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Abstract: Patients with intertrochanteric hip fractures are at an elevated risk of becoming bedridden
compared with those with intraarticular hip fractures. Accurate risk assessments can help clinicians
select postoperative rehabilitation strategies to mitigate the risk of bedridden status. This study aimed
to develop a two-step prediction model to predict bedridden status at 3 months postoperatively: one
model (first step) for prediction at the time of admission to help dictate postoperative rehabilitation
plans; and another (second step) for prediction at the time before discharge to determine appropriate
discharge destinations and home rehabilitation programs. Three-hundred and eighty-four patients
were retrospectively reviewed and divided into a development group (n = 291) and external validation
group (n = 93). We developed a two-step prediction model to predict the three-month bedridden sta-
tus of patients with intertrochanteric fractures from the development group. The first (preoperative)
model incorporated four simple predictors: age, dementia, American Society of Anesthesiologists
physical status classification (ASA), and pre-fracture ambulatory status. The second (predischarge)
model used an additional predictor, ambulation status before discharge. Model performances were
evaluated using the external validation group. The preoperative model performances were area under
ROC curve (AUC) = 0.72 (95%CI 0.61–0.83) and calibration slope = 1.22 (0.40–2.23). The predischarge
model performances were AUC = 0.83 (0.74–0.92) and calibration slope = 0.89 (0.51–1.35). A decision
curve analysis (DCA) showed a positive net benefit across a threshold probability between 10% and
35%, with a higher positive net benefit for the predischarge model. Our prediction models demon-
strated good discrimination, calibration, and net benefit gains. Using readily available predictors for
prognostic prediction can assist clinicians in planning individualized postoperative rehabilitation
programs, home-based rehabilitation programs, and determining appropriate discharge destinations,
especially in environments with limited resources.

Keywords: hip fracture; bedridden; prediction model; rehabilitation

1. Introduction

Geriatric hip fractures remain a major health concern globally, with estimations pro-
jecting the emergence of nearly 6.3 million cases annually by 2050, 46% of which are
intertrochanteric fractures [1,2]. Demographic characteristics and outcomes differ between
patients with femoral neck and intertrochanteric fractures, with the latter group being
older and frailer, leading to higher rates of poor outcomes [2–4]. Approximately 12–25% of
patients with intertrochanteric fractures become immobilized and bedridden after three
months [2,5]. To prevent bedridden status in patients with hip fractures, various rehabilita-
tion programs have been developed, including early ambulation training, high-intensity
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physiotherapy with multiple daily sessions, and home rehabilitation programs [6–9]. These
interventions effectively help to prevent patients from becoming bedridden after hip
fracture treatment [8]. However, implementing such programs for all patients may be fi-
nancially unfeasible on a public healthcare level because of the associated costs and human
resource demands. Classifying high-risk patients can help optimize resource allocation,
reduce the cost of implementing rehabilitation programs, and alleviate the workload on
healthcare workers by minimizing unnecessary interventions for low-risk patients.

Only a few prediction models have been specifically developed for predicting am-
bulatory status in intertrochanteric fractures [10,11]. Tomita et al. developed a model to
predict the bedridden status after three months using patients’ postoperative status at
two weeks [10]. Meanwhile, models from Adulkasem et al. predicted the ambulatory
status based on the quality of fracture reduction during the operation, allowing surgeons
to improve reduction in real time based on predictions [11]. These previously developed
models also have limitations in terms of prediction timing and barriers to adoption, such
as model complexity and methods for obtaining intraoperative measurements.

Studies have identified several readily accessible predictors of poor ambulatory status
following hip fracture, including age, dementia, American Society of Anesthesiologists
(ASA) classification, pre-fracture ambulatory status, and ambulatory status before dis-
charge [12–17]. These factors were consistently correlated with ambulatory outcomes
during follow-up. Combining these predictors into a simple prediction model could possi-
bly help categorize patients at high risk of becoming bedridden.

Our goal was to create a two-step prediction model using simple, easily retrievable
predictors reported in the literature to assist clinicians in deciding on care during hospital
stay and after discharge. We hypothesized that simple prediction models, integrating
these readily available predictors, could accurately categorize patients at high risk for
becoming bedridden after surgery. The two-step model comprises two individual models
for predicting 3-month postoperative bedridden status at different timepoints during the
management of intertrochanteric hip fractures: the first predicts during the preoperation
period to help clinicians determine if the patient requires a specialized postoperative
rehabilitation program; and the second predicts at discharge to assist in determining the
discharge destination and whether the patient needs a specialized home rehabilitation
program to reduce the risk of becoming bedridden.

2. Materials and Methods
2.1. Data Source and Participants

This study is reported according to the Transparent Reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD) statement (Table S1).
We retrospectively reviewed the electronic medical records (EMRs) of patients with in-
tertrochanteric fractures treated with cephalomedullary nails at a single university hospital
in southern Thailand over a 12-year period, with all patients having a minimum follow-up
of 3 months. Data were collected from two patient cohorts. The development cohort
comprised patients treated between January 2010 and December 2020, and the validation
cohort comprised patients treated between January 2021 and December 2022.

Patient selection was based on the following criteria:
Inclusion criteria:

- Aged at least 60 years;
- Sustained an isolated intertrochanteric hip fracture resulting from low-energy trauma;
- Underwent treatment with a cephalomedullary nail.

Exclusion criteria:

- Lost to follow-up before the 3-month follow-up;
- Bedridden prior to the hip fracture occurrence;
- Mortality before the 3-month follow-up.
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The treatment protocol for fragility intertrochanteric fractures was as follows. The
preoperative evaluation was initially conducted in the orthopedic trauma unit. Internist
consultations were arranged for patients with specific medical conditions, such as cardi-
ologist consultations for patients with a history of ischemic heart disease or neurologist
consultations for those with previous ischemic stroke. After evaluation by all relevant units,
the patients were scheduled to undergo surgery at the earliest available slot.

All surgeries were performed by the attending orthopedic trauma surgeons or under
their supervision. A daily 30-min physical therapy session was provided postoperatively.
The physical therapy regimen included triceps and quadriceps exercises, deep breathing ex-
ercises using an incentive spirometer, and ambulation training. Patients who could not walk
using a walker were trained in wheelchair transfer with at least one caregiver. Follow-up
appointments were scheduled at two weeks, six weeks, and three months postoperatively.

2.2. Outcome and Predictors

The primary outcome was the bedridden status after surgery assessed three months
postoperatively. We routinely recorded the patients’ ambulatory status at our trauma
follow-up clinics; patients were considered bedridden if it was recorded in the EMR.

We predefined four preoperative predictors: age, diagnosis of dementia, pre-fracture
ambulatory status, and ASA classification. One predischarge predictor was considered:
ambulation status before discharge. Age was defined as the patient’s age in years at
the date of injury as recorded in the EMR. Dementia was defined as a known dementia
status recorded in the EMR before or at the time of admission by one of the attending
physicians. The pre-fracture ambulatory status was divided into two categories: completely
independent patients who could independently ambulate indoors, outdoors, and in the
community without any use of a gait aid prior to fracture, while gait aid/indoor ambulation
included patients who were independently ambulating in the community or outdoors with
some use of a gait aid or patients who only independently ambulated at home but were
unable to travel outside independently. The attending anesthesiologist determined the
ASA classification before surgery for each case. Ambulatory status before discharge was
defined as that recorded in the discharge summary on the date of discharge. We categorized
the ambulatory status before discharge into three groups: walking with a walker, being
able to sit independently but unable to walk using a walker, and being unable to sit
independently. The baseline reference was a 60-year-old patient without dementia who
was totally independent prior to the fracture, was determined to have ASA class II, and
could walk with a walker before discharge.

2.3. Statistical Analysis

We defined five predictors with six degrees of freedom (DFs), thus requiring at least
60 events of interest for prediction model development, with the remaining data used for
external validation. Statistical analyses were performed based on a complete-case analysis,
and patients lost to follow-up were excluded, as previously stated. Comorbidities not
recorded in the EMR were assumed to be negative.

All statistical analyses were performed using R programming language version 4.1.3
(R Foundation for Statistical Computing, Vienna, Austria). Comparisons between the
development and validation cohorts were performed using a two-sample t-test for normally
distributed continuous variables, the Wilcoxon rank sum test for non-normally distributed
continuous variables, and a chi-square test for categorical variables. Univariate analysis of
the association between predictors and outcomes was not performed. Statistical significance
was set at p < 0.05.

We developed two multivariable logistic regression models to predict the bedridden
status. The preoperative model had four predictors: age in years (continuous, 1 DF),
dementia (categorical, 1 DF), pre-fracture ambulatory status (categorical, 1 DF), and ASA
classification (1 DF). The predischarge model had the same predictors as the preoperative
model, with an additional predictor: ambulatory status before discharge (categorical,
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2 DFs). Internal validation of the development dataset was performed using 1000 bootstrap
resamples. The bootstrap performance was calculated using the 0.632 method. To determine
the temporal relevance of the model, external validation with 1000 bootstrap resamples
was performed on the validation dataset containing the most recently treated cohort at
our institution.

The model performance was evaluated using three main metrics. Model discrimina-
tion, which assesses the ability to distinguish between patients who will become bedridden
and those who will not, was determined using the area under the receiver operating char-
acteristic curve (AUC). Successful prediction model development was defined as a model
with an AUC score of 0.7 or more. Model calibration, which measures how accurately the
estimated risk of becoming bedridden aligns with the observed frequency of bedridden
cases, was evaluated using calibration plots and the Hosmer–Lemeshow goodness-of-fit
test. Finally, clinical usefulness was assessed through a decision curve analysis within a
cut-off range of 10–35%.

The decision curve analysis (DCA) was first described by Andrew Vickers and Elena
Elkin in 2006 [18]. The fundamental concept of DCA is to assess the net benefit of various
decision-making strategies across a spectrum of threshold probabilities. A threshold
probability is defined as the point at which a patient or doctor feels indifferent about
initiating treatment, with the underlying assumption being that these probabilities vary
among patients and doctors, reflecting individual preferences for balancing the benefits of
true positives against the harms of false positives. For a prediction model to be practical, its
expected benefit should surpass its expected harm at each sensible threshold probability.

Two types of decision curves were analyzed: the net benefit curve, comparing the net
benefit at different potential risk thresholds for intervention using the prediction model
with the policies of “treat all patients” or “treat none of the patients”; and the net reduction
in intervention, which expresses the net benefit as true negatives to compare the rate of
unnecessary interventions avoided by utilizing the prediction model in relation to the “treat
all patients” policy.

The net benefit is the difference between the expected benefit and harm. For any given
model or strategy, the net benefit is calculated as follows:

- Expected Benefit (EB) is the number of true positives (TP) divided by the total number
of patients (N);

- Expected Harm (EH) is the number of false positives (FP) divided by N, which is then
adjusted for the threshold probability’s odds (p/(1 − p)).

The equation for net benefit (NB) at each threshold probability (p) is:

Net Benefit = (TP/N) − (FP/N) × (p/(1 − p))

The net reduction in intervention quantifies how the model reduces the rate of unnec-
essary interventions relative to the “treat all” approach. For any given model or strategy,
the net reduction in intervention is calculated as follows:

Net Reduction in Intervention = (Net Benefit of the model − Net Benefit of the “treat all patients” policy) × ((1 − p)/p)

3. Results

In total, 437 patients were assessed for eligibility. Among these patients, 34 were lost
to follow-up, 13 were bedridden before the fractures, and 6 died before the three-month
follow-up, leaving 384 patients for analysis. Patients were divided into two cohorts. The
development cohort comprised 291 patients treated at our institution between January 2010
and December 2020. The validation cohort comprised 93 patients treated between January
2021 and December 2022 (Figure 1).
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Figure 1. Study flow diagram.

3.1. Patient Characteristics

The overall median patient age was 83 (78–87) years (Table 1). Most participants (70%)
were women. One hundred and seventy-nine patients (47%) were completely independent
before the fracture, and 205 (53%) were independent but required the use of a gait aid
or could only ambulate indoors. Two hundred forty-three patients (63%) were classified
as ASA class III. Only 29 (7.6%) patients had been previously diagnosed with dementia.
Most patients (62%) could walk using a walker postoperatively before discharge, 32%
could sit independently but could not walk with a walker, and 6% could not sit indepen-
dently before discharge. Overall, 86 of the 384 patients (22%) became bedridden three
months postoperatively.

The development and validation cohorts were comparable in terms of sex, body mass
index (BMI), ASA classification, comorbidities, ambulatory status before discharge, and
outcomes. However, patients in the validation cohort had a slightly higher age (85 years
(79–89) vs. 83 years (77–86), p = 0.005) and a more significant proportion of patients who
used gait aids or had indoor ambulation (70% vs. 48%, p < 0.001). In the validation cohort,
43% of the patients had a simple A1 fracture according to the AO/OTA classification
compared with 26% in the development cohort (p = 0.011). Most patients (87%) in the
validation cohort underwent surgery within 72 h of admission. In contrast, only 70% of
the development cohort underwent surgery within 72 h. The overall median length of stay
after operation was 5 (4–8) days.
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Table 1. Demographic and characteristics of all patients, comparing those in the development and
validation sets.

Characteristic Overall (n = 384) a Development (n = 291) a Validation (n = 93) a p-Value b

Age, yrs 83 (78, 87) 83 (77, 86) 85 (79, 89) 0.005
Male 117 (30%) 87 (30%) 30 (32%) 0.7
Body mass index, kg/m2 22.1 (19.5, 25.4) 22.0 (19.5, 25.3) 22.9 (19.9, 25.7) 0.5
ASA Classification 0.4

II 141 (37%) 110 (38%) 31 (33%)
III 243 (63%) 181 (62%) 62 (67%)

Pre-fracture ambulatory status <0.001
Totally independent 179 (47%) 151 (52%) 28 (30%)
Gait aid/Indoor independent 205 (53%) 140 (48%) 65 (70%)

Comorbidities
Hypertension 260 (68%) 191 (66%) 69 (74%) 0.12
Diabetes mellitus 102 (27%) 75 (26%) 27 (29%) 0.5
Ischemic heart disease 38 (9.9%) 25 (8.6%) 13 (14%) 0.13
Heart failure 21 (5.5%) 16 (5.5%) 5 (5.4%) >0.9
Cerebrovascular disease 73 (19%) 52 (18%) 21 (23%) 0.3
Lung disease 40 (10%) 28 (9.6%) 12 (13%) 0.4
Dementia 29 (7.6%) 24 (8.2%) 5 (5.4%) 0.4
Chronic kidney disease 51 (13%) 36 (12%) 15 (16%) 0.4

AO/OTA 2018 classification 0.011
A1 116 (30%) 76 (26%) 40 (43%)
A2 205 (53%) 168 (58%) 37 (40%)
A3 38 (9.9%) 29 (10.0%) 9 (9.7%)
B3 25 (6.5%) 18 (6.2%) 7 (7.5%)

Time to surgery < 72 h 286 (74%) 205 (70%) 81 (87%) 0.001
Postoperative length of stay, days 5 (4, 8) 5 (4, 8) 5 (4, 8) 0.4
Ambulatory status before discharge >0.9

Walk with walker 239 (62%) 181 (62%) 58 (62%)
Sit independently 122 (32%) 92 (32%) 30 (32%)
Cannot sit independently 23 (6.0%) 18 (6.2%) 5 (5.4%)

Bedridden at three months 86 (22%) 64 (22%) 22 (24%) 0.7
a Median (IQR); n (%), b Wilcoxon rank sum test; Pearson’s chi-square test. ASA, American Society of Anesthesiol-
ogists; AO/OTA the AO Foundation/Orthopaedic Trauma Association.

3.2. Model Development and Model Specification

Two multivariate logistic regression models were derived from the development
cohort to predict the probability of a bedridden status at three months postoperatively.
Because all predictors were predefined, predictor selection techniques were not employed
during the analysis.

The specifications of the derived models are listed in Table 2. The variance inflation
factors (VIFs) for all factors in both models were less than 1.5, indicating no significant
multicollinearity among the predictor variables. In the preoperative model, the regression
coefficients for all factors indicated a significant association with bedridden status at three
months postoperatively, with all p-values < 0.05.

All predictors had a positive correlation with bedridden status after including ambula-
tory status before discharge in the predischarge model; however, the correlation of ASA
classification and dementia was not statistically significant (p = 0.3 and 0.2, respectively).
Ambulatory status before discharge exhibited the strongest association with the bedridden
status. The coefficient for sitting independently at discharge was 2.12 (95% CI 1.39–2.90)
compared with being able to walk using a walker before discharge. The coefficient of the
inability to sit independently before discharge was 2.95 (95% CI 1.79–4.21).
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Table 2. Specifications of the prediction models.

Coefficients 95% CI a p-Value VIF a

Preoperative model
Intercept −7.39 −11.4, −3.72 <0.001
Age, yrs 0.06 0.02, 0.11 0.011 1.02
ASA III 0.72 0.06, 1.42 0.037 1.01
Dementia 0.94 0.03, 1.85 0.042 1.02
Pre-fracture gait aid use/indoor
ambulation 1.14 0.50, 1.81 <0.001 1.04

Predischarge model
Intercept −8.65 −13.1, −4.62 <0.001
Age, yrs 0.06 0.02, 0.11 0.009 1.03
ASA III 0.40 −0.36, 1.20 0.3 1.03
Dementia 0.62 −0.39, 1.63 0.2 1.03
Pre-fracture gait aid use/indoor
ambulation 0.81 0.10, 1.55 0.028 1.02

Ambulation status before discharge 1.23
Able to walk with a walker (ref) - - -
Sit independently 2.12 1.39, 2.90 <0.001
Cannot sit independently 2.95 1.79, 4.21 <0.001

a CI = confidence interval, VIF = variance inflation factor. ASA, American Society of Anesthesiologists classification.

The equation for the preoperative model’s linear predictor is

LPpreop = −7.39 + (0.06 × Age) + (0.72 × ASA III) + (0.94 × Dementia) + (1.14 × Pre-fracture Gait Aid/Indoor Ambulation)

The equation for the predischarge model’s linear predictor is

LPpredischarge = −8.65 + (0.06 × Age) + (0.40 × ASA III) + (0.62 × Dementia) + (0.81 × Pre-fracture Gait Aid/Indoor
Ambulation) + (2.12 × Sit independently before discharge) + (2.95 × Cannot sit independently before discharge)

To convert the linear predictor into the probability of bedridden status at 3 months,
apply the inverse logit function to the linear predictor:

P(Bedridden) = 1/(1 + exp(−LP))

3.3. Model Performance: Area under the ROC Curve

In Table 3, the discriminative capacities of the two prediction models are quantified by
the area under the receiver operating characteristic curve (AUC). Apparent performance
demonstrates the AUC of the model when evaluated on the development set. Validation
performances were derived from 1000 bootstrap samples; internal validation was performed
on the development set, and external validation was performed on the validation set.

The preoperative model demonstrated an apparent AUC of 0.76 (CI: 0.68–0.83), with
internal and external validation AUCs of 0.74 (CI: 0.68–0.80) and 0.72 (CI: 0.61–0.83),
respectively. The predischarge model showed superior discrimination with an apparent
AUC of 0.85 (CI: 0.79–0.91), with the internal and external validations yielding AUCs of
0.84 (CI: 0.79–0.89) and 0.83 (CI: 0.74–0.92), respectively.

3.4. Model Calibration

The calibration plots are shown in Figure 2. Calibration of the preoperative model
showed slight overall miscalibration in both the development and validation sets. During
external validation, the preoperative model provided slightly higher predicted probabilities
than observed probabilities. Conversely, the predischarge model displayed near-perfect
calibration on the development set, with minimal miscalibration; each point of the grouped
predictions aligned closely with the dotted line, representing equal predicted and observed
probabilities. External validation of the predischarge model indicated a slight overesti-
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mation in the high predicted probability group; however, it remained well calibrated for
groups with predicted probabilities of less than 50%.
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Figure 2. Calibration plots of actual outcome versus predictions on the development and validation
cohorts, presented with four quantile groups and smoothed curves using restricted cubic splines with
three knots. Solid lines show the calibration curve, dashed lines represent perfect calibration, and
circles denote the observed event proportion in quantiles. The grey area reflects the 95% confidence
interval for predicted probabilities. Rugs at the bottom indicate participants without bedridden status,
while rugs at the top indicate participants with bedridden status at three months. (A) Calibration of
the preoperative model on the development set. (B) Calibration of the preoperative model on external
validation. (C) Calibration of the predischarge model on the development set. (D) Calibration of the
predischarge model on external validation.

Comparing the preoperative and predischarge models, the latter displayed a broader
and more spread-out distribution of probability estimates. The Hosmer–Lemeshow test for
goodness-of-fit did not identify significant miscalibration in any calibration plot.
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3.5. Decision Curve Analysis

The net benefit and net reduction in interventions were plotted across a theoretical
cutoff threshold range of 10–35% (Figure 3). The curves in Figure 3 show the highest
net benefit and net reduction in interventions for the predischarge model, followed by
the preoperative model. This indicates the usefulness of both models over the default
policies of “treat all” or “treat none”. The predischarge model is shown to be superior to
the preoperative model in net benefit gains and net reduction in intervention across all
considered threshold probabilities.
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Table 3. Discriminative ability of the prediction models.

Performance AUC 95% CI a

Preoperative model
Apparent 0.76 0.68, 0.83
Internal validation b 0.74 0.68, 0.80
External validation b 0.72 0.61, 0.83

Predischarge model
Apparent 0.85 0.79, 0.91
Internal validation b 0.84 0.79, 0.89
External validation b 0.83 0.74, 0.92

a CI = confidence interval, b validation performance from 1000 bootstrap samples. AUC, area under receiver
operating characteristic curve.

Interpreting decision curves involves understanding how net benefit and net reduc-
tion in intervention curves relate to clinical decisions. The standard policies might be
“treat all”—providing every patient with specialized postoperative intervention to prevent
bedridden status—or “treat none”, where all patients receive only the standard postopera-
tive protocol. Since different clinicians and patients have varying values, their threshold
probability for treatment differs. For prediction models to be truly useful, they need to offer
benefits across all reasonable threshold probabilities. This means that models demonstrat-
ing higher net benefit or net reduction in interventions at all threshold probabilities could
theoretically be useful for all potential users of the model. This is illustrated by our models
in Figure 3, which show higher net benefit and net reduction in interventions across the
considered thresholds.

The specific cut-off threshold range of 10–35% was selected based on a reasonable
“harm-to-benefit” ratio in relation to the policy of providing additional treatment to patients
at risk of becoming bedridden at three months. A 10% cutoff signifies a willingness to
administer additional interventions to ten patients to prevent one patient from becoming
bedridden at three months (equating to a ratio of one true positive to nine false positives).
A cut-off threshold of 35% roughly reflects the willingness to administer additional inter-
ventions to three patients to prevent one patient from becoming bedridden at three months
(resulting in a ratio of 1:2). Note that in this context, “harm” refers to the financial and
personal burden placed on the hospital when implementing interventions for the patients
rather than harm to the patients themselves.

To clarify, the “net benefit” reflects the proportion of true positives gained from the
intervention minus the proportion of false positives based on a specific threshold proba-
bility that a patient will become bedridden. It is calculated by comparing the proportion
of correctly identified patients who benefit from the intervention with those incorrectly
identified when no intervention is applied. In practical terms, a net benefit of 13% at a
cut-off value of 20% for the predischarge model indicates that for every 100 patients, 13
will correctly receive the necessary intervention to prevent them from becoming bedrid-
den, after accounting for the trade-off of potentially intervening for patients who would
not benefit.

Similarly, the “net reduction in intervention” denotes the reduction in the number
of unnecessary interventions when using the predictive model as opposed to a universal
treatment policy. This metric is defined by the percentage of patients who avoid unnecessary
interventions without overlooking those who would benefit. In our validation cohort, a
net reduction in intervention of 35% means that with the predischarge model applied at
the 20% cut-off, we can avoid unnecessary interventions for 35 out of every 100 patients
compared with the default strategy of treating all patients.

4. Discussion

This study successfully developed well-calibrated prediction models that demon-
strated exemplary performance in predicting bedridden status three months after the
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operative treatment of intertrochanteric fractures. The preoperative model included four
predictors: age, dementia, ASA classification, and pre-fracture ambulatory status. To create
a predischarge model, ambulatory status before discharge was incorporated into the preop-
erative model. After adding ambulatory status before discharge to the preoperative model,
we found a significant enhancement in the model’s ability to predict the bedridden status.
This improvement is evident in terms of discrimination, calibration, and overall useful-
ness. This study also reaffirms that these five predictors are associated with postoperative
bedridden status after hip fracture surgery [12,14,15,17,19].

The models performed well, with only a minimal decrease in the AUC observed
after internal and external validations. These findings suggest that the models were not
overfitted and could potentially be generalized to similar populations [20]. The calibration
plots further confirmed the reliability of the models, as they demonstrated good calibration
not only in the internal validation but also in the external validation process. Considering
that different physicians may have different treatment thresholds influenced by factors
such as economic considerations, public policies, or hospital resources, good calibration
with reliable risk estimation for each patient will play a vital role in informed, shared
decision-making and evidence-based policymaking. However, this aspect has often been
overlooked in developing clinical prediction models [21].

We further demonstrate the usefulness of the models using decision curves. Existing
evidence has highlighted the benefits of intensive rehabilitation programs (2–3 sessions
per day) and home-based rehabilitation programs, which significantly improve mobility in
patients with hip fractures [7,8,22]. Although these interventions should ideally be extended
to all patients, practical constraints on available resources often limit their implementation.
At our institution, the postoperative rehabilitation protocol involves a single daily 30-min
session of physical therapy. Establishing a postoperative rehabilitation protocol aimed
at reducing the prevalence of bedridden status and adopting an intensive rehabilitation
approach for all patients would result in a threefold increase in the workload of physical
therapists dedicated to patients with hip fractures. Consequently, this will reduce the time
available to attend to other patient categories. Utilizing the preoperative model to identify
patients suitable for intensive rehabilitation programs within the 10–35% threshold yields
positive net benefits, and net intervention can be avoided, surpassing the approach of
implementing the new protocol for all patients. Similarly, applying the predischarge model
to select patients for home-based rehabilitation programs also resulted in positive outcomes.
The chosen range for treatment thresholds, ranging from 10 to 35%, was determined by
considering patients with odds of becoming bedridden less than 1:9 (risk < 10%) as too
resource-intensive to treat and those with odds of 1:2 (risk > 35%) as those for which
treatment is necessary. The selection of thresholds within the 10–35% range can be tailored
based on the resource availability specific to each hospital, involving a trade-off to ensure
optimal utilization.

While previous studies have developed various models to predict ambulatory status
post-hip fracture surgery, our study contributes to this body of work by providing a
novel perspective through the use of simple, clinically obtainable predictors at two critical
junctures in patient care: admission and predischarge. This approach can inform treatment
protocols during hospitalization and shape post-discharge rehabilitation plans, including
decisions about the most suitable discharge destination.

Compared with the model developed by Kim et al., which provides a prediction
for ambulatory status at one-month post-surgery, our model extends the prediction to
three months [23]. While prediction at one month may be beneficial for short-term care
planning, it might not fully account for the variations in recovery trajectories that can
manifest beyond the acute postoperative phase. Our three-month prediction window
aligns with evidence suggesting that substantial functional gains can be achieved with
rehabilitation interventions administered beyond the first month, with the majority of
physical activities of daily living (PADL), including mobilizing ability, recovering and
plateauing by 3 months [24].
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In contrast to the decision tree model developed by Tomita et al., which predicts
independent ambulatory status at three months using the Barthel index (BI) at two weeks
postoperatively and dementia status as predictors [10], our models provide early predic-
tions at the time of admission. The need to wait for two weeks to assess BI, as required by
their model, can delay intervention decisions and may miss the opportunity for immediate
postoperative care planning. Our approach mitigates this limitation by incorporating
the predictors available at admission, enabling timely evaluations and allowing for more
prompt and potentially more effective interventions.

Adulkasem et al. proposed a two-step prediction model focusing on one-year ambula-
tory status, which included preoperative factors such as age, pre-injury new mobility score,
Charlson comorbidity index, and BMI, followed by an intraoperative model integrating
eight additional surgical measurements [11]. While their method achieved good predictive
accuracy, our models address a different need by providing earlier risk assessments for
postoperative bedridden status at three months using easily obtainable clinical predictors
at the time of admission and before discharge. This not only offers a valuable timeframe
for clinical intervention but also circumvents the variability introduced by relying on intra-
operative measurements, which can differ significantly with the type of C-arm machine
used and the surgical setting [25].

Despite the significant advantages of our study compared with previous models, it is
important to acknowledge several limitations. First, the retrospective nature of the study
introduces the potential for bias. For the ambulatory statuses recorded in the electronic
medical records, we did not use a standardized ambulatory assessment questionnaire.
Instead, ambulatory assessment was recorded as either totally independent or requiring
indoor ambulation/use of a gait aid only, which may not fully capture the entire spectrum
of ambulatory statuses in the population. Furthermore, despite adhering to standardized
recording protocols for hip fracture patients, certain factors, such as the diagnosis of
dementia, may not have been consistently recorded. This could lead to the underreporting
of cases with dementia, potentially affecting the effectiveness of the predictors. Secondly,
our study excluded many patients who were lost to follow-up. Furthermore, competing
risks such as mortality before the three-month mark could introduce bias into the model
coefficients as a whole. Nevertheless, the temporal external validation demonstrated
promising outcomes in our specific population. Finally, even though the models were
developed using established predictors, it is important to note that they were ultimately
derived from a relatively small dataset obtained from a single university hospital. The risk
of becoming bedridden varies among populations. For optimal use, the models should be
externally validated for the intended population, and the coefficients should be recalibrated
before implementation.

Even though this study successfully achieved its goal of predicting bedridden status
at 3 months postoperatively, there remain many opportunities for improvement. Firstly, the
benefits of risk stratification and interventions for high-risk patients need to be evaluated
after the implementation of the prediction model. While it is assumed that patients at a
higher risk of becoming bedridden could benefit more from specialized interventions, some
interventions may be futile for patients at a very high risk due to their limited functional
reserve, which could not be altered even with intervention. Secondly, clinical prediction
modeling is an iterative process. After implementing the model into clinical practice
and incorporating multiple interventions to ensure that high-risk patients are treated
accordingly, the model could be updated to include a range of differing interventions based
on the various costs and resources needed. This could further support shared decision
making between clinicians and patients. Lastly, this study focused on a small number of
easily obtainable predictors available in standard practice. One area of improvement could
be to incorporate more relevant predictors previously studied, such as an evaluation of
nutritional status or sarcopenia [26–28]. Future research could explore the advantages of
incorporating these predictors to enhance the model’s discriminative capacity.
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To ensure easy adoption and implementation, we have included graphical score charts
for each model illustrating the predicted risk for patients aged between 60 and 100 years. To
illustrate the practical utility of these models, we considered a scenario involving a 75-year-
old female with an intertrochanteric fracture. This patient was previously an independent
indoor ambulator and was not diagnosed with dementia, with ASA class III status based
on an evaluation by the attending anesthesiologist during the preoperative assessment.
According to the model predictions (Figure 4), this patient had a 22% calculated risk of
becoming bedridden at three months. After consulting with the patient and their family
members, the attending surgeon enrolled the patient in the newly introduced intensive
postoperative rehabilitation program. With efforts from the multidisciplinary team, the
patient could sit independently but could not walk with a walker by postoperative day 7.
This date was marked as the scheduled discharge date, primarily driven by the lack of
inpatient beds available for other trauma patients. Extending the hospital stay for continued
physical therapy until the patient could walk using a walker was not a viable option at our
institution. The attending surgeon discussed the updated predicted risk of 38% from the
predischarge model (Figure 5) with the patient and family. Two options were presented
to improve the patient’s chances of regaining independent ambulation. The patient could
be transferred to a primary care hospital with a specialized rehabilitation facility or opt
for personalized home-based physical therapy sessions provided by a team of physical
therapists and nurses.
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5. Conclusions

In conclusion, we have developed and temporally validated two prediction models
to predict the risk of postoperative bedridden status at three months in patients with
intertrochanteric fractures. Both models demonstrated acceptable discrimination, were
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well calibrated, and proved useful across the entire range of cutoff values. We confirmed
that simple prediction models using age, dementia status, pre-fracture ambulatory status,
ASA, and ambulation status before discharge can accurately categorize patients at high risk
of becoming bedridden three months post-surgery. Selecting high-risk patients according
to the model for additional interventions, during admission and after discharge, could
potentially enhance their quality of life while avoiding the overutilization of healthcare
resources, especially in regions with limited capacity.
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