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Abstract: Congestive heart failure (CHF) is one of the primary sources of mortality and morbidity
among the global population. Over 26 million individuals globally are affected by heart disease, and its
prevalence is rising by 2% yearly. With advances in healthcare technologies, if we predict CHF in the
early stages, one of the leading global mortality factors can be reduced. Therefore, the main objective of
this study is to use machine learning applications to enhance the diagnosis of CHF and to reduce the cost
of diagnosis by employing minimum features to forecast the possibility of a CHF occurring. We employ
a deep neural network (DNN) classifier for CHF classification and compare the performance of DNN
with various machine learning classifiers. In this research, we use a very challenging dataset, called the
Cardiovascular Health Study (CHS) dataset, and a unique pre-processing technique by integrating C4.5
and K-nearest neighbor (KNN). While the C4.5 technique is used to find significant features and remove
the outlier data from the dataset, the KNN algorithm is employed for missing data imputation. For
classification, we compare six state-of-the-art machine learning (ML) algorithms (KNN, logistic regression
(LR), naive Bayes (NB), random forest (RF), support vector machine (SVM), and decision tree (DT)) with
DNN. To evaluate the performance, we use seven statistical measurements (i.e., accuracy, specificity,
sensitivity, F1-score, precision, Matthew’s correlation coefficient, and false positive rate). Overall, our
results reflect our proposed integrated approach, which outperformed other machine learning algorithms
in terms of CHF prediction, reducing patient expenses by reducing the number of medical tests. The
proposed model obtained 97.03% F1-score, 95.30% accuracy, 96.49% sensitivity, and 97.58% precision.

Keywords: CHF prediction; CHS; DNN; KNN; C4.5; imputation

1. Introduction

The main organ of the human body is the heart. If it is not functioning properly, an
infection can spread throughout the body, and the sickness typically leads to death. It
regulates our body temperature, blood pressure, and many other crucial health-related
factors, like blood oxygen levels [1]. Congestive heart failure (CHF) is a condition in which
the heart is not able to pump the required amount of blood to the body. In this condition,
blood accumulates in the heart, and pulmonary circulation causes congestion, and thus,
fluid builds up around the heart and lungs, further causing heart failure. The main cause of
CHF is decreased preload, decreased contractility of myocardium, and increased afterload.
Valvular dysfunction, aneurysm, or plaque may be the reason behind this. The main types
of CHF include left-sided heart failure and right-sided heart failure, which may be systolic
or diastolic depending upon the complications [1].

Heart disease is the main reason for hospitalizations in elderly individuals over
65 years of age [2]. The American Heart Association states that over 50% of all American
adults (i.e., 121.5 million) have one or more cardiovascular diseases [3]. According to World
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Health Organization (WHO) reports, heart disease causes more than 15 million fatalities
worldwide, which accounts for around 30% of all deaths worldwide. If unmitigated, it
is predicted that, in 2030, there will be approximately 22 million deaths globally. Some
of the major causes that can develop into heart disease include diabetes, high cholesterol,
physical inactivity, high blood pressure, family genetics, excessive use of alcohol, unhealthy
diet, tobacco, and many other factors [4–7]. Sometimes, different genders may experience
different CHF symptoms. For instance, a male patient can more possibly experience pain
in the chest. In contrast, a female patient may experience additional symptoms, such
as nausea, acute exhaustion, and shortness of breath, along with chest pain [8]. These
uncertainties can be reduced by adopting a healthy way of living, such as consuming
less salt, ingesting vegetables and fruits, exercising regularly, and giving up alcohol and
cigarettes. This may help reduce the chance of developing heart disease over time.

Since heart disease has a very complex nature, it involves cautious administration.
Failure to do so can cause damage to the heart or result in an untimely demise. In more
than 40% of cases, heart attacks occur suddenly. Despite the best medical treatment, such
events are often fatal and very severe, making it impossible to save a life. The prediction
of CHF in its early stages can help to find a cure and save many lives. To diagnose CHF,
available diagnostic methods are X-ray, B.N.P. (brain natriuretic peptide), echocardiogram,
and cardiac catheterization. Manual methods for diagnosing CHF include the identification
of jugular vein distention in the neck, the swelling of extremities, systemic congestion,
and maybe liver cirrhosis. The quality of service (QoS) in the healthcare industry, which
provides accurate and prompt disease diagnosis and competent patient care, is experiencing
serious challenges. A specially trained artificial intelligence (AI) model can be used as an
aid to medical professionals in diagnosis. This can speed up the diagnosis process and
reduce their workload. This can also save the precious time for medical professionals [9].
In this context, machine learning (ML) algorithms are effective and reliable resources for
identifying and classifying patients with and without CHF. Therefore, using machine
learning and data mining techniques, researchers have created a wide range of automatic
systems for diagnosis [10,11]. The current approaches have some limitations, such as hefty
data produced by CT scans or MRI scans and space complexity, where it is challenging to
develop a solution to distinguish between heart disease and stroke. Heart disease prediction
is considered to be challenging; however, with the development of ML algorithms, it is
now an important subject. Employing AI helps both patients and doctors to save lives by
undertaking treatment as soon as possible using electronic health records (EHRs), which
are useful in this modern period for both clinical and research purposes by increasing
productivity and effectiveness in healthcare. To make the prediction system more exact and
accurate, there is now an urge to increase accuracy.

By minimizing the prediction error and actual outcomes, different ML techniques have
been employed to comprehend the non-linear relationship between various parameters and
complexity [10]. The outlook of clinical research and data mining techniques are applied
to identify several types of anabolism syndromes. Classification and data mining both
serve a crucial function in data analysis and heart disease prediction. Furthermore, we
have observed the usage of decision trees to identify events related to heart disease [12].
However, when it comes to machine learning, imbalance and outlier data can emerge
and affect the effectiveness of the prediction model. Earlier research has shown that the
outlier data can be identified and eliminated by using density-based spatial clustering
of applications with noise-based methods [13], and to balance the distribution of data, a
hybrid synthetic minority over-sampling technique-edited nearest neighbor (SMOTE-ENN)
is used to significantly improve the performances of the prediction models [14]. In order
to overcome these problems, we propose an effective hybrid model for CHF prediction,
where we employ the C4.5 algorithm for feature selection from an inconsistent and noisy
dataset, the KNN algorithm for missing data imputation, and DNN to predict CHF. In
this work, various observations were made to develop a prediction model employing a
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unique methodology. These integrated new techniques are often referred to as hybrid
methods [15].

In this work, our goal is to help the physician diagnose CHF in its early stage by
identifying the optimal feature from all the features present in the dataset, which improves
the overall performance of CHF prediction and minimizes the number of tests to be
performed by healthcare. A block diagram of the proposed model is shown in Figure 1.
As we can see in Figure 1, first, the whole dataset is cleaned, where all the duplicate and
inconsistent records are removed, and then, we split the remaining data into training and
testing sets in the ratio of 70:30, respectively. The ratio of training to testing data is a balance
between providing sufficient data for model learning and ensuring a robust evaluation of
unseen instances. And, we can see in Figure 2 that in feature selection, we further split
the training set into complete and incomplete sets, in which features are selected from the
complete set to prevent the model from selecting irrelevant or suboptimal features that affect
the model’s performance. Figure 1 shows the general block diagram of our proposed model,
and in Figure 2, we can see all the steps involved in the preprocessing. The CHS dataset
was used to build our models and employ seven machine learning models: Naive NB, RF,
SVM, KNN, DT, and deep neural network (DNN). After comparing all seven models, DNN
performed better than other models with our proposed pre-processing technique. The main
goal of this research is to design an effective CHF prediction model using a DNN classifier
with improved and enhanced accuracy. The overview of our work’s contributions is as
follows: (a) We provide an understanding of the various risk factors for CHF prediction.
We examine the numerous factors found in patient records to determine the most crucial
factors required for CHF prediction, reducing the need for physical examinations, promptly
identifying new patients, and shortening the length of the diagnostic process. (b) We
analyze and evaluate the most effective method for predicting the development of CHF by
benchmarking widely used machine learning models for heart disease prediction. (c) Our
model helps enhance CHF diagnosis using a minimum feature that reduces the number of
tests and medical bills. (d) Additionally, the use of digitized healthcare offers a multitude
of prospects for mitigating human errors, enhancing therapeutic outcomes, monitoring
longitudinal data, and so forth.

The remainder of the paper is organized into different sections as follows. Section 2
presents the background of the proposed problem along with preliminaries. Section 3
discusses a brief description of existing methods and available models. Section 4 dis-
cusses the proposed methodology, dataset description, and pre-processing methodology.
Sections 5 and 6 present state-of-the-art classification models used for the experiment and
the performance evaluation metrics, respectively. The experimental setup, analysis of
results, and comparison with earlier works are presented in Section 7. Finally, Section 8
represents the conclusion and future directions.

Figure 1. A block diagram to depict the generalized stages of the proposed model.
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Figure 2. The stage-by-stage process performed on the dataset during pre-processing.

2. Background and Preliminaries

Congestive heart failure takes place when the heart is not able to distribute blood
adequately to meet a body’s requirements [16]. The death rate from heart failure can range
from 5% to 75% every year. Most of the risk factors for heart failure comprise high blood
pressure, a previous heart attack, being overweight, smoking, abusing alcohol, lack of
vitamins, lack of sleep, consuming unhealthy foods (such as animal fats), and laziness [17].
Heart failure is more common in people over 65, those who are overweight, and those who
have already experienced heart failure.

The available method for heart disease prediction is very costly, and low-income
families cannot afford it. The prediction of CHF may facilitate decisions about specific
medications or devices. Current risk prediction techniques, however, have very moderate
success rates, most likely as a result of the fact that they were developed using statistical
analytic techniques that miss predictive data with multi-dimensional correlations in huge
collections of data. Data mining techniques play an important role in finding hidden infor-
mation from a collection of prior archives for decision-making in the future. Almost every
area of life, including business, engineering, medicine, and education, uses data mining.

The world today makes use of electronic health records (EHRs) for both clinical and
research purposes where data mining techniques are used. And, studies have claimed that
there are several risk factors (high cholesterol, diabetes, alcohol consumption, smoking,
and insufficient exercise) that cause heart disease [5]. The usage of various techniques and
algorithms has been observed in much research to identify events related to heart disease.
Several observations were made in this work in order to develop a prediction model using
an integrated methodology [12]. Here, we used the Cardiovascular Health Study (CHS)
dataset, which is a challenging dataset with vast inconsistencies and missing values. There
are many challenges in this dataset, like the many attributes that are irrelevant to the
problem we are trying to solve, such as seeing well enough to recognize a person, waking
up at night, having a grandchild born in the past 6 months, etc.; data entry errors; noisy
data; and missing values. There are more than 30% of data missing; some of the reasons
are participant refusal, the inability to answer certain questions, or death. Manual input
error is one of the problems because it leads to some missing data but can also add to
data inconsistency.

To make the dataset suitable for the classification algorithm, we applied an integrated
method by combining the decision tree with KNN in pre-processing, where the decision tree
serves as a feature selection algorithm and KNN as a missing data imputation algorithm.
Initially, we separated CHF records from the raw data and split them into two subsets
(complete and incomplete). Then, DT C4.5 was applied to the complete set to calculate
the gain ratio value for each attribute to rank important features in the dataset, select top
features, and discard the remaining features with a lower information gain ratio. For the
missing values present in the incomplete set, we merged the complete and incomplete sets
with respect to the selected attributes. Then, KNN was used to replace the missing value
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with the nearest possible value within the dataset. After the pre-processing of raw data,
the dataset was cleaned and ready for classification without any missing and inconsistent
values. The pre-processed data were used as input for six standard ML algorithms (KNN,
LR, NB, RF, SVM, DT), and a DNN, and the performance was evaluated using a 10-fold
cross-validation method. The result shows that the integrated pre-processing method
with the DNN as a classifier outperformed other standard ML classifiers with maximum
accuracy. After analyzing the outcomes, this model can be used to predict CHF and can
help improve the condition by adopting specific medications or devices before it is too
late. For further improvement of the model performance, different ML techniques can be
integrated or combined in new possible ways to predict different diseases using various
datasets. In the future, the model can be a reliable and cost-effective tool against expensive
procedures to predict disease. A summary of key notations used throughout this article is
given in Table 1.

Table 1. Key notations used throughout this article.

Complete Form Short Form

Congestive heart failure CHF
Cardiovascular health study CHS
K-nearest neighbor KNN
Machine learning ML
Logistic regression LR
Naive Bayes NB
Random forest RF
Support vector machine SVM
Decision tree DT
Deep neural network DNN
World health organization WHO
Electronic health records EHRs
Synthetic minority over-sampling technique-edited SMOTE
Synthetic minority over-sampling technique-edited nearest neighbor SMOTE-ENN
Deep learning DL
Logistic model tree LMT
Leave-one-subject-out LOSO
Principle component analysis PCA
Hybrid random forest with linear model HRFLM
Linear method LM
Gaussian naive Bayes classifier G-NB
Adaptive boosting AdaBoost
Artificial intelligence AI
Gradient boosting classifier GBM
Stochastic gradient descent SGD
Coronary heart disease CHD
False positive rate FPR
Matthews correlation coefficient MCC
True positive TP
False positive FP
True negative TN
False negative FN

3. Related Work

The non-linear Cleveland heart disease dataset was utilized in [18] for predicting
heart disease using the properties of random forests with minor modifications. Every
attribute with incomplete data was taken, and the median of that attribute was used to fill
in the incomplete data values. The dataset for heart disease was cleaned by removing any
missing values. They achieved more accurate heart disease predictions by employing the
RF classification technique when the attributes were well-defined. By employing 10-fold
cross-validation, the accuracy of random forest was verified after 303 instances of data
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were trained. The suggested model outperformed the competing models by achieving
maximum accuracy.

A heart sound-based technique for detecting CHF was presented by Gjoreski et al.
in [19]. They concentrated on using the analysis of cardiac sound recordings to determine
the CHF condition. The approach combined the traditional ML approach and the end-to-
end deep learning (DL) approach. A spectro-temporal representation of the signal was used
as input for the DL algorithm to learn, whereas traditional ML used expert characteristics
to learn. As many as 947 publicly accessible individual recordings and one CHF dataset
were gathered, and the proposed method was evaluated. The ML models were created
using 15 features to differentiate between CHF phases.

Plati et al. proposed a model using different machine learning classifiers (Bayes
network (BN), decision tree, SVM, logistic model tree (LMT), RF, KNN, aive Bayes (NB),
and rotation forest (ROT)) to diagnose heart failure on 422 subjects with 10-fold cross-
validation for the evaluation [20]. A total of 73 female and 154 male subjects made up the
HF sample, whereas 106 male and 151 female subjects made up the non-HF dataset. LMT
and ROT performed better than any other classifiers after being compared.

Gjoreski et al. presented a method by stacking different ML classifiers for detecting
CHF from the sounds of the heart [21]. A professional digital stethoscope was used to
capture the sounds. They used 152 distinct heart sounds from 122 different people in all. In
the segment-based ML phase, experiments were conducted using combinations of various
types of models, ranging from specific techniques to an aggregate of seven techniques—NB,
Bagging, RF, SVM, KNN, Boosting, and J48. For the evaluation, these models employed
the LOSO cross-validation method. An accuracy of 96% was achieved by the experimental
approach, which revealed encouraging findings.

A heart failure risk assessment prediction model was proposed by Aljaaf et al. using
the C4.5 classifier on multiple levels, where heart failure is categorized into five heart
failure risk levels, namely, high-risk, low-risk, extreme-risk, moderate-risk, and no-risk [22].
This study made use of heart disease information from the Cleveland Clinic Foundation.
Three supplementary features—physical activity, smoking, and obesity—that significantly
increase the risk of getting heart failure were added to the dataset as part of the study’s
focus on improving dataset features. Ten-fold cross-validation was employed to measure
performance. With 95.5% specificities, 86.5% sensitivity, and 86.53% accuracy, the prediction
model outperforms several other models.

By integrating the computing capacity of several ML techniques, such as RF, KNN,
DT, and SVM, and using Cleveland Heart Disease Dataset, Srivastava et al. proposed a
revolutionary way to diagnose heart disease [23]. The result showed that KNN provided
the maximum accuracy of any method. After training, the model was used to create
packages that could be uploaded to a web server, and a web interface was created that
allowed users to enter attributes and see the results.

Awan et al. proposed a model using the UCI dataset for the prediction of heart disease.
For the prediction of heart disease, the KDD model and neural network approaches were
used, and the results before and after PCA were compared [24]. Using the PCA algorithm,
the data were pre-processed for training before being input into the ANN. Using principal
component analysis (PCA), the accuracy rate increased from 94.7% to 97.7%. This is how
the accuracy is computed and represented.

A unique approach called Hybrid Random Forest with Linear Model (HRFLM) was
presented by Mohan et al. in [25] for accurate heart disease predictions utilizing heart
rate time series. The Cleveland UCI repository is where the dataset was gathered. The
HRFLM method bases feature selection on DT entropy, and feature selection and modeling
are repeated for different combinations of attributes to maximize the performance in
cardiovascular disease prediction. Three heart disease prediction models (RF, LM, and DT)
were employed as classification, and a confusion matrix was used for the evaluation of
the model. The characteristics of the suggested hybrid linear method (LM) and random
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forest (RF) technique were combined. Comparing the HRFLM classification method to
other approaches, it had the highest accuracy.

Shaji et al. used data mining technologies in their research to predict and enhance the
performance of the diagnosis of heart disease [26]. By interacting with patients and gather-
ing data from discharge summaries of the patients, the data were gathered from Jubilee
Mission Hospital in Thrissur. Twenty attributes were collected from roughly 2200 patients
in total, and they were entered into an Excel file. Then, classification was performed using
data mining techniques including ANN, RF, and KNN, where ANN delivered the best
outcome and maximum accuracy.

To predict cardiac illness, Sharanyaa et al. proposed a hybrid strategy that combined
the virtues of fuzzy logic and the KNN algorithm [27]. Various classification methods used
clinical data values, and the algorithms KNN, SVM, DT, and RF were used to forecast
heart disease. A total of 13 features and four classifiers were used to forecast disease and
maximize the accuracy of the model. Compared to other methods, the KNN classification
outperformed with the highest accuracy.

Singh et al. used the Cleveland and Framingham dataset for the heart disease predic-
tion model to increase the performance accuracy [28]. Random forest was combined with
logistic regression since it is a very robust model that provides superior accuracy. Following
a comparison of the outcomes of different ML and DL models, the idea of a hybrid technique
utilizing weighted average aided in heart disease prediction for better performance.

To improve the accuracy of predictions, Fitriyani et al. developed a system that
supports clinical decisions by integrating SMOTE-ENN, Density-based Spatial Clustering
of Applications with Noise (DBSCAN), and XGBoost-based MLA [29]. This system can be
utilized to diagnose the individual’s heart state earlier. The outlier data were found and
removed using DBSCAN, the uneven training dataset was balanced using SMOTE-ENN,
and the prediction model was learned and created using XGBoost MLA. The model was
developed using Statlog and Cleveland, two publicly accessible datasets. The proposed
method outperformed other methods and past research after a performance comparison
with other categorization models.

By using nine classical models—Gaussian naive Bayes classifier (G-NB), adaptive
boosting classifier (AdaBoost), gradient boosting classifier (GBM), SVM, ETC, SGD classifier,
DT, LR, and RF, Ishaq et al. showed that effective data mining approaches on significant
features can increase the accuracy in cardiovascular patients [30]. To address the imbalance
in class, they used SMOTE. Furthermore, RF was employed to select the highest-ranking
features used to train machine learning models.

Alaa Khaleel Faieq et al. [31] employed ML techniques (SVM and ANN) in the
prediction of heart disease using a UCI ML repositories database, which contained medical
information of 170 subjects. Here, SVM outperformed ANN with an accuracy of 89.10% in
heart disease prediction.

Abdul Saboor et al. [32] proposed a machine learning classifier with different state-
of-the-art models ((RF, XGBoost, CART, SVM, multinomial naïve Bayes (MNB), LR, linear
discriminant analysis (LDA), AdaBoost classifier (AB), and ET) for heart disease prediction.
The author used the Cleveland heart disease dataset for testing.

The performance of the proposed SVM outperforms the other classifiers. Gunjan
Gupta et al. [33] designed a model KNN for heart disease prediction using a dataset
collected from Kaggle. They also compared the model with different classifiers, like DT,
KNN, ANN, NB, and RF. The outcome of the comparison showed that with the value of
k = 5, the proposed model with KNN had the highest accuracy.

Umarani Nagavelli et al. [34] proposed a tool using XGBoost to improve the accuracy
of heart disease diagnosis prediction. They compared four types of machine learning (ML)
models. From the abovementioned table and graphs, it is clear that the accuracy parameter
is high in the XGBoost algorithm-based heart disease detection.
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Using an RF algorithm, Vien T. Truong et al. [35] determined the diagnosis of congeni-
tal heart disease (CHD) using postnatal echocardiography. They also demonstrated greater
sensitivity in prenatal CHD screening with very excellent performance.

All previous research has focused on classifying heart failure from non-heart failure,
using various features, datasets, and methods. The comparative analysis of earlier work in
this study helps to identify the effectiveness and weaknesses of previously proposed ML
techniques for the diagnosis of heart disease. A summary of the related work is presented
in Table 2. Most of the previous research used small datasets (less than 300 samples),
which resulted in fewer observations in test data and could lead to overfitting. Several
optimization techniques have been used in their work to enhance a number of measures,
namely precision, recall, and accuracy. One of the primary aims of our work is to evaluate
various ML algorithms to analyze which method is best for CHF prediction. We anticipate
that our prediction model performs better than the approaches used in earlier research and
state-of-the-art models.

Table 2. A summary of all the prominent models for CHF prediction proposed in the last decade.

Sl. No. Paper Method Dataset Feature Accuracy

1 Singh et al. [18] Random forest Cleveland heart disease
dataset

303 instances, 14 attributes 85.81%

2 Gjoreski et al. [19] ML, DL UKC-JSI, PhysioNet, heart
sounds

947 instances 92.9%

3 Plati et al. [20]
Rotation forest (ROT),
logistic model tree
(LMT)

University College Dublin,
Ireland, and University
Hospital of Ioannina

487 instances, 19 attributes 91.23%

4 Gjoreski et al. [21]
RF, naive Bayes, SVM,
J48, KNN, bagging, and
boosting

PCG sounds 152 instances 96%

5 Aljaaf et al. [22] C4.5 Algorithm Cleveland Heart Disease
Dataset

297 instances, 13 attributes 95.5%

6 Srivastava et al. [23] KNN Cleveland Heart Disease
Dataset

297 instances, 13 attributes 87%

7 Awan et al. [24] PCA and ANN the Cleveland UCI
repository

297 instances, 13 attributes 97.7%

8 Mohan et al. [25] HRFLM The Cleveland UCI
repository

297 instances, 13 attributes 88.7%

9 Shaji et al. [26] ANN Jubilee Mission Medical
College and Research
Institute Thrissur

2200 instances, 20 attributes 92.21%

10 Fitriyani et al. [29] Hybrid SMOTE-ENN
and XGBoost Statlog and Cleveland

dataset
270 instances, 13 attributes
and 303 instances, 13
attributes respectively

95.90% and
98.40%
respectively

11 Ishaq et al. [30] Extra tree classifier UCI machine learning
repository

299 instances 13 attributes 92.62%

4. Materials and Methods
4.1. Dataset

In this work, the CHF data was collected from the BioLINCC CHS data package [36].
The Cardiovascular Health Study (CHS) is a comprehensive investigation conducted on a
population level, focusing on the longitudinal examination of coronary heart disease and
stroke occurrences among individuals who are 65 years of age or older [37]. The dataset
contains the medical records of 5888 participants from four regions of the United States
who underwent thorough clinic evaluations to identify signs of underlying cardiovascular
disease. Out of 5888 participants, 2495 were men, and 3393 were women, with about
416 attributes. The study enrolled people who met the eligibility criteria and provided
informed consent. These participants were then administered standard questionnaires
to gather information on lifestyle habits, family history, medication usage, and medical
history, which encompassed hospitalizations and previous diagnoses of cardiovascular and
cerebrovascular illnesses. The primary aim of this study was to discover the parameters
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associated with the initiation and progression of coronary heart disease and stroke [38].
There are many challenges in this dataset, like the many attributes that are irrelevant to
the problem we are trying to solve, such as seeing well enough to recognize a person,
waking up at night, having a grandchild born in the past 6 months, etc.; data entry errors,
noisy data, and missing values. In addition, the data entry is conducted by humans via
telephone calls or by keying in a written data form or printed source. In these settings, data
are often corrupted upon entry because of typographic errors or a misunderstanding of
the data source. Mainly, more than 30% data were missing; some of the reasons include
participant refusal, inability to answer certain questions, or death. Manual input error was
one of the problems because it would lead to some missing data but could also lead to
data inconsistency. The prevalence of underreporting was also observed frequently. The
prevalence of self-reported CHF was found to be 73.3% among men and 76.6% among
women. Similarly, the occurrence of stroke was reported by 59.6% of men and 53.8% of
women. Additionally, transient ischemic attack was self-reported by 41.5% of men and
37.0% of women [39]. The dataset contained details of more than ten cardiovascular-related
diseases, and more than 50% of data were not related to CHF or were missing, which made
the dataset more challenging for the prediction of CHF.

4.2. Pre-Processing

Pre-processing data is a fundamental stage that directly affects the outcomes of the
classification algorithm. The CHS dataset is a challenging dataset corrupted with dupli-
cates, noise, incomplete information, inconsistencies, and missing values. Applying a
classification algorithm directly to this type of dataset would not give a good result or
would fail to predict effectively. In pre-processing, the unstable data are processed into a
useful and understandable format suitable for the classification model. As we can see in
Figure 2, in this work, we applied a unique combination of steps in pre-processing. Initially,
we cleaned the raw data (CHS); then, we separated the testing set and further pre-processed
the training set by splitting it into complete and incomplete sets. Then, we selected the
best feature from the complete set using the C4.5 algorithm, and the same feature was also
selected from the incomplete set. Then, we merged both complete and incomplete sets to
become one complete dataset. Hence, we merged an incomplete set, which consisted of
missing values. To handle the missing values, we filled the missing values using the KNN
imputation technique. The detail stages in pre-processing are as follows:

• Cleaning;
• Splitting;
• Feature selection;
• Missing data imputation.

4.2.1. Cleaning

Data cleaning in the pre-processing is one of the crucial steps that improve the quality
of data and help in analysis. In data cleaning, we first removed all the non-CHF patient
records (i.e., 3265 records, which are related to other cardiovascular diseases). Furthermore,
to reduce the inconsistencies and errors, redundancies and attributes with more than 30%
missing data were removed (i.e., 197 attributes were removed). Imputing a considerable
number of missing data, especially when the missingness exceeds 30%, introduces ethical
questions in the framework of healthcare. Inaccurate imputations may result in poor
predictions, which may have an effect on patient care and assessment. The remaining
219 attributes contained general demographic information, physical examination, medical
history, CHF risk factors, habits, laboratory data, and other diseases. Then, we selected the
patient’s records related to CHF, and records with no disease were selected for classification.
After cleaning the raw dataset, the remaining 2623 records (2043 diagnosed with CHF and
580 with no CHF) were divided into a ratio of 70:30 between the training and testing sets,
and the training set was used in the following steps.
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4.2.2. Splitting

Furthermore, the training data were divided into two sets, a complete set with no
missing data and an incomplete set with missing data. Our goal with splitting was to
select the optimal features from the complete set without any missing data, and we also
selected the same set of features from the incomplete set. Then, we merged the complete
and incomplete sets after feature selection and performed missing data imputation.

4.2.3. Feature Selection

After splitting the training data into two sets (complete set and incomplete set), feature
selection was conducted on the complete set part. To avoid overfitting, we employed a
feature selection process that further enhanced the performance of a classification algorithm
and reduced the computational time by selecting the subset of the dataset that provided
better interpretability. After understanding other feature selection methods with respect to
the characteristics of the CHS dataset, we selected C4.5 [40] for feature selection because of
its capacity to quantify the efficiency of each attribute in identifying the data by calculating
the information gain ratio of the attributes. This not only underscores the significance of
specific characteristics but also directs the process of selection by highlighting their effect on
the overall classification accuracy. In addition, the selected feature selection method takes
the duplication of attributes into account, resulting in a more comprehensive evaluation.
This guarantees that the chosen features not only provide a meaningful contribution to
the task but also prevent unnecessary duplication, hence improving the efficiency of the
selected subset. This makes it especially suitable for our integrated hybrid model. With
the help of data visualization, we could unfold the concealed patterns that were present
inside the dataset by showing the features’ characteristics. We selected the 12 best attributes
(shown in Table 3) with high correlation with the class. We analyzed and experimented
with various attribute sets (top 8 attributes to top 25 attributes), and the attribute set with
top 12 attributes gave the best result. Figure 3 represents the information gain ratio of the
features selected by the C4.5 algorithm. A detailed discussion about selected features is
presented in Section 7.4. The feature selection steps are shown below:

• Step 1. For all the features, calculate the entropy from the complete dataset [41].
• Step 2. Use calculated entropy to determine information gain value [41,42].
• Step 3. Calculate the information gain ratio [41,42].
• Step 4. Sort the attributes concerning the information gain ratio [43].
• Step 5. Select the top 12 attributes [43].

Table 3. List of selected features based on the gain ratio.

Sl. No. Feature Information Data Type

1. age Age of subject Numeric
2. BMI Body mass index Numeric
3. hyper Calc. hypertension status Numeric
4. chstpn Ever had pain in your chest Categorical
5. bp High blood pressure Categorical
6. diab Calc. diabetes status Categorical
7. smoke Smoking status Categorical
8. exe Exercise Categorical
9. weight Weight Numeric
10. hrate Heart rate Categorical
11. alcohol Alcohol consumption Categorical
12. hibsug High blood sugar status Categorical
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Figure 3. Visual representation of the Gain ratio of each feature selected for further processing.

4.2.4. Missing Data Imputation

In this stage, we imputed the missing data with a substitute value (known value from
the dataset) to retain most of the information of the dataset. If we removed all the missing
data from the dataset, the dimensions of the dataset would be reduced, which would
lead to an incorrect analysis, or if we kept the missing data, distortions in the variable
distribution could result. With respect to the characteristics of the dataset and nature of
the missing data, we sought an imputation technique that preserves local patterns and
relationships in the data, which is crucial for upholding the clinical relevance, quality, and
understanding of the data. These criteria are of utmost importance in healthcare decision-
making and research. Other imputation methods, like mean, median, mode, and hot deck,
ignore the relationship in the data. Additionally, KNN is robust against outliers and less
computationally demanding. In our work, we used the KNN technique for missing data
imputation. The technique identifies ‘k’ samples that are close or similar in the dataset
by calculating the Euclidean distance between the samples in the space. The value of the
missing data points can then be evaluated using these ‘k’ samples. The mean score of the
dataset of the ‘k’ neighbors is used to impute the missing values of each sample [44]. In our
experiment, the value of ‘k’ was 5.

5. Classification

For classification, various ML classification algorithms were employed first to train
and validate using the pre-processed training dataset, and the performance was evaluated
using the testing set for the prediction of CHF. The classifiers were the LR, RF, SVM, KNN,
DT, and DNN algorithms.

5.1. Decision Tree

The DT approach is a simple, easy, and powerful supervised learning method used for
regression and classification [45]. The J48 algorithm is used for this system [46,47].

5.2. Support Vector Machine

SVM is a supervised learning model based on mathematics. It is a linear model for
problems involving regression and classification [25,48].

5.3. K-Nearest Neighbor

KNN, also known as case-based reasoning, mostly utilized for classification and regression,
is one of the simplest supervised learning techniques [23]. In this work, we employed an
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efficient variant of KNN, called Ensemble Centroid Displacement-based KNN (ECDNN),
which leverages the homogeneity of the nearest neighbors of test instances. ECDNN displays
more effective and robust results when compared to those of other variants of KNN [49,50].

5.4. Random Forest

One of the most efficient ensemble-supervised classification algorithms is the RF
technique. This algorithm has been employed in probability and prediction [30].

5.5. Logistic Regression

LR is a probability-based supervised learning algorithm typically assigned to clas-
sification problems. LR is a fast and effective solution to linear and binary classification
problems [30,51].

5.6. Deep Neural Network

A DNN is a machine learning architecture in which multiple neural networks are
layered to form a layer of an interconnected network [52]. The depth of the network is
determined by how many layers of neurons there are between the input and output units.
The architecture of a DNN, consisting of numerous hidden layers, is deliberately created
to acquire hierarchical representations, allowing it to autonomously identify and simulate
complex patterns. DNN, also known as feed-forward DNN (FF-DNN), often flows in
a single direction because of the network’s deep structure. The DNN has several issues
during training (such as overfitting and computation time), but once trained, it can simulate
intricate non-linear relationships. DNNs are often used for classification, and it has been
shown that they often outperform some popular classifiers, like SVM [53]. It is highly
challenging for a DNN model to outperform human intellect, even though it attempts to
simulate human brain activity. A DNN model has, nevertheless, occasionally outperformed
human intelligence. But, there have also been several cases where these models have
been deceived [54]. The progress in deep learning approaches, encompassing enhanced
designs and algorithmic optimization, enhances the attractiveness of DNNs in this setting.
In this study, for a complicated and non-linear pattern dataset, we employed a DNN
model that could accurately represent complex, detailed relationships. Furthermore, the
dataset consisted of a wide range of features, encompassing both numerical and categorical
data. The ability of the DNN model to handle variations in features was crucial in these
situations, enabling the model to analyze and understand complex connections between
multiple types of information. Moreover, a DNN has the capacity to deal with non-linearity
using activation functions, such as ReLU, which makes it highly suitable for encapsulating
intricate, non-linear relationships underlying the dataset. To design our DNN model to
predict CHF, we used four hidden layers and ReLU as an activation function to create
a DNN model as a classification algorithm for CHF prediction. The stochastic gradient
descent algorithm was used as an optimization algorithm to train the network. The Keras
toolbox was used to create the DNN model, with TensorFlow serving as the backend. The
details of parameters used with the proposed DNN model are shown in Table 4.

Table 4. A detailed description of the proposed architecture of DNN.

Parameter Used

Input nodes 12
Hidden layers 4
Nodes of 1st hidden layer 50
Nodes of 2nd hidden layer 30
Nodes of 3rd hidden layer 20
Nodes of 4th hidden layer 10
Output nodes 1
Activation function ReLU
Training method SGD
Learning rate 0.001
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6. Evaluation Metrices

In this study, the performance differences in classifiers were examined using a confu-
sion matrix with regards to precision, accuracy, false positive rate (FPR), sensitivity, MCC,
F1-score, and specificity [55]. The performance of the proposed model was measured using
Equations (1)–(7).

Accuracy =
TP + TN

TN + FN + FP + TP
(1)

F1-score =
2TP

2TP + FP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Sensitivity =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

FPR =
FP

FP + TN
(6)

MCC =
(TN × TP)− (FN × FP)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

7. Experimental Results Analysis

The experimental methodology and findings from all of the CHF prediction experi-
ments are discussed in this section. The dataset included information regarding lifestyle,
clinical, and bodily characteristic attributes. Some of these characteristics, like gender,
smoking, diabetes, and blood pressure, are binary. After pre-processing, the dataset con-
sisted of 12 best features and no missing values. The pre-processed dataset was utilized for
training the machine learning models, which were then evaluated on precision, sensitivity,
specificity, accuracy, F1-score, and Matthew’s correlation coefficient. Figure 1 represents
the proposed methodology’s flowchart.

7.1. Experimental Design

To evaluate the performance of the models, we employed supervised machine learning
techniques. To prevent overfitting, the dataset was split into a ratio of 70:30 between the
training set and the testing set. This ratio was employed in various works of literature for
classification tasks [56]. Different performance evaluation metrics were employed to test
the machine learning classifier’s performance. Hardware details are shown in Table 5.

Table 5. Hardware architecture of the system where the proposed model is trained and evaluated.

Hardware Description

GPU memory 16 GB GDDR6 RTX-OPS 62T
Graphics bus PCI Express 3.0 × 16
CUDA parallel-processing cores 3072
FP32 performance 11.2 TFLOPS
NVIDIA RT cores 48
NVIDIA tensor cores 384

7.2. Experimental Results

Early identification of CHF is crucial for individuals at risk in order to prevent the
worsening of symptoms and minimize associated risks. This study proposed an integrated
automatic CHF diagnosis method using the CHS dataset. In this experiment, machine
learning classifiers were employed to evaluate significant features selected by the C4.5
algorithm. The least significant features were eliminated throughout the training and
testing of classifiers. By eliminating the least important features, the classifiers improved
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performance. After eliminating most of the noise from the dataset during data cleaning,
feature selection, and missing data imputation, the DNN was applied, and when compared
to other ML models, the DNN showed an impressive outcome for improving prediction
accuracy. For comparison, we used six MLAs (DT, SVM, KNN, RF, NB, and LR) that are
often employed in research and are renowned for accuracy and performance. The F1-scores
of all the classifiers are shown in Figure 4. For the validation of every model, we carried out
a 10-fold cross-validation on the training set and tested the model performance using the
testing set. We carefully considered statistical stability and practical issues when choosing
10-fold cross-validation for our study. This way, we avoided any problems that might
come with using fewer folds. The benefit of the 10-fold technique was that it could give a
more precise overview of how effectively the model performed. Each iteration’s smaller
testing set would make things stabler and give an accurate view of how well the model
works across different sets of data. Practically speaking, computational effectiveness is
essential. Increasing the number of folds increases processing needs while improving
statistical dependability. Practically speaking, very high folds may not be feasible because
of significant processing times, particularly with large datasets or complex models. On the
other hand, fewer folds may seem preferable for computational simplicity, but there is a
cost associated with it. Larger testing sets result from fewer folds, which could increase
variability and compromise the accuracy of the model’s assessment. The purposeful
selection of 10-fold cross-validation in our study guaranteed a cautious balance. It satisfied
both practical limitations and statistical rigor by offering a strong evaluation of model
performance despite unnecessarily taxing computing power. To evaluate the performance
of the proposed CHF prediction model, we used seven evaluation parameters: precision,
accuracy, FPR, TNR, sensitivity/recall, F1-score, and MCC.

Figure 4. A comparision of F1-score and accuracy obtained with different classifiers.

7.3. Comparison and Performance Analysis

The performance outcome showed that the proposed method outperformed the other six
models by obtaining an F1-score, accuracy, sensitivity, and precision, up to 97.03%, 95.30%,
96.49%, and 97.58%, respectively. The performance outcomes also showed that the suggested
model had the highest TNR and lowest FPR in comparison to other ML models (refer Table 6).
The proposed methodology achieved a TNR of 90.63% and an FPR of 9.38%. The proposed
model’s high TNR and low FPR value showed DNN’s capability to improve prediction
accuracy and decrease miss-rate for both positive and negative subjects. In terms of MCC,
the DNN showed the maximum 85.75% MCC value, which confirms the efficiency of our
proposed model over other state-of-the-art models. The overall performance outcomes are
displayed in Table 6, which also reveals that the results of the SVM, KNN, NB, and DT models
are low when compared with other classifiers like RF, LR, and DNN. The same can also be
observed from the graph in Figure 4. Therefore, this overall analysis (as shown in Table 6)
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cannot be utilized as the primary evidence to make conclusions about the efficiency of the
provided prediction models. However, it can be used to compare the proposed methodologies
in general. The obtained confusion matrix for the training set, testing set, and ROC of the
model is shown in Figures 5, 6, and 7, respectively.

Table 6. Comparitive analysis of results obtained with different classifiers.

Classifier Sensitivity Specificity Precision FPR Accuracy F1-score MCC AUC

DT 0.8293 0.7188 0.9204 0.2813 0.8069 0.8725 0.4902 0.8234
NB 0.8421 0.7438 0.9279 0.2563 0.8221 0.8829 0.5269 0.8904
KNN 0.8533 0.7188 0.9224 0.2813 0.8259 0.8865 0.5229 0.8920
SVM 0.8772 0.7500 0.9322 0.2500 0.8513 0.9039 0.5827 0.8327
RF 0.9266 0.8188 0.9525 0.1813 0.9047 0.9394 0.7185 0.9352
LR 0.9490 0.8438 0.9529 0.1563 0.9276 0.9543 0.7803 0.9603
DNN 0.9649 0.9063 0.9758 0.0938 0.9530 0.9703 0.8575 0.9759

Figure 5. The obtained confusion matrix on the training set with proposed DNN classifier.

Figure 6. The obtained confusion matrix on the testing set with proposed DNN classifier.
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Figure 7. The obtained ROC curve of all the classifiers mentioned in the Table 6.

7.4. Discussions

The goal of this study was to create an effective ML pipeline that can predict CHF
with reasonable explanations. A secondary objective of this study was to uncover useful
risk factors that contribute considerably to the classification output to reduce the diagnosis
cost and enhance the performance. The proposed method’s feature selection step can
substantially affect the classification performance of feature-based ML methods. Moreover,
within each classification model, our approach ultimately employed a fewer-feature subset.
The results of the study indicate that a limited set of clinical, biochemical, and demographic
parameters are sufficient for establishing a diagnosis of CHF, resulting in reduced time and
cost demands. In this research study, we employed simple DL models for predictions of
CHF. The purposeful decision to use imbalanced datasets, consisting of 2043 instances of
CHF patients and only 580 examples of no CHF, is based on numerous concerns. First and
foremost, it is crucial to highlight that the occurrence of CHF in real-world populations
appears to be less in comparison to non-CHF instances. The dataset we used accurately
represents the basic imbalance, thereby ensuring that our study was in keeping with the
normal distribution of occurrences of CHF. The selection of this option was crucial for the
clinical significance of our prediction model, as accurately identifying positive cases is of
significant importance in healthcare applications. We understand the likelihood of biases
that may arise because of the unequal distribution of classes and implemented strategies to
successfully mitigate them. The study utilized performance indicators that exhibit reduced
sensitivity to imbalance, such as F1-score, recall, and precision. These measures offered a
more thorough assessment of the model’s performance, particularly in situations where
there was an imbalance in class distributions. We also performed sensitivity analyses to
see what happens to the model’s predictions when the imbalance between classes changes.
It is clear from these analyses that our method is robust and can work in a wide range of
challenging environments. In addition, we conducted a comparison between our model’s
performance and that of baseline models and other methodologies. This comparison
demonstrates that our chosen methodology successfully utilized the imbalanced data to
obtain better outcomes. Ultimately, the utilization of imbalanced datasets was a deliberate
and defensible decision in our research. Our methodology guarantees that our predictive
model is both of medical importance and capable of addressing the natural challenges
resulting from imbalanced datasets. We value the careful evaluation of these factors and
encourage any further input to improve the strength and clarity of our research.

The selection of a subset of features was based on a rigorous procedure with the goal of
maximizing the model’s performance and improving its understanding. When predicting
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CHF, the objective is to find factors that have a substantial impact on the forecast and offer
distinct information, enabling a more detailed comprehension of the patterns linked to
CHF. We selected the 12 best attributes (shown in Table 3) with a high correlation with the
class. We analyzed and experimented with various attribute sets (from the top 8 attributes
to the top 25 attributes), and the attribute set with the top 12 attributes gave the best result.
These features have shown a strong correlation with CHF prediction, encompassing crucial
medical data and risk factors that are recognized as key factors in the development of CHF.
The choice to include certain features was probably based on past research and knowledge
in the field. If earlier research consistently shows that certain parameters are good at
predicting CHF, they are likely to be given more weight in the selected features. This
approach keeps up with what is already known and makes sure that the model fits with the
information we already have about what leads to CHF. Using what we have learned from
past studies makes the predictive model more valid and useful in healthcare environments.
Also, choosing a limited set of 12 attributes demonstrates a deliberate approach to reducing
dimensionality. Keeping track of a smaller group of attributes helps avoid overfitting,
especially when working with small datasets. Employing a small group of features in the
model makes it simpler, which makes it faster to compute and reduces its susceptibility to
capturing irrelevant patterns or noise. This method simplifies the process of converting
model predictions into practical information for medical professionals, thereby enhancing
the practicality of the model’s predictions in real-life situations.

With the use of several machine learning algorithms and the CHS dataset, the
current work significantly adds to the development of such a method for the prediction
of CHF. Various models presently in use have experimented with various heart disease
datasets. Since there were not many studies on the CHS dataset, we chose these models
for comparison. A comparison with these current models had a greater opportunity
for a quantitative study of our proposed model, even though different heart disease
datasets comprise distinct sets of properties. Our approach cannot be directly compared
with those using cardiac sound recordings [19] or heart sound characteristics [21], but it
may be contrasted with those using datasets similar to ours [18,22–25,29–33]. Regarding
the related work, many studies [18,22–25,29–32,57] have conducted their research on
the same dataset (i.e., UCI Cleveland heart disease dataset) with different approaches,
which display a range of accuracy from 85.81% to 97.70%. So, we utilized most of the
previously applied approaches in our dataset and compared the performance, as shown
in Table 6. The results obtained for CHF prediction show that the DNN technique
surpassed all other ML approaches in terms of accuracy (95.30%), sensitivity (96.49%),
and specificity (90.63%) when compared to other ML approaches.

In our study, we used a moderate number of data and used the same pre-processed
data for all the classification models, and the DNN we used in our study was a simple
feed-forward DNN. By utilizing a standardized, pre-processed dataset, the experiment
guaranteed an equitable and impartial comparison between various methods. Eliminating
any potential biases resulting from differences in pre-processing procedures ensured a
fair and equal basis for analysis. The simplicity of the DNN enhanced transparency and
interpretability, enabling a more comprehensible comprehension of the acquired patterns.
The DNN, despite being simple, is highly suitable for effectively training on a moderate-
sized dataset, rendering it feasible in circumstances where computational capabilities are
factors to be taken into account. The model’s analysis of non-linear relationships in the
data corresponds to the complexity of patterns that conventional methods may not ade-
quately represent. Moreover, the uniformity of the complexity of models across algorithms
improves the comprehensibility of outcomes, enabling a concentrated examination. The FF
DNN’s inherent simplicity facilitates the replication and interpretation processes, hence
enhancing the reproducibility and transparency of the study. Overall, these favorable
qualities emphasize the FF DNN’s function in offering vital insights regarding its efficiency
compared to different algorithms in a just, understandable, and reliable way.
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The efficacy of the proposed DNN architecture for diagnosing CHF lies in the complex
interaction of many design decisions that collectively improve our model’s capabilities. In-
corporating the ReLU activation function into the hidden layers makes the model non-linear.
This provides a base for the DNN to understand the CHF data’s complicated, non-linear cor-
relations, enabling it to find trends that conventional linear models could have overlooked.
The depth of our model consists of four hidden layers with a constantly decreasing number
of nodes (50, 30, 20, 10). The model’s depth enables it to systematically learn insight into
features at various levels of abstraction. The optimization approach is a crucial factor, with
SGD playing a prominent role. We used SGD with a meticulously adjusted learning rate
of 0.001. This selection guarantees an even integration during the training process, which
is a vital element in the model’s capacity to efficiently acquire representative features. By
using ReLU activation, sparsity is introduced, resulting in improved computing efficiency
and an enhanced ability of the model to identify important features, which, consequently,
reduces the possibility of overfitting. Furthermore, the model’s adaptability is facilitated by
the architecture’s flexibility, which enables the utilization of various node configurations in
each layer. This adaptability helps the model to effectively accommodate the many patterns
found in CHF data. This flexibility is useful for encapsulating the complex structure of
medical data. Therefore, the combination of adaptability, non-linearity, and incorporation
of depth highlights the DNN as an effective tool for CHF prediction, offering benefits over
baseline models.

7.5. Limitation

One of the constraints of our work is the lack of appropriate input data and their strong
association. The majority of the features in the EHR dataset do not add any new information
to the original feature space because of their significant correlation with one another. As
a result of the sparse data with high levels of inconsistency, we were unable to train deep
learning architectures, which are superior to traditional ML methods in terms of effectiveness.
Additionally, the way medical institutions store their information increases the effort for
researchers because they contain a number of undesirable traits that have nothing to do
with CHF. Therefore, a significant amount of processing time can be saved if the institute
maintains patient information that only includes selected properties that are essential for
CHF prediction instead of storing and preserving all aspects. As part of our next work, we
also intend to independently validate our recommended method and further examine its
efficacy before using deeper DL frameworks. We will also enhance the performance of the
DL and ML approaches by collecting additional characteristics and parameters.

8. Conclusions and Future Work

Early detection of congestive heart failure is crucial for individuals at risk, as it allows
for timely intervention to prevent the worsening of symptoms and mitigate associated risks.
This study employed limited clinical features through feature selection, hence reducing
the necessity for diagnostic testing. Unlike previous studies, in this study, we proposed
a robust CHF prediction model by integrating C4.5, KNN, and DNN machine learning
algorithms to optimize prediction accuracy. We also dealt with the missing data values
in our work. Furthermore, we compared several ML models with our model in the same
dataset, which provided a better understanding of the performance. Additionally, we
highlighted the shortcomings and flaws in the earlier heart disease prediction systems in
this study. The type of data present in the dataset is one of the main factors for an ML
model in previous studies to achieve the highest performance. Finally, the experiments
showed that our proposed model achieved a comparative accuracy of 95.30% compared to
the six other known methods from earlier studies. Furthermore, our approach still yields
impressive outcomes even when limited to clinical data without employing the full feature
set. This presents an opportunity for practitioners who lack access to laboratory tests or
echocardiograms to make reliable diagnoses of heart failure without necessarily relying on
supplementary tests. The proposed method can be widely applied and performs excellently
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with real-world data. In the future, we will experiment with our work with multiple
combinations of machine learning models with extensive healthcare datasets. Additionally,
larger data sets will make it possible for us to train deep neural networks efficiently. In our
upcoming effort, we intend to gather institutional data and analyze research using various
outlier detection techniques that should be explored further.
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