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Abstract: Background and Objectives: The availability of multiple dental implant systems makes it
difficult for the treating dentist to identify and classify the implant in case of inaccessibility or loss of
previous records. Artificial intelligence (AI) is reported to have a high success rate in medical image
classification and is effectively used in this area. Studies have reported improved implant classification
and identification accuracy when AI is used with trained dental professionals. This systematic review
aims to analyze various studies discussing the accuracy of AI tools in implant identification and
classification. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines were followed, and the study was registered with the International Prospective
Register of Systematic Reviews (PROSPERO). The focused PICO question for the current study was
“What is the accuracy (outcome) of artificial intelligence tools (Intervention) in detecting and/or
classifying the type of dental implant (Participant/population) using X-ray images?” Web of Science,
Scopus, MEDLINE-PubMed, and Cochrane were searched systematically to collect the relevant
published literature. The search strings were based on the formulated PICO question. The article
search was conducted in January 2024 using the Boolean operators and truncation. The search was
limited to articles published in English in the last 15 years (January 2008 to December 2023). The
quality of all the selected articles was critically analyzed using the Quality Assessment and Diagnostic
Accuracy Tool (QUADAS-2). Results: Twenty-one articles were selected for qualitative analysis based
on predetermined selection criteria. Study characteristics were tabulated in a self-designed table. Out
of the 21 studies evaluated, 14 were found to be at risk of bias, with high or unclear risk in one or
more domains. The remaining seven studies, however, had a low risk of bias. The overall accuracy of
AI models in implant detection and identification ranged from a low of 67% to as high as 98.5%. Most
included studies reported mean accuracy levels above 90%. Conclusions: The articles in the present
review provide considerable evidence to validate that AI tools have high accuracy in identifying
and classifying dental implant systems using 2-dimensional X-ray images. These outcomes are vital
for clinical diagnosis and treatment planning by trained dental professionals to enhance patient
treatment outcomes.

Keywords: artificial intelligence; deep learning; dental implant; convolutional neural network;
machine learning; implant classification; implant identification; implant fixture

1. Introduction

Advancements in science and technology have influenced people’s lives in various
fields, including dentistry. With the introduction of precise digital machines, dentists can
provide high-quality treatment to their patients [1,2]. Various studies have shown that these
computer-aided machines help dentists in various ways, from the fabrication of prostheses
using CAD/CAM [2–5] to the use of robots in the treatment of patients [6–8]. The intro-
duction of AI has taken dentistry to the next level. These tools help/act as supplementary
aids to guide dentists’ diagnosis and treatment planning. Artificial intelligence involves
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developing and training machines through a set of data so that they are capable of decision
making and problem solving, mimicking the human brain [9–11]. Machine learning (ML),
a segment of AI, involves using algorithms to perform tasks without human intervention.
Deep learning (DL), e.g., convolutional neural network (CNN), is an element of ML that
creates a neural network capable of identifying patterns by itself, which enhances feature
identification [11–13].

AI functions on two levels. The first level involves training, in which data are used
to train and set the parameters. The second level is the testing level, in which AI per-
forms its designated task of problem solving or decision making based on the training
data. The training data are generally from the pool of collected data of interest [14–17].
Currently, AI is widely used in dentistry, which involves caries detection [18,19], periapical
lesion detection [20], oral cancer diagnosis [21,22], screening of osteoporosis [23], working
length determination during endodontic treatment [24,25], determination of root morphol-
ogy [26,27], forensic odontology [28], pediatric dentistry [29], and implant dentistry for
identification [30–32], diagnosis, and treatment planning [33,34]. Studies have shown that,
in general, AI helps dentists in diagnosis and treatment planning, as it provides logical
reasons that aid in scientific assessment.

Dental implants are commonly used for replacing missing teeth. Studies have reported
a high long-term success rate with a ten-year survival rate above 95% [35–38]. With
constantly increasing demands, dental implant manufacturers are developing different
implant systems to increase the success rate [39]. With the increase in the use of dental
implants, an increase in complications has also been reported. These complications may
be related to prosthetic or fixture components or may be biological in nature [40–43]. To
manage these complications, the treating dentist should know the type of implant system
used so that he or she can provide the best possible treatment outcome [44]. The data
related to the implant system can be retrieved easily from the patient’s previous records.
However, in case of inaccessibility or loss of previous records due to any reason, it becomes
difficult for the dentist to identify and classify the implant system using the available
X-rays and clinical observation [45]. Dentists with vast experience in implantology may
also find this task challenging. AI is reported to have a high success rate in medical image
classification and is effectively used in this area. AI has been used to manage the problem
of implant system identification and classification [30–32,46–63]. The AI tool is trained
using a database of implant images and is later used to identify and classify the implants.
Studies have reported improved implant classification and identification accuracy when
AI is used with trained dental professionals [51,53,60,62]. This systematic review aims
to analyze various studies discussing the accuracy of AI tools in implant identification
and classification.

2. Materials and Methods
2.1. Registration

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [64] were followed to systematize and compile this systematic review. The
study was registered with the International Prospective Register of Systematic Reviews
(PROSPERO registration No.: CRD42024500347).

2.2. Inclusion and Exclusion Criterias

The details of inclusion and exclusion criteria are given in Table 1.

2.3. Exposure and Outcome

In the current study, the exposure was the identification of the type and classification
of an implant system using an artificial intelligence tool. The outcome was the accuracy
of identification. The focused PICO (Population (P), Intervention (I), Comparison (C),
and Outcome (O)) question for the current study was “What is the accuracy (outcome) of
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artificial intelligence tools (Intervention) in detecting and/or classifying the type of dental
implant (Participant/population) using X-ray images?”

P: Human X-rays with dental implants.
I: Artificial intelligence tools.
C: Expert opinions and reference standards.
O: Accuracy of detection of the dental implant.

Table 1. Selection criteria.

Inclusion Criteria Exclusion Criteria

Literature in English language Literature in a language other than English

Human clinical studies

Animal studies, cadaver studies, technical reports, case
reports, posters, case series, reports, commentaries, reviews,
unpublished abstracts and dissertations, incomplete trials,
and non-peer reviewed articles

Articles published between January 2008 and December 2023 Articles published prior to January 2008
Studies evaluating the diagnostic accuracy of artificial intelligence
tools in the identification and classification of dental implants

Studies evaluating the accuracy of artificial intelligence tools
in identification of other dental/oral structures

Studies in which three or more implant models were identified Studies having only the abstract and not the full text
Studies in which less than three implant models were
identified
Studies discussing artificial intelligence tools under trial

2.4. Information Sources and Search Strategy

Four electronic databases (Web of Science, Scopus, MEDLINE-PubMed, and Cochrane)
were searched systematically to collect the relevant published literature. The search strings
were based on the formulated PICO question. The article search was conducted in January
2024 using the Boolean operators and truncation. The search was limited to articles pub-
lished in English in the last 15 years (January 2008 to December 2023). Studies performed
on animals were not included. Details about the search strategy are mentioned in Table 2.
Minor changes were made in the search strings based on the requirements of the database.
Grey literature was searched, and bibliographies of selected studies and other review
articles were checked manually to ensure that no relevant articles were left.

2.5. Screening, Selection of Studies, and Data Extraction

Two reviewers, M.S.A. and M.N.A., independently reviewed the titles and abstracts
obtained by the electronic search. Duplicate titles were eliminated. The remaining titles
were assessed based on the preset selection criteria and the PICO question. Full texts
of the selected studies were reviewed independently by two reviewers, R.S.P. and W.I.I.,
and relevant articles were shortlisted. Any disagreements were resolved by discussion
between them and with the third reviewer, M.N.A. Articles that did not meet the selection
criteria were discarded, and the reason for exclusion was noted. The inter-examiner
agreement was calculated using kappa statistics. W.I.I. created a data extraction chart
and collected information related to the author, year of publication, country where the
research was conducted, type and name of the algorithm network architecture, architecture
depth, number of training epochs, learning rate, type of radiographic image, patient data
collection duration, number of implant images evaluated, number and names of implant
brands and models evaluated, comparator, test group, and training/validation number
and ratio. Accuracy reported by the studies, author’s suggestions, and conclusions were
also extracted. These data were checked and verified by a second reviewer (M.S.A.).
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Table 2. Strategy and search terms for the electronic databases.

Database Combination of Search Terms and Strategy Number of
Titles

MEDLINE-
PubMed

(((((((dental implants[MeSH Terms]) OR (dental implantation[MeSH Terms])) OR (dental implant*))
OR (dental implant system*)) OR (Dental Implant System Classification)) OR (dental implant fixture))

OR (dental implant fixture classification)) AND ((((((((((((((dental diagnostic imaging) OR (dental
digital radiography[MeSH Terms])) OR (dental radiography[MeSH Terms])) OR (oral digital

radiography) OR (dental Digital radiograph))) OR (Panoramic image*)) OR (panoramic
radiography[MeSH Terms])) OR (Periapical images)) OR (dental radiology)) OR (periapical
radiograph*)) OR (dental X-ray image)) OR (synthetic dental X-ray image)) OR (OPG)) OR

(Orthopantomogram)) OR (Intro oral radiograph) AND ((((((((((((((((artificial intelligence[MeSH
Terms]) OR (machine learning[MeSH Terms])) OR (neural networks computer[MeSH Terms])) OR

(algorithms[MeSH Terms])) OR (deep learning)) OR (supervised machine learning)) OR (Automated
deep learning)) OR (Object detection)) OR (Yolov3)) OR (object detection algorithm)) OR

(convolutional neural network*)) OR (Deep Neural Network*)) OR (multi-task learning)) OR (deep
convolutional neural network)) OR (Transfer Learning)) OR (attention branch network)) OR

(Ensemble Deep Learning) AND (((((((((sensitivity and specificity[MeSH Terms]) OR (Accuracy)) OR
(sensitivity)) OR (specificity)) OR (Positive Predictive Value*)) OR (Negative Predictive Value*)) OR

(Precision)) OR (Recall)) OR (F1 score)) OR (Area under receiver operating characteristics curve)
Filters: Humans, English, from 1 January 2008 to 31 December 2023

119

Scopus

(“dental implants” OR “dental implantation” OR “dental implant*” OR “dental implant system*” OR
“Dental Implant System Classification” OR “dental implant fixture” OR “dental implant fixture
classification”) AND (“dental diagnostic imaging” OR “dental digital radiography” OR “dental

radiography” OR “oral digital radiography” OR “dental Digital radiograph” OR “Panoramic image*”
OR “panoramic radiography” OR “Periapical images” OR “dental radiology” OR “periapical

radiograph*” OR “dental X-ray image” OR “synthetic dental X-ray image” OR “OPG” OR
“Orthopantomogram” OR “Intro oral radiograph”) AND (“artificial intelligence” OR “machine

learning” OR “neural networks computer” OR “algorithms” OR “deep learning” OR “supervised
machine learning” OR “Automated deep learning” OR “Object detection” OR “Yolov3” OR “object

detection algorithm” OR “convolutional neural network*” OR “Deep Neural Network*” OR
“multi-task learning” OR “deep convolutional neural network” OR “Transfer Learning” OR

“attention branch network” OR “Ensemble Deep Learning”) AND (“sensitivity and specificity” OR
“Accuracy” OR “sensitivity” OR “specificity” OR “Positive Predictive Value*” OR “Negative

Predictive Value*” OR “Precision” OR “Recall” OR “F1 score” OR “Area under receiver operating
characteristics curve”) AND PUBYEAR > 2008 AND PUBYEAR <2023 AND (LIMIT-TO (SUBJAREA,
“DENT”)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) AND

(LIMIT-TO(SRCTYPE, “j”))

205

Web of
Science

#1 (P)
TS = (‘dental implants’ OR ‘dental implantation’ OR ‘dental implant*’OR ‘dental implant system*’
OR ‘Dental Implant System Classification’ OR ‘dental implant fixture’ OR ‘dental implant fixture

classification’ OR ‘dental diagnostic imaging’ OR ‘dental digital radiography’ OR ‘dental
radiography’ OR ‘oral digital radiography’ OR ‘dental Digital radiograph’ OR ‘Panoramic image*’

OR ‘panoramic radiography’ OR ‘Periapical images’ OR ‘dental radiology’ OR ‘periapical
radiograph*’ OR ‘dental X-ray image’ OR ‘synthetic dental X-ray image’ OR ‘OPG’ OR

Orthopantomogram OR ‘Intro oral radiograph’)
#2 (I)

TS = (‘artificial intelligence’ OR ‘machine learning’ OR ‘neural networks computer’ OR algorithms
OR ‘deep learning’ OR ‘supervised machine learning’ OR ‘Automated deep learning’ OR ‘Object

detection’ OR ‘Yolov3′ OR ‘object detection algorithm’ OR ‘convolutional neural network*’ OR ‘Deep
Neural Network*’ OR ‘multi-task learning’ OR ‘deep convolutional neural network’ OR ‘Transfer

Learning’ OR ‘attention branch network’ OR ‘Ensemble Deep Learning’)
#3 (O)

TS = (‘sensitivity and specificity’ OR Accuracy OR sensitivity OR specificity OR ‘Positive Predictive
Value*’ OR ‘Negative Predictive Value*’ OR Precision OR Recall OR ‘F1 score’ OR ‘Area under

receiver operating characteristics curve’)
#3 AND #2 AND #1

Indexes = SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI, CCR-EXPANDED, IC Timespan
= January 2008 to December 2023

and English (Languages)

8
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Table 2. Cont.

Database Combination of Search Terms and Strategy Number of
Titles

Cochrane
Library

#1 MeSH descriptor: [Dental Implants] explode all trees
#2 MeSH descriptor: [Dental Implantation] explode all trees
#3 dental implant*
#4 dental implant system*
#5 Dental Implant System Classification
#6 dental implant fixture
#7 dental implant fixture classification
#8 dental diagnostic imaging
#9 MeSH descriptor: [Radiography, Dental, Digital] explode all trees
#10 MeSH descriptor: [Radiography, Dental] explode all trees
#11 oral digital radiography
#12 dental Digital radiograph
#13 Panoramic image*
#14 panoramic radiography
#15 Periapical images
#16 dental radiology
#17 periapical radiograph*
#18 dental X-ray image
#19 synthetic dental X-ray image
#20 OPG
#21 Orthopantomogram
#22 Intro oral radiograph
#23 MeSH descriptor: [Artificial Intelligence] explode all trees
#24 MeSH descriptor: [Machine Learning] explode all trees
#25 MeSH descriptor: [Neural Networks, Computer] explode all trees
#26 MeSH descriptor: [Algorithms] explode all trees
#27 deep learning
#28 supervised machine learning
#29 Automated deep learning
#30 Object detection
#31 Yolov3
#32 object detection algorithm
#33 convolutional neural network*
#34 Deep Neural Network*
#35 multi-task learning
#36 deep convolutional neural network
#37 Transfer Learning
#38 attention branch network
#39 Ensemble Deep Learning
#40 MeSH descriptor: [Sensitivity and Specificity] explode all trees
#41 Accuracy
#42 sensitivity
#43 specificity
#44 Positive Predictive Value*
#45 Negative Predictive Value*
#46 Precision
#47 Recall
#48 F1 score
#49 Area under receiver operating characteristics curve
#50 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
#51 #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR
#20 OR #21 OR #22
#52 #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR
#35 OR #36 OR #37 OR #38 OR #39
#53 #40 OR #41 OR #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49
#54 #50 AND #51 AND #52 AND #53

6

* truncation. P, population; I, intervention; O, outcome.
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2.6. Quality Assessment of Included Studies

The quality of all the selected articles was critically analyzed using the Quality As-
sessment and Diagnostic Accuracy Tool (QUADAS-2) [65]. This tool is used for studies
evaluating diagnostic accuracy (Table S1). This tool assesses the risk of bias and applicabil-
ity concerns. The risk of bias arm has four domains that primarily focus on patient selection,
index test, reference standard, and flow and timing. Meanwhile, the applicability concern
arm has three domains focusing on patient selection, index test, and reference standards.

3. Results
3.1. Identification and Screening

After an electronic search of the databases, 561 hits were displayed. A total of
36 articles were found to be duplicates and were removed, and the titles and abstracts of
525 articles were reviewed and checked for eligibility based on inclusion and exclusion
criteria. Twenty-eight articles were selected for full-text review. Out of these twenty-eight
articles, six were rejected, as they discussed the use of AI in diagnosis and treatment plan-
ning of dental implants, and one was rejected because it discussed the diagnostic accuracy
of AI in evaluating the misfit of abutment and implant. Eventually, twenty-one articles
were included in the study. No relevant articles meeting the selection criteria were found
during the manual search of the bibliographies of the selected studies and other review
articles (Figure 1). During the full-text review phase, Cohen’s kappa value was found to be
0.89 for two reviewers (R.S.P. and W.I.I.), which is an excellent agreement.

1 

 

 

Figure 1. Flow chart illustrating the search strategy.

3.2. Study Characteristics

Table 3 displays the characteristics of studies involved in the review. All the in-
volved studies were published in the last four years (2020: six; 2021: four; 2022: five;
2023: six) (Figure 2). Out of selected 21 studies, 12 were conducted in the Republic of
Korea [31,48,51,53–55,57–62], four in Japan [30,47,50,52], and one each in Brazil [49], In-
dia [56], France [46], South Africa [32], and the United States [63] (Figure 3). Some of
the included studies were conducted by the same research groups (Kong et al. [31,61],
Park et al. [48,62], Sukegawa et al. [30,50,52], and Lee et al. [51,53,54]). Each of them shared
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common funding sources and grant numbers, respectively, but the studies by Kong et al. [31,61]
also shared a common research registration number. The number of algorithm networks evalu-
ated for accuracy varied in the selected studies. Ten studies [46–49,51,53,57,58,60,62] evaluated
the accuracy of one algorithm network; three evaluated two algorithm networks [32,59,61];
two tested three algorithm networks [31,54]; one tested four algorithm networks [56]; three
tested five algorithm networks [50,52,55]; one study each tested six [30] and ten [63] al-
gorithm networks. All the included studies evaluated the accuracy of tested AI tools in
implant detection and classification, whereas four studies [51,53,60,62] also compared this
to trained dental professionals.
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Table 3. Study characteristics and accuracy results of the included studies.

Author, Year
Country

Algorithm Network
Architecture and

Name

Architecture Depth
(Number of

Layers), Number of
Training Epochs,

and Learning Rate

Type of Ra-
diographic

Image

Patient Data
Collection/X-

ray Collection
Duration

Number of
X-rays/Implant

Images Evaluated
(N)

Number and Names of Implant Brands and Models
Evaluated Comparator

Test Group and
Training/Validation
Number and Ratio

Accuracy Reported Authors Sugges-
tions/Conclusions

Kong et al., 2023,
Republic of
Korea [61]

- 2 DL
- YOLOv5
- YOLOv7

-Training Epochs:

YOLOv5: 146,
184, 200

YOLOv7: 200

Pano 2001 to 2021 N = 14,037

Implant models: N = 130 *

Implant design classification:
1. Coronal one-third
2. Middle one-third
3. Apical part

EORS
Test Group: 20%

Training Group: 80%

mAP (area under the precision–recall curve):

YOLOv5:
Implant-dataset-1:0.929
Implant-dataset-2: 0.940
Implant-dataset-3:0.873

YOLOv7:
Implant-dataset-1: 0.931
Implant-dataset-2: 0.984
Implant-dataset-3: 0.884

YOLOv7 Implant-dataset-1:
IPA: 0.986
IPA + Magnification ×2: 0.988
IPA + Magnification ×4: 0.986

mAP:
YOLOv7 > YOLOv5

The tested DL has a
high accuracy

Kong, 2023,
Republic of
Korea [58]

- Fine-tuned CNN
- Google automated
machine learning
(AutoML) Vision

Training:
32 node hours PA January 2005 to

December 2019 N = 4800

Implant Brands: N = 3
(A) Osstem Implant
(B) Biomet 3i LLC
(C) Dentsply Sirona

Implant models: N = 4
(1) Osstem TSIII (25%)
(2) Osstem USII (25%)
(3) Biomet 3i Osseotite External (25%)
(4) Dentsply Sirona Xive (25%)

EORS

Test Group: 10%

Training Group: 80%

Fine-tuning Group:10%

Overall
Accuracy: 0.981
Precision: 0.963
Recall: 0.961
Specificity: 0.985
F1 score: 0.962

Tested fine-
tuned CNN

showed high
accuracy in the
classification

of DISs

Park et al., 2023,
Republic of
Korea [62]

- Fine-tuned and
pretrained DL
- ResNet-50

- Depth: 50 layers PA
and Pano NM

N = 150,733

PA (24.8%)
and

Pano (75.2%)

Implant Brands: N = 10
(A) Neobiotech (n = 14.1%)
(B) NB (n = 2.41%)
(C) Dentsply (n = 10.14%)
(D) Dentium (n = 27.26%)
(E) Dio (n = 1.01%)
(F) Megagen (n = 5.17%)
(G) ST (n = 3.30%)
(H) Shinhung (n = 2.23%)
(I) Osstem (n = 28.47%)
(J) Warantec (n = 5.86%)

Implant Models: N = 25
(A) Neobiotech: (1) IS I 1, (2) IS II, (3) IS III, (4) EB; (B) NB:
(1) Branemark; (C) Dentsply: (1) Astra, (2) Xive; (D)
Dentium: (1) Implantium, (2) Superline; (E)
Dio: (1) UF, (2) UF II; (F) Megagen: (1) Any ridge, (2)
Anyone internal, (3) Anyone external, (4) Exfeel external;
(G) ST: (1) TS standard, (2) TS standard plus, (3) Bone level;
(HI) Shinhung: (1) Luna; (I) Osstem: (1) GS II, (2)
SS II, (3) TS III, (4) US II, (5) US III; (J) Warantec:
(1) Hexplant

DL
vs.

28 dental professionals
(9 dentists specialized
in implantology and 19
dentists not specialized

in implantology)

Training Group: 80%

Validation Group: 10%

Test Group: 10%

Accuracy

(1) DL:
(a) Both Pano and PA: 82.3% (95% CI, 78.0–85.9%)
(b) PA: 83.8%
(95% CI, 79.6–87.2%)
(c) Pano: 73.3% (95% CI, 68.5–77.6%)

(2) All dental professionals:
(a) Both Pano and PA: 23.5% ± 18.5
(b) PA: 26.2% ± 18.2
(c) Pano: 24.5% ± 19.0

(3) Dentist specialized in Implantology:
(a) Both Pano and PA: 43.3% ± 20.4
(b) PA: 43.3% ± 19.7
(c) Pano: 43.2% ± 21.2

(4) Dentist not specialized in Implantology:
(a) Both Pano and PA: 16.8% ± 9
(b) PA: 18.1% ± 9.9
(c) Pano: 15.6% ± 8.5

Deep learning (For both Pano and PA)
AUC: 0.823
Sensitivity: 80.0%
Specificity: 84.5%
PPV: 83.8%
NPV: 80.9%

Classification
accuracy

performance of DL
was significantly

superior
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Table 3. Cont.
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Algorithm Network
Architecture and
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(Number of
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(N)

Number and Names of Implant Brands and Models
Evaluated Comparator
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Training/Validation
Number and Ratio

Accuracy Reported Authors Sugges-
tions/Conclusions

Hsiao et al.,
2023, USA [63]

- 10 CNN architectures
(1) MnasNet
(2) ShuffleNet7
(3) MobileNet8
(4) AlexNet9
(5) VGG10
(6) ResNet11
(7) DenseNet12
(8) SqueezeNet13
(9) ResNeXt14
(10) Wide ResNet15

- Learning rate:
0.001
- For training
accuracy, the
CNN assessed data
90 times per
image

PA
January 2011

to January
2019

N = 788

Implant Brands: N = 3
(A) BioHorizons (22.84%)
(B) ST (34.51%)
(C) NB (42.63%)

Implant Models
(A) BioHorizons: (1) Legacy implant Tapered Pro;
(B) ST: (1) Bone Level,
Bone Level Tapered, Standard Straumann, Tapered Effect;
(C) NB: (1) Active, (2) Parallel, (3) Replace, (4) Replace Select
Straight, (5) Replace Select Tapered, (6) Speedy Groovy,
(7) Speedy Replace

EORS
Training Group: 75%

Test Group: 25%

Overall implant-identification
Accuracy: >90%

Test accuracy
(1) MnasNet6: 81.89%
(2) ShuffleNet7: 96.85%
(3) MobileNet8: 92.68%
(4) AlexNet9: 94.35%
(5) VGG10: 92.94%
(6) ResNet11: 96.43%
(7) DenseNet12: 96.41%
(8) SqueezeNet13: 91.55%
(9) ResNeXt14: 93.90%
(10) Wide ResNet15: 92.01%

Tested CNN has
high accuracy

and speed

Park et al., 2023,
Republic of
Korea [48]

- Customized
automatic DL
- Neuro-T version 3.0.1

- Training epochs:
500 PA and Pano NM

N = 156,965
(Pano: 116,756; PA:

40,209)

Implant Brands: N = 10
(A) Neobiotech, (B) NB, (C) Dentsply, (D) Dentium, (E)
Dioimplant, (F) Megagen, (G) ST, (H) Shinhung, (I) Osstem,
(J) Warantec
Implant models: N = 27
1. IS I (Neobiotech) (5%); 2. IS II (Neobiotech) (1.83%); 3. IS
III (Neobiotech) (5.18%); 4. EB (Neobiotech) (1.53%);
5. Branemark (NB) (2.32%); 6. Astra (Dentsply) (8.90%);
7. Xive (Dentsply) (0.84%); 8. Implatinum (Dentium)
(12.20%); 9. Superline (Dentium) (13.98%); 10. UF
(Dioimplant) (0.51%); 11. UF II (Dioimplant (0.47%); 12. Any
ridge (Megagen) (0.22%); 13. Anyone international
(Megagen) (2.43%); 14. Anyone external (Megagen) (1.63%);
15. Exfeel external (Megagen) (0.69%); 16. TS standard
(Straumann) (0.85%); 17. TS standard plus (Straumann)
(0.66%); 18. Bone level (Straumann) (1.66%); 19. Luna
(Shinhung) (2.15%); 20. GS II (Osstem) (1.10%); 21. SS II
(Osstem) (0.53%); 22. TS III (Osstem) (18.96%); 23. US II
(Osstem) (6.15%); 24. US III (Osstem) (0.60%); 25. Hexplant
(Warantec) (5.63%); 26. Internal (Warantec) (3.68%); 27. IT
(Warantec) (0.28%)

EORS

Test Group: 10%

Training Group: 80%

Validation Group: 10%

Overall
1. Accuracy: 88.53%
2. Precision: 85.70%
3. Recall: 82.30%
4. F1 score: 84.00%

Using Pano:
1. Accuracy: 87.89%
2. Precision: 85.20%
3. Recall: 81.10%
4. F1 score: 83.10%

Using PA:
1. Accuracy: 86.87%
2. Precision: 84.40%
3. Recall: 81.70%
4. F1 score: 83.00%

- DL has reliable
classification

accuracy
- No statistically

significant
difference in

accuracy
performance

between the Pano
and PA

- Suggestion:
Additional dataset

needed for
confirming clinical

feasibility of DL

Kong et al., 2023,
Republic of
Korea [31]

3 DLs
(1) EfficientNet
(2) Res2Next
(3) Ensemble model

NM Pano March 2001 and
April 2021 N = 45,909

Implant Brands: N = 20
(A) Bicon; (B) BioHorizons; (C) BIOMET 3i; (D) Biotem; (E)
Dental Ratio; (F) Dentis; (G) Dentium; (H) Dentsply Sirona;
(I) Dio Implant;
(J) Hi ossen Implant; (K) IBS Implant; (L) Keystone
Dental; (M)
MegaGen Implant; (N) Neobiotech; (O) NB; (P) Osstem
Implant; (Q) Point Implant; (R) ST; (S) Thommen Medical;
(T) Zimmer Dental

Implant models: N = 130 *

EORS
Test Group:20%

Training Group: 80%

Top-1 accuracy (ratio that the nearest class was
predicted, and the answer was correct)
(a) EfficientNet: 73.83
(b) Res2Next: 73.09
(c) Ensemble model: 75.27

Top-5 accuracy (ratio in which the five nearest classes
were predicted, and the answer was among them)
(a) EfficientNet: 93.84
(b) Res2Next: 93.60
(c) Ensemble model: 95.02

Precision:
(a) EfficientNet: 74.61
(b) Res2Next: 77.79
(c) Ensemble model: 78.84

Recall:
(a) EfficientNet: 73.83
(b) Res2Next: 73.08
(c) Ensemble model: 75.27

F1 score:
(a) EfficientNet: 72.02
(b) Res2Next: 73.55
(c) Ensemble model: 74.89

Accuracy:
Ensemble

model > Efficient-
Net > Res2Next
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Jang et al., 2022,
Republic of
Korea [57]

Faster R-CNN

Resnet 101

- Training epochs:
1000 PA January 2016 to

June 2020 N = 300 NM EORS
Test Group: 20%

Training Group: 80%

Classification:
Precision: 0.977
Recall: 0.992
F1 score: 0.984

Faster R-CNN
model provided

high-quality object
detection for dental

implants and
peri-implant tissues

Kohlakala et al.,
2022, South
Africa [32]

DL
(1) FCN-1
(2) FCN-2

- Training epochs:
1000

Artificially
generated

(simulated)
X-ray images

NM NM

Implant brands: N = 1
MIS Dental implant

Implant models: N = 9
(1) Conical narrow platform V3
(2) Conical narrow platform C1
(3) Conical standard platform V3
(4) Conical wide platform C1
Internal diameter 4.00 mm
(5) Internal hex narrow platform SEVEN
(6) Internal hex standard platform SEVEN
(7) Internal hex wide platform SEVEN
(8) External hex standard platform LANCE
(9) External hex wide platform

EORS

Test Group: 17–18%

Training Group:
82–83%

Validation: 12–13%

Semi-automated system (human jaws)
Full precision: 70.52%
Recall: 69.76%
Accuracy: 69.76%
F1 score: 69.70%

Fully automated system (human jaws)
Full precision: 70.55%
Recall: 68.67%
Accuracy: 68.67%
F1 score: 67.60%

Proposed fully
automated system

displayed
promising results

for implant
classification

Sukegawa et al.,
2022, Japan [30]

CNN and CNN + ABN
(1) ResNet18
(2) ResNet18 + ABN
(3) ResNet50
(4) ResNet50 + ABN
(5) ResNet152
(6) ResNet152 + ABN

- Depth:
(1 and 2) 18 layers
(3 and 4) 50 layers
(5 and 6) 152 layers
- Training epochs:
100
- Learning rate:
0.001

Pano NM N = 10,191

Implant brands: N = 5
(A) ZB (4.19%)
(B) NB (25.21%)
(C) Kyocera Co. (7.07%)
(D) ST (8.94%)
(E) Dentsply IH AB (54.16%)

Implant models: N = 13
1. Full OSSEOTITE 4.0 (4.19%)
2. Astra EV 4.2 (8.29%)
3. Astra TX 4.0 (24.73%)
4. Astra TX 4.5 (10.93%)
5. Astra Micro Thread 4.0 (6.91%)
6. Astra Micro Thread 4.5 (3.73%)
7. Branemark Mk III 4.0 (3.48%)
8. FINESIA 4.2 (3.33%)
9. POI EX 42 (3.74%)
10. Replace Select Tapered 4.3 (6.04%)
11. Nobel Replace CC 4.3 (15.69%)
12. Straumann Tissue 4.1 (6.43%)
13. Straumann Bone Level 4.1 (2.51%)

EORS

Test dataset
split

Training: validation:
8:2.

Test accuracy (95% CI):
(a) ResNet18: 0.9486
(b) ResNet18 + ABN: 0.9719
(c) ResNet50: 0.9578
(d) ResNet50 + ABN: 0.9511
(e) ResNet152: 0.9624
(f) ResNet152 + ABN: 0.9564

Precision:
(a) ResNet18: 0.9441
(b) ResNet18 + ABN: 0.9686
(c) ResNet50: 0.9546
(d) ResNet50 + ABN: 0.9477
(e) ResNet152: 0.9575
(f) ResNet152 + ABN: 0.9514

Recall:
(a) ResNet18: 0.9333
(b) ResNet18 + ABN: 0.9627
(c) ResNet50: 0.9471
(d) ResNet50 + ABN: 0.9382
(e) ResNet152: 0.9509
(f) ResNet152 + ABN: 0.9450

F1 score:
(a) ResNet18: 0.9382
(b) ResNet18 + ABN: 0.9652
(c) ResNet50: 0.9498
(d) ResNet50 + ABN: 0.9416
(e) ResNet152: 0.9530
(f) ResNet152 + ABN: 0.9470

AUC:
(a) ResNet18: 0.9979
(b) ResNet18 + ABN: 0.9993
(c) ResNet50: 0.9983
(d) ResNet50 + ABN: 0.9975
(e) ResNet152: 0.9985
(f) ResNet152 + ABN: 0.9955

ResNet 18 showed
very high

compatibility in the
ABN model

Accuracy:
ResNet18 + ABN >

ResNet152 >
ResNet50: 0.9578 >

ResNet152 + ABN >
ResNet50 + ABN >

ResNet18
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Kim et al., 2022,
Republic of
Korea [59]

- DCNN
- YOLOv3 (Darknet-53)

- Depth: 53 layers
- Training epochs:
100, 200, and 300

PA April 2020 to
July 2021 N = 355

Implant models: N = 3
(1) Superline (Dentium Co. Ltd., Seoul, Republic of Korea)
(34.08%)
(2) TS III (Osstem Implant Co. Ltd., Seoul, Republic of
Korea) (32.39%)
(3) Bone Level Implant (Institut ST AG, Basel, Switzerland)
(33.52%)

EORS

Test Group: 20%

Training Group:
80% (10% used for

validation)

At 200 epochs training:

Accuracy: 96.7%
Sensitivity: 94.4%
Specificity: 97.9%
Confidence score: 0.75

High performance
could be achieved

with YOLOv3
DCNN

Lee et al., 2022,
Republic of
Korea [60]

- Automated DL
- Neuro-T version 2.0.1,
Neurocle Inc., Seoul,
Republic of Korea

NM Pano NM N = 180

Implant models: N = 6

(1) Astra OsseoSpeed® TX (16.66%)

(2) Dentium Implantium® (16.66%)

(3) Dentium Superline® (16.66%)

(4) Osstem TSIII® (16.66%)
(5) Straumann SLActive® BL (16.66%)
(6) Straumann SLActive®BLT (16.66%).

DL
vs.
44

dental professionals
(5 board-certified
periodontists, 8
periodontology

residents, 17
conservative and

pediatric dentistry
residents, and 14

interns)

Training Group: 80%

Validation Group: 20%

Mean Accuracy

- Automated DL algorithm: 80.56%
- All participants (without DL assistance): 63.13%
-- All participants (with DL assistance): 78.88%

The DL algorithm
significantly helps

improve the
classification

accuracy of dental
professionals

Average accuracy:
board-certified

periodontists with
DL > Automated

DL

Benakatti et al.,
2021, India [56]

4 machine learning
algorithms:
(1) Support vector
machine (SVM)
(2) Logistic regression
(3) K-nearest
neighbor (KNN)
(4) X boost classifiers

NM Pano January 2021 to
April 2021 NM

Implant models: N = 3
1. Osstem TS III SA Regular,
2. Osstem TS III SA Medium,
3. Noris Medical Tuff.

EORS
Test Group: 20%

Training Group: 80%

Average accuracy overall: 0.67

Accuracy based on Hu moments
(a) SVM:0.47
(b) Logistic regression: 0.33
(c) KNN: 0.50
(d) X boost classifiers: 0.33

Accuracy based on eigenvalues
(a) SVM: 0.67
(b) Logistic regression: 0.17
(c) KNN: 0.67
(d) X boost classifiers: 0.67

The machine
learning models

tested are proficient
enough to identify

DISs

Accuracy:
logistic regression >

SVM > KNN > X
boost

Santos et al.,
2021, Brazil [49]

- DCNN
- Stochastic Gradient
Descent optimization
algorithm

- Depth: 5
convolutional
layers + 5 dense
layers
- Training epochs:
25
- Learning rate:
0.005

PA 2018–2020 N = 1800

Implant Brands and Model: N = 3
(A) ST (internal-connection) (33.33%)
(B) Neodent (Neodent) (33.33%)
(C) SIN Implante (SIN Morse taper with prosthetic
platform) (33.33%)

EORS
Test Group: 20%

Training Group: 80%

1. Accuracy = 85.29% (78.4% to 90.5%)
2. Sensitivity = 89.9% (81.1% to 95.6%)
3. Specificity = 82.4% (73.7% to 87.3%)
4. PPV = 82.6% (74.1% to 86.6%)
5. NPV = 88.5% (79.8% to 93.9%

- DCNN has high
degree of accuracy

for implant
identification

- Suggestion: Need
for more

comprehensive
database
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Sukegawa et al.,
2021, Japan [52]

5 CNNs
1. ResNet18
2. ResNet34
3. ResNet50
4. ResNet101
5. ResNet152

- Depth:
1. 18 layers
2. 34 layers
3. 50 layers
4. 101 layers
5. 152 layers
- Training
epochs: 50
- Learning rate:
0.001

Pano January 2005 to
December 2020 N = 9767

Implant brands: N = 5
(A) ZB, (B) Dentsply, (C) NB, (D) Kyocera, (E) ST

Implant models: N = 12
1. Full OSSEOTITE 4.0 (ZB) (4.37%); 2. Astra EV 4.2
(Dentsply) (8.65%); 3. Astra TX 4.0 (Dentsply) (25.80%); 4.
Astra MicroThread 4.0 (Dentsply) (7.20%); 5. Astra
MicroThread 4.5 (Dentsply) (3.89%); 6. Astra TX 4.5
(Dentsply) (11.40%); 7. Brånemark Mk III 4.0 (NB) (3.63%); 8.
FINESIA 4.2 (Kyocera) (3.39%); 9. Replace Select Tapered
4.3 (NB) (6.30%); 10. Nobel CC 4.3 (NB) (16.37%); 11.
Straumann Tissue 4.1 (ST) (6.70%); 12. Straumann Bone
Level 4.1 (ST) (2.25%)

EORS
Validation Group: 20%

Training Group: 80%

Single task:
accuracy:
(a) ResNet18: 0.9787
(b) ResNet34: 0.9800
(c) ResNet50: 0.9800
(d) ResNet101: 0.9841
(e) ResNet152: 0.9851

Precision:
(a) ResNet18: 0.9737
(b) ResNet34: 0.9790
(c) ResNet50: 0.9816
(d) ResNet101: 0.9822
(e) ResNet152: 0.9839

Recall:
(a) ResNet18: 0.9726
(b) ResNet34: 0.9743
(c) ResNet50: 0.9746
(d) ResNet101: 0.9789
(e) ResNet152: 0.9809

F1 score:
(a) ResNet18: 0.9724
(b) ResNet34: 0.9762
(c) ResNet50: 0.9776
(d) ResNet101: 0.9805
(e) ResNet152: 0.9820

AUC:
(a) ResNet18: 0.9996
(b) ResNet34: 0.9997
(c) ResNet50: 0.9996
(d) ResNet101: 0.9997
(e) ResNet152: 0.9998

- CNNs conferred
high validity in the

classification of
DISs

- The larger the
number of

parameters and the
deeper the network,

the better the
performance for

classifications

Lee et al., 2021,
Republic of
Korea [54]

- 3 DCNN
(1) VGGNet-19
(2) GoogLeNet
Inception-v3
(3) Automated DCNN
(Neuro-T version 2.1.1)

- Depth:
(1) 19 layers
(2) 22 layers
(3) 18 layers
- Training
; epochs: 2000
- Learning rate:
0.0001

PA
and Pano

January 2006 to
December 2019

251 intact and 198
fractured dental
implants images
(Pano: 45.2%, PA:

54.8%)

Not mentioned

Intact and fractured dental implants were identified and
classified

EORS

Test Group: 20%

Training Group: 60%

Validation Group: 20%

Overall:

AUC:
- VGGNet-19: 0.929 (95% CI: 0.854–0.972)
- GoogLeNet Inception-v3: 0.967
(95% CI: 0.906–0.993)
- Automated DCNN: 0.972
(95% CI: 0.913–0.995)

Sensitivity:
- VGGNet-19: 0.933
- GoogLeNet Inception-v3: 1.00
-Automated DCNN: 0.866

Specificity:
- VGGNet-19: 0.933
- GoogLeNet Inception-v3: 0.866
-Automated DCNN: 0.966

Youden index:
- VGGNet-19: 0.866
- GoogLeNet Inception-v3: 0.866
- Automated DCNN: 0.833

- All tested DCNNs
showed acceptable

accuracy in the
detection and

classification of
fractured dental

implants
- Best accuracy:

Automated DCNN
architecture using

only PA images
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Hadj Saïd et al.,
2020, France [46]

- DCNN
- Pretrained
GoogLeNet
Inception v3

- Depth: 22 layers
deep (27 including
the pooling layers)
- Training
epochs: 1000
- Learning rate: 0.02

PA and Pano NM N = 1206

Implant brands: N = 3
(A) NB (49.4%), (B) ST (25.5%), (C) ZB (25%)

Implant models: N = 6
1. NobelActive (21.64%); 2. Brånemark system (21.77%); 3.
Straumann Bone Level (12.43%); 4. Straumann Tissue Level
(13.1%); 5. Zimmer Biomet Dental Tapered Screw-Vent
(12.6%); 6. SwissPlus (Zimmer) (12.43%)

EORS

Test Group: 19.9%

Training and
Validation Group: 80%

1. Diagnostic accuracy = 93.8% (87.2% to 99.4%)
2. Sensitivity = 93.5% (84.2% to 99.3%)
3. Specificity = 94.2% (83.5% to 99.4%)
4. PPV = 92% (83.9% to 97.2%)
5. NPV = 91.5% (80.2% to 97.1%)

- Good performance
of DCNN in

implant
identification
- Suggestion:

Creation of a giant
database of implant

radiographs

Lee et al., 2020,
Republic of
Korea [53]

- Automated DCNN
- Neuro-T version 2.0.1
(Neurocle Inc.,
Republic of Korea)

- Depth: 18 layers PA
and Pano

January 2006
to May 2019

N = 11,980
(Pano: 59.6%

and
PA: 40.4%)

Implant brands: N = 4
(A) Osstem implant system (46.9%)
(B) Dentium implant system (40.7%)
(C) Institut ST implant system (9.2%)
(D) Dentsply implant system (3.2%)

Implant models: N = 6
1. Astra OsseoSpeed TX (Dentsply) (3.2%)
2. Implantium (Dentium) (21%)
3. Superline (Dentium) (19.7%)

4. TSIII® (Osstem) (46.9%)
5. SLActive BL (Institut ST) (4.5%)
6. SLActive BLT (Institut ST) (4.7%)

DCNN
vs.
25

dental professionals
(board-certified

periodontist,
periodontology
residents, other

specialty residents)

Test Group: 20%

Training Group: 80%

DCNN overall (based on 180 Images):

Accuracy (AUC): 0.954
Youden index: 0.808
Sensitivity: 0.955
Specificity: 0.853

Using Pano images:
AUC: 0.929
Youden index: 0.804
Sensitivity: 0.922
Specificity: 0.882

Using PA images:
AUC: 0.961
Youden index: 0.802
Sensitivity: 0.955
Specificity: 0.846

AUC Dental Professionals:
i. Board-certified periodontist: 0.501–0.968
ii. Periodontology residents: 0.503–0.915
iii. Other specialty residents: 0.544–0.915

Accuracy:
DCNN > Dental

professionals

Takahashi et al.,
2020, Japan [47]

- DL
- Fine-tuned Yolo v3

- Training
epochs: 1000
- Learning rate: 0.01

Pano Feb. 2000–2020 N = 1282

Implant brands: N = 3
(A) NB, (B) ST, (C) GC

Implant models: N = 6
1. MK III (NB); 2. MK III Groovy (NB); 3. Bone level implant
(ST); 4. Genesio Plus ST (Genesio) (GC); 5. MK IV (NB); 6.
Speedy Groovy (NB)

EORS
Test Group: 20%

Training Group: 80%

1. True-positive ratio: 0.50 to 0.82
2. Average precision: 0.51 to 0.85
3. Mean average precision: 0.71
4. Mean intersection
over union: 0.72

- Implants can be
identified by using

DL
- Suggestion: More

images of other
implant systems

will be necessary to
increase the

learning
performance
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Sukegawa et al.,
2020, Japan [50]

- 5 DCNNs
1. Basic CNN
2. VGG16
transfer-learning
model
3. Finely tuned VGG16
4. VGG19
transfer-learning
model
5. Finely tuned VGG19

- Depth:
1: 3 convolution
layers,
2 and 3: 16 layers
(13 convolutional
layers + 3 fully
connected layers),
4 and 5: 19 layers
(16 convolutional
layers + 3 fully
connected layers)
- Training epochs:
700
- Learning rate:
0.0001

Pano January 2005 to
December 2019 N = 8859

Implant brands: N = 5
(A) ZB, (B) Dentsply, (C) NB, (D) Kyocera, (E) ST

Implant models: N = 11
1. Full OSSEOTITE 4.0 (ZB) (4.81%); 2. Astra EV 4.2
(Dentsply) (4.79%); 3. Astra TX 4.0 (Dentsply) (28.45%); 4.
Astra MicroThread 4.0 (Dentsply) (12.28%); 5. Astra
MicroThread 4.5 (Dentsply) (7.87%); 6. Astra TX 4.5
(Dentsply) (4.36%); 7. Brånemark Mk III 4.0 (NB) (4.77%); 8.
FINESIA 4.2 (Kyocera) (2.63%); 9. Replace Select Tapered
4.3 (NB) (5.48%); 10. Nobel CC 4.3 (NB) (18.97%); 11.
Straumann Tissue 4.1 (ST) (5.53%)

EORS
Test Group: 25%

Training Group: 75%

1. Basic CNN:
i. Accuracy: 0.860
ii. Precision: 0.842
iii. Recall: 0.802
iv. F1 score: 0.819

2. VGG16-transfer learning:
i. Accuracy: 0.899
ii. Precision: 0.888
iii. Recall: 0.864
iv. F1 score: 0.874

3. Finely tuned VGG16:
i. Accuracy: 0.935
ii. Precision: 0.928
iii. Recall: 0.907
iv. F1 score: 0.916

4. VGG19 transfer-learning:
i. Accuracy: 0.880
ii. Precision: 0.873
iii. Recall: 0.840
iv. F1 score: 0.853

5. Finely tuned VGG19:
i. Accuracy: 0.927
ii. Precision: 0.913
iii. Recall: 0.894
iv. F1 score: 0.902

High accuracy
demonstrated by all

tested DCNNs
Accuracy:

Finely tuned
VGG16 > Finely
tuned VGG19 >
VGG16-transfer

learning > VGG19
transfer-learning >

Basic CNN

Lee and Jong,
2020, Republic
of Korea [51]

- DCNN
- GoogLeNet Inception
v3

- Depth: 22 layers
deep, 2 fully
connected layers
- Training epochs:
1000

PA and Pano January 2010 to
December 2019

N = 10,770

(Pano: 5390, PA:
5380)

Implant brands: N = 3
(A) Osstem TSIII implant system (42.71%)
(B) Dentium Superline implant system (40.57%)
(C) Straumann BLT implant system (16.71%)

DCNN
vs.

board-certified
periodontist

Test Group: 20%

Training Group: 60%

Validation Group: 20%

i. AUC:
1. Overall:
- DCNN: 0.971
(95% CI: 0.963–0.978)
- Periodontist: 0.925 (95% CI: 0.913–0.935)

2. Pano:
- DCNN: 0.956
(95% CI: 0.942–0.967)
- Periodontist: 0.891 (95% CI: 0.871–0.909)

3. PA
- DCNN: 0.979
(95% CI: 0.969–0.987)
- Periodontist: 0.959 (95% CI: 0.945–0.970)

ii. Sensitivity and specificity
1. Overall:
- DCNN: 95.3% and 97.6%
- Periodontist: 88.7% and 87.1%

2. Pano:
- DCNN: 93.6% and 95.7%
- Periodontist: 82.9% and 90.3%

3. PA
- DCNN: 97.1% and 99.5%
- Periodontist: 94.2% and 95.8%

DCNN is useful for
the identification

and
classification of

DISs

Accuracy: DCNN >
Periodontist (both

are reliable)
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Table 3. Cont.

Author, Year
Country

Algorithm Network
Architecture and

Name

Architecture Depth
(Number of

Layers), Number of
Training Epochs,

and Learning Rate

Type of Ra-
diographic

Image

Patient Data
Collection/X-

ray Collection
Duration

Number of
X-rays/Implant

Images Evaluated
(N)

Number and Names of Implant Brands and Models
Evaluated Comparator

Test Group and
Training/Validation
Number and Ratio

Accuracy Reported Authors Sugges-
tions/Conclusions

Kim et al., 2020,
Republic of
Korea [55]

5 different CNNs
(1) SqueezeNet
(2) GoogLeNet
(3) ResNet-18
(4) MobileNet-v2
(5) ResNet-50

- Depth:
(1) 18 layers
(2) 22 layers
(3) 18 layers
(4) 54 layers
(5) 50 layers
- Training epochs:
500

PA 2005 to 2019 N = 801

Implant models: N = 4
1. Brånemark Mk TiUnite
2. Dentium Implantium
3. Straumann Bone Level
4. Straumann Tissue Level

EORS NM

Test accuracy:
(a) SqueezeNet: 96%
(b) GoogLeNet: 93%
(c) ResNet-18: 98%
(d) MobileNet-v2: 97%
(e) ResNet-50: 98%

Precision:
(a) SqueezeNet: 0.96
(b) GoogLeNet: 0.92
(c) ResNet-18: 0.98
(d) MobileNet-v2: 0.96
(e) ResNet-50: 0.98

Recall:
(a) SqueezeNet: 0.96
(b) GoogLeNet: 0.94
(c) ResNet-18: 0.98
(d) MobileNet-v2: 0.96
(e) ResNet-50: 0.98

F1 score:
(a) SqueezeNet: 0.96
(b) GoogLeNet: 0.93
(c) ResNet-18: 0.98
(d) MobileNet-v2: 0.96
(e) ResNet-50: 0.98

CNNs can classify
implant fixtures

with high
accuracy

DCNN, deep convolutional neural network; CNN, convolutional neural network; PA, periapical radiograph; Pano, panoramic radiograph; NM, not mentioned; DL, deep learning; EORS,
expert opinions, reference standards; YOLO, you only look once; NB, Nobel Biocare; ST, Straumann; ZB, Zimmer Biomet; AUC, area under the receiver operating characteristic curve;
PPV, positive predictive value; NPV, negative predictive value; VGG, Visual Geometry Group, Oxford University; CI, confidence interval; DISs, dental implant systems; ABN, attention
branch network; *, details not mentioned due to high number; FCN, fully convolutional network; IPA, image processing augmentation; R-CNN, region-based convolutional neural
network; mAP, mean average precision.
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More than 431,000 implant images were used to train and test the selected AI tools’
implant detection and classification accuracy. Eight studies [30,31,47,50,52,56,60,61] used
cropped panoramic X-ray images, and six studies [49,55,57–59,63] used cropped periapical
X-ray images, whereas another six studies [46,48,51,53,54,62] used both periapical and
panoramic implant images. In one study [32], artificially generated X-ray images were
used to test AI accuracy. In most of the selected studies, the test group to training group
ratio was 1:4. The learning rate of the AI algorithm ranged between 0.0001 and 0.02, the
number of training epochs ranged from 50 to 2000, and the architecture depth varied from
3 to 150 layers. Also, the number of implant brands and models identified and classified
varied from N = 3 to N = 130.

3.3. Quality Assessment of Included Studies

The QUADAS-2 tool was used to assess the risk of bias in diagnostic tests. Out of
the 21 studies evaluated, 14 were found to be at risk of bias, with high or unclear risk
in one or more domains. The remaining seven studies, however, had a low risk of bias.
All the included studies utilized photographic data as input to AI, resulting in a low risk
of bias in the data selection domain across all studies. The results from the risk-of-bias
arm demonstrated that 80.95% of the studies had a low risk, 14.28% had an unclear risk,
and 4.76% had a high risk in the index test domain. In contrast, in the reference standard
domain, 47.62% of the studies had a low or unclear risk of bias, while 4.76% had a high risk
of bias. As the data feeding in AI technology is standardized, the final output will not affect
the flow or time frame. Therefore, all studies regarded both aspects as low-risk categories
(100%). Based on the risk-of-bias arm of the QUADAS-2 assessment tool, applicability
concerns generated similar results. (Table S1 and Figure 4).
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3.4. Accuracy Assessment

The overall accuracy of deep learning algorithms (DLA) in implant detection and
identification ranged from a low of 67% [56] to as high as 98.5% [52]. Most included studies
reported mean accuracy levels above 90% [30,46,50–55,58,59,63]. The accuracy of the latest
finely tuned versions of DLAs was reported to be higher when compared to basic DLAs.
Six studies [46,48,51,53,54,62] used both periapical and panoramic implant images to test
the DLA models. Four studies reported higher accuracy when periapical radiographs were
used [46,51,53,54,62]. One study reported higher accuracy with panoramic radiographs [48],
whereas one study did not provide these details [46]. Four studies compared the accuracy
of DLAs with dental professionals [51,53,60,62]. All four reported higher accuracy for
DLAs when compared to dental professionals. A study by Lee et al. [60] reported that the
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board-certified periodontists with the assistance of DLA reported higher accuracy when
compared to automated DL alone.

4. Discussion

The current systematic review involved all the recently published studies evaluat-
ing the accuracy of AI in implant detection and classification [30–32,46–63]. Overall, the
outcome of this review revealed that the application of AI in implant detection and clas-
sification is a reliable and accurate method and can help dentists manage cases with no
previous data related to the type of implant. With the advancements in AI, the accuracy
levels may improve to a great extent.

However, the outcomes of this review should be inferred with caution because there
was a significant variation between the numbers of implant models evaluated for testing
the accuracy in the included studies. These ranged from as low as three [49,51,56,59] to
as high as one hundred and thirty [61]. In general, the lower the number, the higher the
accuracy rate of identification and classification, generally. There was a large variation in
the sample size in the selected studies, which varied from 300 [57] to more than 150,000 [62].

The included studies have variations in the annotation process. PA images were used
for training and testing the AI tool in six studies [49,55,57–59,63] and panoramic images in
eight studies [30,31,47,50,52,56,60,61], whereas both PA and panoramic images were used in
six studies [46,48,51,53,54,62]. One study used simulated images generated artificially [32].
In the studies where both PA and panoramic images were used, four studies reported that
the accuracy of identification and classification was higher with PA images as compared to
panoramic images [51,53,54,62], whereas one study reported that the accuracy was higher
with the panoramic images [48].

The dental professionals involved in image selection, cropping, image standardization,
training, and validation varied in areas of practice from periodontists and prosthodontists
to oral and maxillofacial surgeons [30,48,51,53,54,63]. In contrast, other included studies
were lacking in this information. One study validated the collected data with the help of
board-certified oral and maxillofacial radiologists [48] and periodontists [53]. To reduce the
heterogeneity and standardize the outcomes, the validation of the selected X-ray images
should be performed by a trained radiologist. There was variation in training epochs,
which varied from 50 to 2000, and the architecture depth varied from 3 to 150 layers. These
parameters can affect the accuracy outcomes of the included studies. The accuracy of
identification and classification also depends on the generation of Dl architecture used.
There was a difference in the tested algorithms in the selected studies.

In their study, Sukegawa et al. [52] trained a CNN algorithm to analyze the implant
brand and treatment stage simultaneously. The AI tool was annotated for both parameters.
The classification accuracy of the implant treatment stage was reported as 0.996, with a
large effect size of 0.818. The accuracy of single-task and multi-task AI tools were found to
be comparable. Lee et al. [54] trained and tested the accuracy of AI tools to identify and
classify fractured implants. They reported an implant classification accuracy varying from
0.804 to 0.829. They reported higher accuracy levels when DCNN architecture used only
PA images for identification.

All the included studies evaluated the accuracy of tested AI tools in implant detection
and classification, whereas four studies [51,53,60,62] also compared this to the trained dental
professionals. Lee et al. [51,53,60] and Park et al. [62] compared the accuracy of the tested
DL algorithm in implant detection and classification with trained dental professionals. All
the studies reported that the accuracy performance of the DL algorithm was significantly
superior when compared to humans. The accuracy reported by Park et al. [62] for DL was
82.3% and for humans varied from 16.8% (dentist not specialized in implantology) to 43.3%
(dentist specialized in implantology). Lee et al. [60] reported mean accuracy of 80.56% for
the automated DL algorithm, 63.13% for all participants without DL assistance, and 78.88%
for all participants with DL assistance. They reported that the DL algorithm significantly
helped in improving the classification accuracy of all dental professionals. Lee et al. [53],
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in another study, reported an accuracy of 95.4% for DL and between 50.1% to 96.8% for
dentists. Another study by Lee et al. [51] reported a similar accuracy rate with DL at 97.1%
and periodontists at 92.5%.

Most of the currently reported AI models use two-dimensional X-rays (periapical or
panoramic). In contrast, three-dimensional X-rays like cone-beam computed tomography,
widely used in implantology, were not evaluated. Also, the studies included have limi-
tations in the type of implant systems evaluated. Thus, there is a need for more studies
with a vast database that can include most of the commonly used implant systems and can
utilize all forms of radiographic techniques.

The DL algorithm’s identification and classification abilities in all the selected studies
were limited to the implant models the authors trained. There is a need to include more
implant systems and models and create a vast database to help identify a wider variety of
implant models and their characteristics. A comprehensive search strategy and rigorous
selection strategy are the strong points of this systematic review. All articles mentioning AI
and dental implants were assessed based on pre-set selection criteria, thus ensuring that
every relevant article was reviewed.

4.1. Inferences and Future Directions

The field of AI is growing exponentially. There is vast literature discussing the ad-
vancements of AI in the healthcare field. Most of these AI tools focus on identification,
diagnosis, and treatment planning and ways to improve them to help healthcare profes-
sionals provide the best possible treatment to their patients. All the included studies used
two-dimensional images (periapical or panoramic) to identify and classify the implant
systems. Three-dimensional imaging techniques like CBCT are considered a gold-standard
imaging technique in dental implant planning and treatment. Thus, there is a need to
develop AI tools that can use these 3D images to identify and classify the implant systems.
Additionally, with the availability of newer generations of AI tools, there is a need for
constant up-gradation to increase the accuracy levels of these tools.

4.2. Limitations

The current systematic review has a few limitations. This review included studies pub-
lished only in English. The search period was limited to the last 25 years only (2008–2023).
As AI is a recent and advancing field, the authors believed that conducting a search before
this time may provide studies in which the technology is in an immature stage. Lastly, a
meta-analysis was not feasible due to the lack of heterogeneity among the selected studies.

5. Conclusions

To conclude, it can be stated that the articles in the present review provide consider-
able evidence to validate AI tools as having high accuracy in identifying and classifying
dental implant systems using 2-dimensional X-ray images. These outcomes are vital for
clinical diagnosis and treatment planning by trained dental professionals to enhance patient
treatment outcomes.

Supplementary Materials: The following supporting information can be downloaded at:
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