674–1.000) 0.899 (0.845–0.953) 
Last data point 0.910 (0.835–0.985) 0.786 (0.571–1.000) 0.916 (0.866–0.966) 

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval. 
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In the sensitivity analysis focusing on patients who were intubated and sedated in 
the derivation set, 494 data points from 29 patients in the case group and 6242 data points 
from 346 patients in the control group were analyzed (Appendix D). Although statistically 
not significant, a history of diabetes mellitus, higher HR, higher RMSSD, and lower SDRR 
were associated with increased odds of ICU admission, demonstrating a trend consistent 
with the main analysis (Appendix E). 

4. Discussion 
In this retrospective case‒control matched analysis, we developed GLMMs that uti-

lized patient demographics, HR, and HRV data to predict ICU admission. We found that 
a history of diabetes mellitus, a higher HR and RMSSD, and a lower SDRR were associated 
with increased odds of ICU admission. The models accurately predicted ICU admission, 
achieving an AUC of 0.88–0.95. Although these models were initially developed by using 
HRV metrics derived from ECG signals, they also performed accurately with HRV metrics 
obtained from PPG signals. Given that the models require only a simple set of demo-
graphic information and vital signs acquired from a single PPG or ECG sensor, they can 
be easily adopted in various settings. 

The SDRR is known to reflect both sympathetic and parasympathetic nervous system 
activities, with lower values linked to poorer health outcomes. The RMSSD, which is 
strongly correlated with HF power, is predominantly influenced by the parasympathetic 
nervous system [6]. Previous research has indicated that sympathovagal balance is dis-
rupted in severely ill patients. In such patients, decreased sympathetic activity impairs the 
body’s ability to respond adequately to stressors, such as maintaining normal blood pres-
sure. Conversely, an increase in the relative strength of the parasympathetic nervous sys-
tem is observed, which is associated with the severity of the illness [7,16]. The findings of 
our study, which showed that a higher RMSSD and lower SDRR were correlated with 
increased odds of ICU admission, align with these previous studies. 

Given that our study employed a case‒control design with patients matched by age 
and sex, these factors were not significant predictors according to Model 1. Nevertheless, 
age and sex are widely recognized as influencing ICU admission risk and are known to 
correlate with HRV values [15,17]. Model 2, which adjusts for age and sex in the SDRR 
and RMSSD calculations, could address this limitation of Model 1. Although Model 2 did 
not show significantly enhanced performance in our validation set compared to Model 1, 
it is anticipated to be more robust in populations with different age and sex distributions. 

Our study included a sensitivity analysis to account for the impact of sedation and 
intubation on HRV parameters, as these procedures can alter autonomic balance and po-
tentially skew the association with ICU admission risk [18,19]. By isolating the subset of 
patients who received both interventions, we aimed to ensure that our findings on the 
predictive value of HRV for ICU admission were not confounded by these factors. Alt-
hough we did not observe statistically significant results due to a reduced sample size, the 
trend of association between HRV parameters and ICU admission was maintained. This 
result strengthens the utility of HRV as a biomarker for assessing ICU admission risk, 
highlighting its effectiveness beyond the physiological changes induced by medical inter-
ventions. 

Earlier investigations have attempted to identify ED patients at high risk of ICU ad-
mission by using various variables related to patient characteristics and vital signs. Early 
warning scores, such as the National Early Warning Score, have demonstrated efficacy in 
predicting ICU admissions [20]. Machine learning models that incorporate a comprehen-
sive set of variables have also shown strong performance in this task [17]. However, a 
common limitation among these previously developed models and early warning scores 
is their reliance on a detailed set of vital sign data for predictions. In cases where patients 
appear to be relatively stable upon ED presentation and vital sign monitoring occurs at 
intervals of several hours, risk prediction and the detection of deteriorating patients could 
be significantly delayed. 
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Recent technological advances have enabled the acquisition of ECG or PPG signals 
by using compact wearable devices, such as smartwatches and single-lead ECG devices 
[15,21]. Our models, which require only beat-to-beat intervals for calculating HR and 
HRV, are readily adaptable to these devices. This adaptability allows for the monitoring 
and prediction of ICU admission risk in ED patients even without beds or multiline mon-
itoring devices. A prior study noted that nearly 30% of patients who arrived at the ED 
with normal vital signs experienced deterioration within 24 h [22]. With respect to over-
crowded EDs where continuous bed monitoring may not be feasible, our model can offer 
a viable solution when used with a wearable device. 

Study Limitations 
This study had several limitations that warrant consideration. First, due to the case‒

control design that was used for developing and validating the models, their prediction 
probabilities may not be appropriately calibrated. Consequently, recalibration of the mod-
els according to the target population for deployment is necessary. Second, compared 
with patients not under anesthesia, the control group consisted of stable patients who un-
derwent surgery and may have exhibited physiological differences. This approach was 
adopted in response to the limited vital sign data that are available for stable ED patients, 
who are typically not subjected to continuous monitoring. Moreover, patients from the 
OR-VitalDB dataset admitted to the ICU were not included in the case group. This exclu-
sion was due to the routine practice of ICU admission after major surgeries, irrespective 
of vital signs or health status, and the OR-VitalDB dataset’s lack of detailed reasons for 
ICU admissions post-surgery. Third, this was a retrospective single-center study; there-
fore, the results may not be generalizable to different settings. Fourth, we excluded chil-
dren and elderly patients older than 75 years; thus, the performance of these models in 
these age groups remains to be validated. Last, our prediction models were limited to 
incorporating only hypertension and diabetes mellitus as comorbidities, due to the ab-
sence of other comorbidity data in the OR-VitalDB dataset. To address some of the afore-
mentioned limitations, the study investigators are currently conducting a prospective val-
idation study in an ED setting. 

5. Conclusions 
In conclusion, the developed models, which incorporate HRV metrics for predicting 

ICU admission, demonstrated strong predictive performance. The input variables can be 
easily obtained from a single PPG or ECG sensor, thus offering potential for the models 
to be used for patient risk monitoring in crowded EDs. 
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Appendix A. Reference Values of SDRR and RMSSD, Adjusting Age and Sex Based 
on Previous Study 
1. Male reference SDRR୰ୣ୤ୣ୰ୣ୬ୡୣ(age) =   61.5 × ቀage30 ቁି଴.ହ଺଺    (ms) 

RMSSD୰ୣ୤ୣ୰ୣ୬ୡୣ (age) = 44.8 × ቀage30 ቁି଴.଼଴ସ    (ms) 

2. Female reference SDRR୰ୣ୤ୣ୰ୣ୬ୡୣ(age) =   54.7 × ቀage30 ቁି଴.ହଶସ    (ms) 

RMSSD୰ୣ୤ୣ୰ୣ୬ୡୣ (age) = 43.7 × ቀage30 ቁି଴.଺଺଺    (ms) 

3. Calculation of SDRR and RMSSD values adjusted for age and sex SDRR௔௚௘ ௔௡ௗ ௦௘௫ ௔ௗ௝௨௦௧௘ௗ =  SDRR௠௘௔௦௨௥௘ௗ −  SDRR௥௘௙௘௥௘௡௖௘ RMSSD௔௚௘ ௔௡ௗ ௦௘௫ ௔ௗ௝௨௦௧௘ௗ =  RMSSD௠௘௔௦௨௥௘ௗ −  RMSSD௥௘௙௘௥௘௡௖௘  

Appendix B 

Table A1. Demographics and Vital Sign Measurements of Patients in the Derivation and Validation 
Set. 

 Total Derivation Set Validation Set p-Value 
Number of patients 610 457 153  

Number of data points 10,189 7661 2528  

Age, years 63 (56–69) 63 (56–69) 63 (56–68) 0.44 
Sex, male 400 (65.6) 299 (65.4) 101 (66.0) 0.92 

Hypertension 198 (32.5) 156 (34.1) 42 (27.5) 0.12 
Diabetes mellitus 75 (12.3) 54 (11.8) 21 (13.7) 0.54 
HR, beats/min * 74.2 (65.2–87.3) 74.4 (64.9–88.2) 73.0 (66.0–85.4) 0.40 

SDRR, ms * 64.2 (40.5–98.7) 63.1 (39.4–97.6) 68.9 (46.8–103.3) 0.16 
Adjusted SDRR, ms * 24.4 (−1.5–57.2) 23.6 (−1.9–54.4) 27.6 (2.7–64.5) 0.29 

RMSSD, ms * 51.9 (26.5–98.6) 48.9 (26.8–97.6) 59.8 (25.0–103.1) 0.23 
Adjusted RMSSD, ms * 23.4 (−1.9–70.4) 20.8 (−1.1–68.8) 31.6 (−2.9–78.3) 0.35 

Normalized LF power, % * 22.2 (15.9–29.6) 22.3 (16.3–29.4) 21.7 (14.9–30.4) 0.93 
Normalized HF power, % * 40.7 (25.3–51.6) 40.2 (25.1–51.5) 41.9 (25.6–52.5) 0.55 

LF/HF ratio 0.62 (0.37–1.30) 0.63 (0.37–1.34) 0.60 (0.37–1.24) 0.68 
ICU admission 122 (20.0) 91 (19.9) 31 (20.3) 0.93 

* The means of the measured HR and HRV metrics for each patient were calculated and compared. 
Categorical variables are presented as numbers and proportions while continuous variables are pre-
sented as medians and interquartile ranges. Abbreviations: ICU, intensive care unit; HR, heart rate; 
SDRR, standard deviation of R-R intervals; RMSSD, root mean square of successive R-R interval 
differences; LF, low frequency; HF, high frequency. 
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Appendix C 

 
Figure A1. SDRR and RMSSD Values in the Derivation Set According to Intensive Care Unit Admis-
sion. Abbreviations: ICU, intensive care unit; RMSSD, root mean square of successive R-R interval 
differences; SDRR, standard deviation of R-R intervals. 

Appendix D 

Table A2. Demographics and Vital Sign Measurements of Patients Who Were Intubated and Sedated 
in the Derivation Set. 

 Total Case Group Control Group p-Value
Number of patients 375 29 346  

Number of data points 6736 494 6242  

Age, years 63 (56–69) 63 (56–68) 63 (56–69) 0.73 
Sex, male 242 (64.5) 21 (72.4) 221 (63.9) 0.36 

Hypertension 130 (34.7) 11 (37.9) 119 (34.4) 0.70 
Diabetes mellitus 46 (12.3) 7 (24.1) 39 (11.3) 0.04 
HR, beats/min * 69.9 (63.8–78.7) 106.5 (93.3–120.2) 69.1 (63.4–76.9) <0.01 

SDRR, ms * 63.7 (42.6–90.3) 41.2 (25.1–53.5) 66.2 (45.0–90.6) <0.01 
Adjusted SDRR, ms * 22.9 (0.9–50.7) −3.5 (−15.5–16.7) 24.4 (3.8–52.0) <0.01 

RMSSD, ms * 60.2 (33.3–89.8) 44.1 (25.6–67.2) 60.8 (35.1–89.8) 0.08 
Adjusted RMSSD, ms * 32.3 (6.7–64.4) 13.2 (−5.7–40.8) 33.3 (8.1–64.5) 0.08 

Normalized LF power, % * 23.6 (19.0–26.6) 22.7 (14.2–26.2) 23.6 (19.4–26.6) 0.16 
Normalized HF power, % * 40.8 (32.6–47.8) 37.8 (33.5–48.3) 40.8 (32.6–47.8) 0.97 

LF/HF ratio 0.82 (0.52–1.28) 0.59 (0.35–0.98) 0.83 (0.54–1.32) 0.02 
* The means of the measured HR and HRV metrics for each patient were calculated and compared. 
Categorical variables are presented as numbers and proportions, while continuous variables are 
presented as medians and interquartile ranges. Abbreviations: HR, heart rate; SDRR, standard de-
viation of R-R intervals; RMSSD, root mean square of successive R-R interval differences; LF, low 
frequency; HF, high frequency. 
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Appendix E 

Table A3. Odds Ratios for Each Fixed Effect Variable in the Sensitivity Analysis. 

 OR (95% CI) 
Model 1  

Diabetes mellitus, yes vs. no 2.03 (0.27–15.10) 
HR (for every 10 increase) 5.35 (3.39–8.44) 

SDRR (for every 10 increase) 0.73 (0.51–1.05) 
RMSSD (for every 10 increase) 1.19 (0.90–1.59) 

Model 2  

Diabetes mellitus, yes vs. no 2.42 (0.34–17.25) 
HR (for every 10 increase) 5.23 (3.34–8.19) 

Adjusted SDRR (for every 10 increase) 0.75 (0.53–1.06) 
Adjusted RMSSD (for every 10 increase) 1.20 (0.91–1.59) 

Abbreviations: OR, odds ratio; CI, confidence interval; HR, heart rate; SDRR, standard deviation of 
R-R intervals; RMSSD, root mean square of successive R-R interval differences. 
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