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Abstract: In the early diagnostic workup of acute pancreatitis (AP), the role of contrast-enhanced CT
is to establish the diagnosis in uncertain cases, assess severity, and detect potential complications like
necrosis, fluid collections, bleeding or portal vein thrombosis. The value of texture analysis/radiomics
of medical images has rapidly increased during the past decade, and the main focus has been on
oncological imaging and tumor classification. Previous studies assessed the value of radiomics
for differentiating between malignancies and inflammatory diseases of the pancreas as well as for
prediction of AP severity. The aim of our study was to evaluate an automatic machine learning model
for AP detection using radiomics analysis. Patients with abdominal pain and contrast-enhanced
CT of the abdomen in an emergency setting were retrospectively included in this single-center
study. The pancreas was automatically segmented using TotalSegmentator and radiomics features
were extracted using PyRadiomics. We performed unsupervised hierarchical clustering and applied
the random-forest based Boruta model to select the most important radiomics features. Important
features and lipase levels were included in a logistic regression model with AP as the dependent
variable. The model was established in a training cohort using fivefold cross-validation and applied
to the test cohort (80/20 split). From a total of 1012 patients, 137 patients with AP and 138 patients
without AP were included in the final study cohort. Feature selection confirmed 28 important features
(mainly shape and first-order features) for the differentiation between AP and controls. The logistic
regression model showed excellent diagnostic accuracy of radiomics features for the detection of
AP, with an area under the curve (AUC) of 0.932. Using lipase levels only, an AUC of 0.946 was
observed. Using both radiomics features and lipase levels, we showed an excellent AUC of 0.933 for
the detection of AP. Automated segmentation of the pancreas and consecutive radiomics analysis
almost achieved the high diagnostic accuracy of lipase levels, a well-established predictor of AP, and
might be considered an additional diagnostic tool in unclear cases. This study provides scientific
evidence that automated image analysis of the pancreas achieves comparable diagnostic accuracy
to lipase levels and might therefore be used in the future in the rapidly growing era of AI-based
image analysis.
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1. Introduction

Acute pancreatitis (AP) is a life-threatening disease with an increasing annual inci-
dence [1]. Despite advances in diagnosis and therapy, severe AP still has a high morbidity
and mortality [2]. Besides clinical features and blood tests, imaging (e.g., ultrasound or
contrast-enhanced computed tomography (CT)) plays an essential role in the diagnostic
workup of AP. According to an international consensus and the revised Atlanta classifica-
tion, the diagnosis of AP requires two of the following three features: (i) abdominal pain,
(ii) elevated lipase activity, (iii) consistent findings in CT [3]. CT is an important component
in the primary diagnosis of AP as well as in follow-up imaging to detect complications of
AP, e.g., development of necrosis and peripancreatic (infected) fluid collections, portal vein
thrombosis, pseudoaneurysms or bleeding.

Texture analysis (also called radiomics) is a quantitative method of image analysis
which describes the conversion of images into data and has become important for medical
image analysis in the last decade. Using this method, attenuation can be quantitatively
assessed in each voxel. Radiomics extracts quantitative information from each voxel and
assesses the distribution of intensities (histograms) and the shape of the mask/region
of interest as well as relationships between different voxels. This method allows for an
objective and observer-independent image analysis to facilitate the correct diagnosis [4,5].
The number of studies analyzing the texture of organs and/or tumors rapidly increased
during the past decade; these analyses showed promising results of radiomics, especially
in the field of cancer imaging, but also in various other fields.

Previously, recent studies performed texture analyses of the pancreas and showed
that the extraction of radiomics features from the pancreas might facilitate the diagnosis
of diabetes mellitus [4], the prognostic value of pancreatic cancer [6,7] and differentiation
between pancreatic lesions [8,9]. As most radiomics studies focus on malignancies, only a
few studies assessed the role of texture features in inflammatory processes, e.g., acute pan-
creatitis [10,11]. In addition, previous studies mainly focused on the diagnosis of pancreatic
lesions and the differentiation of tumors and inflammatory pancreatic diseases [11–18].
Other radiomics studies (also including MRI studies) analyzed the prognostic value of
texture features for recurrence of acute pancreatitis or its severity [19–22]. A recent study
assessed if radiomics features can discriminate between functional abdominal pain and
acute and chronic pancreatitis [23]. The study used manual segmentation of the pancreas
followed by radiomics feature extraction and showed that texture analysis is a potential
tool for differentiation. It is not yet known if an automated approach using segmentation
of the pancreas and radiomics-based analysis of contrast-enhanced CT of the abdomen can
be used to identify patients with the presence of acute pancreatitis.

The aim of this study was to assess the value of radiomics features after automatic
segmentation of the pancreas for differentiation between acute pancreatitis and non-
pancreatitis in patients with abdominal pain in an emergency setting.

2. Materials and Methods

This retrospective single-center study was approved by the local Medical Research
and Ethics Committee (MREC) (Protocol Number: 20-1153). Written informed consent was
waived by the MREC due to the retrospective study design.

2.1. Study Population

Inclusion criteria comprised (a) the availability of contrast-enhanced abdominal CT
(portal venous phase) on a second-generation dual-source MDCT scanner (SOMATOM
Definition Flash, Siemens Healthineers, Erlangen, Germany ), (b) sufficient image qual-
ity (i.e., patients with blurred images or strong artifacts due to metal implants in the



Diagnostics 2024, 14, 718 3 of 12

spine were excluded), (c) diagnosis of acute pancreatitis according to the revised Atlanta
classification [3] and (d) age ≥18 years.

For the control group, the local database was searched for contrast-enhanced CT
imaging of the abdomen in the portal venous phase performed using the same scanner due
to unclear (upper) abdominal pain without the ICD-code K85 (acute pancreatitis) between
January 2016 and November 2020.

For all patients (pancreatitis and control group), lipase activity levels were collected
and shown in U/L.

2.2. Scanning Protocol

All patients underwent a contrast-enhanced CT of the (upper) abdomen with a second-
generation dual-source MDCT scanner (SOMATOM Definition Flash, Siemens Healthineers,
Erlangen, Germany) as routine clinical acquisition using a monophasic contrast injection
protocol in the portal venous phase. A contrast bolus of 120 mL (Imeron 350 mgI/mL,
Bracco Imaging Deutschland GmbH, Konstanz, Germany) was injected via an antecubital
vein (flow rate 4.0 mL/s) and followed by a saline bolus of 30 mL. Images were acquired
after a fixed delay of 75 s after contrast injection. Each patient was scanned craniocaudally
in a supine position. We further used the following technical parameters: Care kV 7, 120 kV
tube voltage, 120 mAs, 0.5 s rotation time, 128 × 0.6 mm collimation, pitch factor 1.0.

2.3. Automatic Segmentation, Feature Extraction and Selection and Statistical Analysis

Automatic segmentation of the pancreas was performed using the open-source soft-
ware TotalSegmentator (version 1.5.6 [24]) in Python (version 3.7). Figure 1 shows an
example of automatic segmentation of the pancreas.

Figure 1. Example of automatic segmentation of the pancreas.

For the visualization of automatic segmentation, the software 3D Slicer (version 5.2.2)
was used (http://www.slicer.org (accessed on 19 July 2023), [25]). Automatic segmentation
was verified by a board-certified radiologist in randomly selected cases. Radiomics features
were extracted using the software package Pyradiomics (version 3.1.0, [26]). In total,
104 features were extracted (first-order, shape, Gray Level Co-occurrence Matrix [glcm],
Gray Level Dependence Matrix [gldm], Gray Level Run Length Matrix [glrlm], Gray
Level Size Zone Matrix [glszm], Neighbouring Gray Tone Difference Matrix [ngtdm]).
First, feature normalization was performed in Python (version 3.10) using the Z-score
method. Second, all extracted and normalized features were loaded into a statistical
software (R Statistics, version 4.3.1, R Core Team, Vienna, Austria) [27]. Then, data were
divided into a training and a test cohort using an 80/20 split. Data were analyzed and

http://www.slicer.org
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visualized using RStudio (version 2023.06.2 [28]). Unsupervised hierarchical clustering
of normalized radiomics features was performed using the package ComplexHeatmap in
R and Rstudio. To select the most important radiomics features, the established Boruta
package was applied in R in the training cohort using a random forest (RF) feature selection.
We chose the Boruta package as this is a well-established and powerful method for feature
selection and its applicability has already been proven in previous radiomics studies [29].
After feature selection, all features that were confirmed as important (and/or lipase levels)
were included in binary logistic regression analysis in R using the presence of pancreatitis
as the dependent variable and radiomics features (and/or lipase levels) as independent
variables. The model was trained on the training cohort using 5-fold cross-validation and
tested on the test cohort. Receiver operating characteristic (ROC) curves and areas under
the ROC curve (AUC) including 95% confidence intervals were calculated in R.

Features that were confirmed as the most important features after RF feature selection
were visualized in boxplots. Mann–Whitney U tests were performed to compare all con-
firmed features between the two groups (acute pancreatitis vs. control). Post hoc Bonferroni
correction was applied to correct for multiple testing. A p-value < 0.05 was considered to
indicate statistically significant differences.

3. Results
3.1. Patient Cohort

A total of 267 patients with the ICD-code K85 “acute pancreatitis” between January
2016 and December 2020 and CT of the (upper) abdomen were included in the first analysis.
Patients were excluded due to the following reasons: missing contrast agent (n = 24), miss-
ing portal venous contrast phase (n = 36), missing diagnosis of acute pancreatitis according
to the criteria of the revised Atlanta classification [3] (n = 65), status after pancreatic surgery
(n = 2), image acquisition using a different CT scanner (n = 3). Therefore, 137 patients
(43 female assigned at birth, mean age at diagnosis 59.4 years [±16.7]) with a diagnosis of
acute pancreatitis were included in the final study cohort.

A total of 745 patients with CT of the abdomen and the excluded diagnosis of “acute
pancreatitis” were analyzed. Patients were excluded due to the following reasons: analysis
using a different CT scanner (n = 374) or other symptoms/prior history (e.g., trauma,
tumor or gastrointestinal bleeding, n = 233). Therefore, the final control group consisted
of 138 patients (46 female assigned at birth, mean age 61.1 years [±17.9]) with contrast-
enhanced CT of the abdomen due to acute abdominal pain.

Acute pancreatitis was classified as interstitial edematous AP in 111 of 137 patients
[81.0%]) and as necrotizing AP in 26 of 137 patients [19.0%]). The etiologies of AP were
alcohol abuse (47/137 patients [34.3%]) and biliary diseases (37/137 patients [27.0%]).
Further causes comprised prior endoscopic retrograde cholangiopancreatography (ERCP)
(16/137 [11.7%]) and other rare causes (e.g., autoimmune pancreatitis). Lipase levels were
available for 127/137 patients with AP and for 120/137 patients in the control group.
Lipase levels were elevated in the AP group (median 385 U/l [interquartile range (IQR)
124-600]) compared to the control group (24.5 U/L [15–32]). A total of 25 of 137 patients in
the AP group (18.2%) presented with prior stenting of the common bile duct. The main
clinical symptoms in the control group were acute abdomen and abdominal pain (94/138,
[68.1%]). There was a similar distribution of patients receiving oral contrast agent prior to
contrast-enhanced CT of the abdomen in the AP group (51/137, [37.2%]) and the control
group (54/138, [39.1%]).

Baseline patient characteristics are shown in Table 1.

Table 1. Baseline patient characteristics.

AP (n = 137) Control (n = 138)

Sex, female (%) 43/137 (31.4%) 46/138 (33.3%)
Age, mean (± sd) 59.4 (±16.7) 61.1 (±17.9)
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Table 1. Cont.

AP (n = 137) Control (n = 138)

AP
− Interstitial edematous 111/137 (81.0%) n.a.

− Necrotizing 26/137 (19.0%) n.a.
Etiology of AP
• Alcohol 47/137 (34.3%) n.a.

• Biliary 37/137 (27.0%) n.a.

• Post-ERCP 16/137 (11.7%) n.a.

• Others 22/137 (16.1%) n.a.
Clinical symptoms control group
• Acute abdomen n.a. 32/138 (23.2%)

• Upper abd. pain n.a. 35/138 (23.4%)

• Lower abd. pain n.a. 27/138 (19.6%)

• Abd. infection n.a. 11/138 (8.0%)

• Others n.a. 33/138 (23.9%)

Oral contrast agent 51/137 (37.2%) 54/138 (39.1%)
Common bile duct stenting 25/137 (18.2%) n.a.
Lipase (U/L), median (IQR) 385 (124–600) 24.5 (15–32)

Normally distributed data shown as mean (±sd), non-normally distributed data shown as median (interquartile
range, IQR). AP: acute pancreatitis; ERCP: endoscopic retrograde cholangiopancreatography. n.a.: not applicable.

3.2. Cluster Analysis

Unsupervised hierarchical clustering was performed for all extracted and normalized
radiomics features in patients with and without acute pancreatitis. Data are visualized in a
heatmap (Figure 2).

3.3. Radiomics Feature Selection

Twenty-eight features were confirmed to be important features, as shown in Figure 3.
Detailed data about feature importance are presented in Supplemental Table S1. Especially,
shape features (7/28) and first-order features (7/28) were selected as important features;
shape features describe the shape of a given mask (segmentation)/region of interest and
therefore the boundaries of the pancreas. First-order features describe the distribution
of intensities (Hounsfield units in this study) for each voxel. Also, glszm features (5/28)
and gldm features (5/28) were confirmed to be important features for discrimination be-
tween AP and controls. Both feature types analyze gray levels; glszm features focus on
gray-level zones and gldm features on gray-level dependencies. As the three most impor-
tant features for discrimination between AP and controls, “shape_SurfaceVolumeRatio”,
“gldm_DependenceNonUniformity” and “shape_MeshVolume” were selected (Figure 4).
Using non-parametric tests, significant differences between patients with and without AP
were found in these three features (p-value < 0.001) and in most other selected radiomics
features. Median values of all features as well as p-values are presented in Table 2.
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Figure 2. Heatmap for unsupervised hierarchical clustering of standardized radiomics features in
30 randomly selected patients with acute pancreatitis and controls.

Table 2. Quantitative analysis of selected and normalized radiomics features.

Feature Pancreatitis Control p-Value

shape_LeastAxisLength 0.51 −0.51 <0.001

shape_Maximum3DDiameter 0.35 −0.24 0.084

shape_MeshVolume 0.47 −0.63 <0.001

shape_Sphericity 0.34 −0.41 <0.001

shape_SurfaceArea 0.50 −0.50 <0.001

shape_SurfaceVolumeRatio −0.63 0.34 <0.001

shape_VoxelVolume 0.47 −0.63 <0.001

firstorder_Energy 0.48 −0.56 <0.001

firstorder_InterquartileRange −0.01 −0.10 1.000
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Table 2. Cont.

Feature Pancreatitis Control p-Value

firstorder_Kurtosis −0.25 −0.22 0.245

firstorder_Maximum −0.33 −0.30 1.000

firstorder_Minimum 0.35 0.20 0.013

firstorder_Skewness −0.06 −0.21 0.207

firstorder_TotalEnergy 0.48 −0.56 <0.001

glcm_ClusterShade 0.03 0.02 0.179

glrlm_GrayLevelNonUniformity 0.39 −0.57 <0.001

glrlm_RunLengthNonUniformity 0.43 −0.54 <0.001

glszm_GrayLevelNonUniformity 0.36 −0.51 <0.001

glszm_LargeAreaEmphasis 0.33 −0.63 <0.001

glszm_LargeAreaLowGrayLevelEmphasis 0.14 −0.58 <0.001

glszm_ZonePercentage −0.58 0.22 <0.001

glszm_ZoneVariance 0.33 −0.63 <0.001

gldm_DependenceNonUniformity 0.52 −0.60 <0.001

gldm_DependenceNonUniformityNormalized −0.06 −0.37 0.221

gldm_DependenceVariance −0.15 0.31 0.008

gldm_GrayLevelNonUniformity 0.38 −0.53 <0.001

gldm_LargeDependenceHighGrayLevelEmphasis −0.34 −0.26 0.113

ngtdm_Coarseness −0.46 0.05 <0.001

Data shown as median; p-value shown after Bonferroni correction; firstorder: describe distribution of voxel
intensities; shape: describe the shape of the mask; glcm: describe the probability function; glszm: quantify gray
level zones; gldm: quantify gray level dependencies; glrlm: quantify length in number of pixels; ngtdm: quantify
gray level differences between neighboring voxels.

Figure 3. Feature selection using the random forest-based Boruta package. Confirmed features are
shown in green, tentative features in yellow, rejected features in red and “shadow” features in blue.
Circles show outliers and the whiskers indicate minimum and maximum.
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Figure 4. Boxplots for the three most important features for comparison between patients with and
without acute pancreatitis (AP, blue without AP, orange with AP; (A): shape_SurfaceVolumeRatio,
(B): gldm_DependenceNonUniformity, (C): shape_MeshVolume). Data shown after feature
normalization (z-score) for shape_surfaceVolumeRatio, gldm_DependenceNonUniformity and
shape_MeshVolume.

3.4. Logistic Regression Model

All features that were confirmed as important features after RF-based selection were
included in the model as independent variables and analyzed in the binary logistic regres-
sion model for AP as the dependent variable. ROC analysis of the test set revealed an
excellent performance of the model, including radiomics features only for the diagnosis of
AP with an average AUC of 0.932 (95%-CI: 0.852–1.00) (Figure 5). Including lipase levels
only, we observed an AUC of 0.946 (95%-CI: 0.883–1.00) for the correct diagnosis. Including
a combination of both—lipase levels and radiomics features—showed an excellent AUC of
0.933 (95%-CI: 0.850–1.00) for the detection of AP.

Figure 5. Receiver operating characteristic (ROC) curves of the logistic regression models. Areas
under the ROC curve (AUC) shown for performance of the models on a test set (n = 55) for radiomics
only (A), for lipase only (B) and for a combined approach using radiomics and lipase (C).

4. Discussion

This study showed in a large patient cohort that automatic segmentation of the pan-
creas followed by radiomics extraction can predict the presence of acute pancreatitis with
high accuracy. This algorithm almost achieves the high diagnostic accuracy of lipase levels.
Therefore, the application of this algorithm might support radiologists and clinicians to
confirm the diagnosis, especially in unclear cases. Further, this study provides scientific
evidence that automatic image and texture analysis of the pancreas achieves comparable
diagnostic accuracy to lipase levels in the diagnostic workup of AP.

Acute pancreatitis has been increasing over the past decades. Most patients present
with abdominal pain which radiates around the back, like a belt. If patients have typical
symptoms and elevated lipase levels in blood tests, further CT imaging is not recom-
mended [3,30]. In unclear cases or if complications are suspected, either ultrasound or
contrast-enhanced CT of the upper abdomen is performed, depending on the assessability
of ultrasound and disease severity [30]. In our study, both the acute pancreatitis group and
the control group included patients with unclear abdominal pain and/or suspicion of com-
plications, which was the basis of the indication for contrast-enhanced CT of the abdomen.
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Automatic segmentation of the pancreas was performed using TotalSegmentator [24],
a freely available and robust model for the segmentation of anatomic structures in CT
images. This recently released software enables accurate segmentation based on a nnU-
Net-segmentation algorithm and was trained on over 4000 CT scans, outperforming other
segmentation models with a high Dice score [24]. The extraction of radiomics was per-
formed using the established package “Pyradiomics” [26]. To reduce the number of features,
the previously presented and well-known Boruta package was applied for feature selec-
tion [29,31]. The logistic regression model showed a very high accuracy with an AUC of
0.932 for the diagnosis of acute pancreatitis in patients with unclear abdominal pain. These
results showed that quantitative image analysis can identify changes in the texture of the
pancreatic parenchyma very precisely and might help radiologists and clinicians in the
diagnosis of unclear cases. Similar results were also presented in a previous study [23],
showing an AUC of 0.91 for the correct diagnosis. The latter study included in total 56 pa-
tients and analyzed patients with chronic pancreatitis, who were excluded from our cohort.
Mashayekhi et al. mainly identified glcm features as the most important radiomics features
which are generated by the intensity of voxel pairs [23,32]. In contrast, our study identified
features from different sections, mainly shape and first-order features that describe the
distribution of voxel intensities [32]. The differences in these features are quite conceiv-
able, as the pancreas changes in shape and intensity during acute pancreatitis, showing
more blurred boundaries during inflammation as well as reduced contrast enhancement
in cases of necrosis. Both organ changes are also used as diagnostic criteria for AP in
contrast-enhanced CT by radiologists; however, in some cases, these changes might be
very subtle and not visible to the human eye. These cases might be of high relevance for
quantitative image analysis and radiomics features as they may also detect these slight
changes. Further studies assessing this issue are necessary to confirm the value of radiomics
in cases with only subtle changes in contrast-enhanced CT images. Also, other radiomics
features (e.g., glszm- and gldm features, considering gray level zones and dependencies)
were shown to be important features for differentiating between acute pancreatitis cases
and controls. These features are not clearly visible to the human eye and are reserved for
computer-based analyses. This suggests that texture analysis provides a more profound
look at these images, allowing access to data that are invisible to humans.

Previous studies that analyzed the texture of the pancreas mainly focused on the
differentiation between mass-forming pancreatitis and pancreatic tumors, as this is often a
major radiological challenge [12–18,33]. The diagnosis of AP is mainly made according to
clinical symptoms and the presence of elevated lipase levels in blood tests [30]. Therefore,
the value of automatic AP detection in CT images might be questionable. However, the
present study included only patients with an indication for contrast-enhanced CT (either in
unclear cases or with suspected complications of AP) and patients with unclear abdominal
pain in the control group, representing a typical diagnostic challenge in emergency radiol-
ogy. Especially in patients with unclear abdominal pain and in need of CT, the automatic
detection of AP might help radiologists and clinicians in the diagnostic workup and might
also accelerate the diagnosis if implemented automatically. And, regarding the current
rapid increase of artificial intelligence-based solutions for automated disease detection,
texture analysis might be important in the near future. This study provides proof that
texture analysis has a comparable diagnostic accuracy to well-established blood tests. In
addition, this study also evaluated the benefits of using both lipase levels and quantitative
imaging features for AP detection. Whereas lipase levels, a well-established predictor, had
a very good AUC of 0.946 (95%-CI: 0.883–1.00) for the correct diagnosis, the usage of the
radiomics model also achieved a high diagnostic accuracy (0.932 (95%-CI: 0.852–1.00).

The fact that texture analysis of the pancreas is an important predictor of AP prognosis
confirms its significance in the initial diagnosis of patients with CT indication. Previous
studies pointed out the relevance of radiomics analyses in the prediction of AP recur-
rence [19,34,35]. Furthermore, the prediction of AP severity is of high clinical relevance. AP
has a high morbidity and mortality and a high risk of organ failure. Early determination
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of disease severity would be of high clinical relevance, suggesting closer monitoring of
patients with elevated risk. Recent studies showed MRI texture analysis is a potential
predictor of AP severity [20–22]. Very recent studies also highlighted the value of CT-based
texture analysis for the prediction of the prognosis and severity of AP [36,37]. Liu et al.
established a clinical radiomics model, evaluated its performance in the prediction of organ
failure, intensive care unit stays and the need for interventions and divided patients into
low- and high-risk groups. They found that patients in the high-risk group had significantly
higher rates of organ failure and longer duration of hospitalization [37]. A combination of
both radiomics features and clinical features/blood tests might therefore improve patient
care, including closer monitoring of high-risk patients and therefore potentially earlier
detection of complications and reduction in hospitalization.

This study has limitations. First, a retrospective study design is a major limitation.
Patients with unclear abdominal pain and/or suspected complications of either pancreatitis
or other abdominal diseases were included. Our aim was to analyze a realistic clinical
scenario which also involves patients with unclear abdominal symptoms. Second, this
was a single-center study that evaluated a standardized CT protocol. Radiomics analyses
strongly depend on CT protocols, contrast phases and image postprocessing; therefore,
a generalization of the results for other CT scanners and protocols cannot be performed.
Radiomics analyses are prone to overfitting, as a large number of data are assessed. To
avoid overfitting, feature selection is performed to reduce the number of data to a minimum.
This study used the well-established Boruta package for feature selection, which had been
employed in previous radiomics studies. There are also other approaches for feature
selection, e.g., Lasso regression. Further multi-center studies are necessary to evaluate the
transferability of the results. Third, it is important to mention that this AI model might
be of limited value in clinical routine. The majority of cases with AP have typical clinical
symptoms and elevated lipase levels and therefore, no CT is recommended for primary
diagnosis. Contrast-enhanced CT is performed either in unclear cases or for suspected
complications of AP. Therefore, this model might be limited to a small group of unclear
cases, either in patients with typical clinical symptoms and normal lipase levels or vice
versa. Further, there is also a rare number of cases with only subtle changes in CT imaging
that might benefit from this quantitative model. However, with the increasing use of
AI-based detection of pathological changes, this study provides evidence that texture-based
analysis provides comparable diagnostic confidence to blood tests and may therefore be
implemented in automated detection in the future.

5. Conclusions

Automatic segmentation of the pancreas and quantitative image analysis have a high
diagnostic accuracy for AP in contrast-enhanced CT and almost achieve the values of lipase
levels, a well-established AP predictor. Therefore, in an emergency setting and especially
in unclear cases, radiomics features might help clinicians and radiologists in the diagnostic
workup. This study provides scientific evidence that automated image analysis of AP
achieves comparable diagnostic confidence to blood tests and might therefore be used in
the future in the rapidly growing era of AI-based image analysis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/diagnostics14070718/s1, Table S1: Importance of all analyzed features in a
random forest based model.

Author Contributions: Conceptualization, S.B., P.W., F.S. and T.K.; methodology, S.B., L.C., L.-M.F.,
P.W., F.R., A.H., J.A.D., K.T., J.B., C.S-M., T.W. and F.S.; validation, P.W., C.S.-M., T.K., F.S. and
T.W.; formal analysis, S.B., L.C., L.-M.F., P.W., F.R., A.H., J.A.D., K.T., J.B., C.S.-M., T.W. and F.S.;
project management: C.W.; writing—original draft preparation, S.B.; writing—review and editing, all
authors; supervision, C.S.-M., T.K., F.S. and T.W. All authors have read and agreed to the published
version of the manuscript.

https://www.mdpi.com/article/10.3390/diagnostics14070718/s1
https://www.mdpi.com/article/10.3390/diagnostics14070718/s1


Diagnostics 2024, 14, 718 11 of 12

Funding: This project was funded via an internal project funding grant from the medical faculty of
the University of Augsburg. Otherwise, this research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of the Ludwig Maximilian University of
Munich (project nr. 20-1153).

Informed Consent Statement: Patient consent was waived due to the retrospective nature of this analysis.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors of this manuscript declare relationships with the following com-
panies: T.K. and F.S. are (unpaid) members of the “Photon Counting advisory board” of Siemens
Healthineers. F.S. has received speaker honoraria from Siemens Healthineers.

References
1. Lee, P.J.; Papachristou, G.I. New Insights into Acute Pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 479–496. [CrossRef]

[PubMed]
2. Boxhoorn, L.; Voermans, R.P.; Bouwense, S.A.; Bruno, M.J.; Verdonk, R.C.; Boermeester, M.A.; van Santvoort, H.C.; Besselink,

M.G. Acute Pancreatitis. Lancet 2020, 396, 726–734. [CrossRef] [PubMed]
3. Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Acute Pancreatitis

Classification Working Group Classification of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by
International Consensus. Gut 2013, 62, 102–111. [CrossRef] [PubMed]

4. Jang, S.; Kim, J.H.; Choi, S.-Y.; Park, S.J.; Han, J.K. Application of Computerized 3D-CT Texture Analysis of Pancreas for the
Assessment of Patients with Diabetes. PLoS ONE 2020, 15, e0227492. [CrossRef] [PubMed]

5. Chae, H.-D.; Park, C.M.; Park, S.J.; Lee, S.M.; Kim, K.G.; Goo, J.M. Computerized Texture Analysis of Persistent Part-Solid
Ground-Glass Nodules: Differentiation of Preinvasive Lesions from Invasive Pulmonary Adenocarcinomas. Radiology 2014, 273,
285–293. [CrossRef] [PubMed]

6. Sandrasegaran, K.; Lin, Y.; Asare-Sawiri, M.; Taiyini, T.; Tann, M. CT Texture Analysis of Pancreatic Cancer. Eur. Radiol. 2019, 29,
1067–1073. [CrossRef] [PubMed]

7. Kulkarni, A.; Carrion-Martinez, I.; Dhindsa, K.; Alaref, A.A.; Rozenberg, R.; van der Pol, C.B. Pancreas Adenocarcinoma CT
Texture Analysis: Comparison of 3D and 2D Tumor Segmentation Techniques. Abdom. Radiol. 2021, 46, 1027–1033. [CrossRef]
[PubMed]

8. Awe, A.M.; Rendell, V.R.; Lubner, M.G.; Winslow, E.R. Texture Analysis: An Emerging Clinical Tool for Pancreatic Lesions.
Pancreas 2020, 49, 301–312. [CrossRef] [PubMed]

9. Reinert, C.P.; Baumgartner, K.; Hepp, T.; Bitzer, M.; Horger, M. Complementary Role of Computed Tomography Texture
Analysis for Differentiation of Pancreatic Ductal Adenocarcinoma from Pancreatic Neuroendocrine Tumors in the Portal-Venous
Enhancement Phase. Abdom. Radiol. 2020, 45, 750–758. [CrossRef]

10. Abunahel, B.M.; Pontre, B.; Kumar, H.; Petrov, M.S. Pancreas Image Mining: A Systematic Review of Radiomics. Eur. Radiol. 2021,
31, 3447–3467. [CrossRef]

11. Zhong, J.; Hu, Y.; Xing, Y.; Ge, X.; Ding, D.; Zhang, H.; Yao, W. A Systematic Review of Radiomics in Pancreatitis: Applying the
Evidence Level Rating Tool for Promoting Clinical Transferability. Insights Imaging 2022, 13, 139. [CrossRef] [PubMed]

12. E, L.; Xu, Y.; Wu, Z.; Li, L.; Zhang, N.; Yang, H.; Schwartz, L.H.; Lu, L.; Zhao, B. Differentiation of Focal-Type Autoimmune
Pancreatitis From Pancreatic Ductal Adenocarcinoma Using Radiomics Based on Multiphasic Computed Tomography. J. Comput.
Assist. Tomogr. 2020, 44, 511–518. [CrossRef] [PubMed]

13. Ren, S.; Zhao, R.; Zhang, J.; Guo, K.; Gu, X.; Duan, S.; Wang, Z.; Chen, R. Diagnostic Accuracy of Unenhanced CT Texture
Analysis to Differentiate Mass-Forming Pancreatitis from Pancreatic Ductal Adenocarcinoma. Abdom. Radiol. 2020, 45, 1524–1533.
[CrossRef] [PubMed]

14. Ren, S.; Zhang, J.; Chen, J.; Cui, W.; Zhao, R.; Qiu, W.; Duan, S.; Chen, R.; Chen, X.; Wang, Z. Evaluation of Texture Analysis
for the Differential Diagnosis of Mass-Forming Pancreatitis From Pancreatic Ductal Adenocarcinoma on Contrast-Enhanced CT
Images. Front. Oncol. 2019, 9, 1171. [CrossRef] [PubMed]

15. Park, S.; Chu, L.C.; Hruban, R.H.; Vogelstein, B.; Kinzler, K.W.; Yuille, A.L.; Fouladi, D.F.; Shayesteh, S.; Ghandili, S.; Wolfgang,
C.L.; et al. Differentiating Autoimmune Pancreatitis from Pancreatic Ductal Adenocarcinoma with CT Radiomics Features. Diagn.
Interv. Imaging 2020, 101, 555–564. [CrossRef] [PubMed]

16. Ma, X.; Wang, Y.-R.; Zhuo, L.-Y.; Yin, X.-P.; Ren, J.-L.; Li, C.-Y.; Xing, L.-H.; Zheng, T.-T. Retrospective Analysis of the Value of
Enhanced CT Radiomics Analysis in the Differential Diagnosis Between Pancreatic Cancer and Chronic Pancreatitis. Int. J. Gen.
Med. 2022, 15, 233–241. [CrossRef] [PubMed]

17. Liu, Z.; Li, M.; Zuo, C.; Yang, Z.; Yang, X.; Ren, S.; Peng, Y.; Sun, G.; Shen, J.; Cheng, C.; et al. Radiomics Model of Dual-Time
2-[18F]FDG PET/CT Imaging to Distinguish between Pancreatic Ductal Adenocarcinoma and Autoimmune Pancreatitis. Eur.
Radiol. 2021, 31, 6983–6991. [CrossRef]

https://doi.org/10.1038/s41575-019-0158-2
https://www.ncbi.nlm.nih.gov/pubmed/31138897
https://doi.org/10.1016/S0140-6736(20)31310-6
https://www.ncbi.nlm.nih.gov/pubmed/32891214
https://doi.org/10.1136/gutjnl-2012-302779
https://www.ncbi.nlm.nih.gov/pubmed/23100216
https://doi.org/10.1371/journal.pone.0227492
https://www.ncbi.nlm.nih.gov/pubmed/31929591
https://doi.org/10.1148/radiol.14132187
https://www.ncbi.nlm.nih.gov/pubmed/25102296
https://doi.org/10.1007/s00330-018-5662-1
https://www.ncbi.nlm.nih.gov/pubmed/30116961
https://doi.org/10.1007/s00261-020-02759-1
https://www.ncbi.nlm.nih.gov/pubmed/32939634
https://doi.org/10.1097/MPA.0000000000001495
https://www.ncbi.nlm.nih.gov/pubmed/32168248
https://doi.org/10.1007/s00261-020-02406-9
https://doi.org/10.1007/s00330-020-07376-6
https://doi.org/10.1186/s13244-022-01279-4
https://www.ncbi.nlm.nih.gov/pubmed/35986798
https://doi.org/10.1097/RCT.0000000000001049
https://www.ncbi.nlm.nih.gov/pubmed/32697521
https://doi.org/10.1007/s00261-020-02506-6
https://www.ncbi.nlm.nih.gov/pubmed/32279101
https://doi.org/10.3389/fonc.2019.01171
https://www.ncbi.nlm.nih.gov/pubmed/31750254
https://doi.org/10.1016/j.diii.2020.03.002
https://www.ncbi.nlm.nih.gov/pubmed/32278586
https://doi.org/10.2147/IJGM.S337455
https://www.ncbi.nlm.nih.gov/pubmed/35023961
https://doi.org/10.1007/s00330-021-07778-0


Diagnostics 2024, 14, 718 12 of 12

18. Li, J.; Liu, F.; Fang, X.; Cao, K.; Meng, Y.; Zhang, H.; Yu, J.; Feng, X.; Li, Q.; Liu, Y.; et al. CT Radiomics Features in Differentiation
of Focal-Type Autoimmune Pancreatitis from Pancreatic Ductal Adenocarcinoma: A Propensity Score Analysis. Acad. Radiol.
2022, 29, 358–366. [CrossRef]

19. Chen, Y.; Chen, T.; Wu, C.; Lin, Q.; Hu, R.; Xie, C.; Zuo, H.; Wu, J.; Mu, Q.; Fu, Q.; et al. Radiomics Model of Contrast-Enhanced
Computed Tomography for Predicting the Recurrence of Acute Pancreatitis. Eur. Radiol. 2019, 29, 4408–4417. [CrossRef]

20. Iranmahboob, A.K.; Kierans, A.S.; Huang, C.; Ream, J.M.; Rosenkrantz, A.B. Preliminary Investigation of Whole-Pancreas 3D
Histogram ADC Metrics for Predicting Progression of Acute Pancreatitis. Clin. Imaging 2017, 42, 172–177. [CrossRef]

21. Lin, Q.; JI, Y.; Chen, Y.; Sun, H.; Yang, D.; Chen, A.; Chen, T.; Zhang, X.M. Radiomics Model of Contrast-enhanced MRI for Early
Prediction of Acute Pancreatitis Severity. J. Magn. Reson. Imaging 2020, 51, 397–406. [CrossRef]

22. Zhou, T.; Xie, C.; Chen, Y.; Deng, Y.; Wu, J.; Liang, R.; Yang, G.; Zhang, X. Magnetic Resonance Imaging–Based Radiomics Models
to Predict Early Extrapancreatic Necrosis in Acute Pancreatitis. Pancreas 2021, 50, 1368–1375. [CrossRef]

23. Mashayekhi, R.; Parekh, V.S.; Faghih, M.; Singh, V.K.; Jacobs, M.A.; Zaheer, A. Radiomic Features of the Pancreas on CT Imaging
Accurately Differentiate Functional Abdominal Pain, Recurrent Acute Pancreatitis, and Chronic Pancreatitis. Eur. J. Radiol. 2020,
123, 108778. [CrossRef] [PubMed]

24. Wasserthal, J.; Breit, H.-C.; Meyer, M.T.; Pradella, M.; Hinck, D.; Sauter, A.W.; Heye, T.; Boll, D.T.; Cyriac, J.; Yang, S.; et al.
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiol. Artif. Intell. 2023, 5, e230024. [CrossRef]

25. Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka,
M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30,
1323–1341. [CrossRef]

26. van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper,
S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107.
[CrossRef]

27. R Core Team R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical
Computing: Vienna, Austria, 2014.

28. R Core Team R Development Core Team. RStudio Team RStudio: Integrated Development Environment for R. RStudio; PBC: Boston,
MA, USA, 2020.

29. Ayx, I.; Tharmaseelan, H.; Hertel, A.; Nörenberg, D.; Overhoff, D.; Rotkopf, L.T.; Riffel, P.; Schoenberg, S.O.; Froelich, M.F.
Myocardial Radiomics Texture Features Associated with Increased Coronary Calcium Score-First Results of a Photon-Counting
CT. Diagnostics 2022, 12, 1663. [CrossRef] [PubMed]

30. Beyer, G.; Hoffmeister, A.; Michl, P.; Gress, T.M.; Huber, W.; Algül, H.; Neesse, A.; Meining, A.; Seufferlein, T.W.; Rosendahl, J.; et al.
S3-Leitlinie Pankreatitis—Leitlinie Der Deutschen Gesellschaft Für Gastroenterologie, Verdauungs- Und Stoffwechselkrankheiten
(DGVS)—September 2021—AWMF Registernummer 021-003. Z Gastroenterol. 2022, 60, 419–521. [CrossRef] [PubMed]

31. Tharmaseelan, H.; Froelich, M.F.; Nörenberg, D.; Overhoff, D.; Rotkopf, L.T.; Riffel, P.; Schoenberg, S.O.; Ayx, I. Influence of Local
Aortic Calcification on Periaortic Adipose Tissue Radiomics Texture Features—A Primary Analysis on PCCT. Int. J. Cardiovasc.
Imaging 2022, 38, 2459–2467. [CrossRef]

32. Parekh, V.; Jacobs, M.A. Radiomics: A New Application from Established Techniques. Expert Rev. Precis. Med. Drug Dev. 2016, 1,
207–226. [CrossRef]

33. Deng, Y.; Ming, B.; Zhou, T.; Wu, J.; Chen, Y.; Liu, P.; Zhang, J.; Zhang, S.; Chen, T.; Zhang, X.-M. Radiomics Model Based on MR
Images to Discriminate Pancreatic Ductal Adenocarcinoma and Mass-Forming Chronic Pancreatitis Lesions. Front. Oncol. 2021,
11, 620981. [CrossRef] [PubMed]

34. Hu, Y.; Liu, N.; Tang, L.; Liu, Q.; Pan, K.; Lei, L.; Huang, X. Three-Dimensional Radiomics Features of Magnetic Resonance
T2-Weighted Imaging Combined With Clinical Characteristics to Predict the Recurrence of Acute Pancreatitis. Front. Med. 2022,
9, 777368. [CrossRef] [PubMed]

35. Tang, L.; Ma, L.; Chen, Y.; Hu, Y.; Chen, X.; Huang, X.; Liu, N. Radiomics Analysis of Contrast-Enhanced T1W MRI: Predicting
the Recurrence of Acute Pancreatitis. Sci. Rep. 2023, 13, 2762. [CrossRef] [PubMed]

36. Zhao, Y.; Wei, J.; Xiao, B.; Wang, L.; Jiang, X.; Zhu, Y.; He, W. Early Prediction of Acute Pancreatitis Severity Based on Changes in
Pancreatic and Peripancreatic Computed Tomography Radiomics Nomogram. Quant. Imaging Med. Surg. 2023, 13, 1927–1936.
[CrossRef]

37. Liu, N.; Wan, Y.; Tong, Y.; He, J.; Xu, S.; Hu, X.; Luo, C.; Xu, L.; Guo, F.; Shen, B.; et al. A Clinic-Radiomics Model for Predicting the
Incidence of Persistent Organ Failure in Patients with Acute Necrotizing Pancreatitis. Gastroenterol. Res. Pract. 2023, 2023, 2831024.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.acra.2021.04.014
https://doi.org/10.1007/s00330-018-5824-1
https://doi.org/10.1016/j.clinimag.2016.12.007
https://doi.org/10.1002/jmri.26798
https://doi.org/10.1097/MPA.0000000000001935
https://doi.org/10.1016/j.ejrad.2019.108778
https://www.ncbi.nlm.nih.gov/pubmed/31846864
https://doi.org/10.1148/ryai.230024
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.3390/diagnostics12071663
https://www.ncbi.nlm.nih.gov/pubmed/35885567
https://doi.org/10.1055/a-1735-3864
https://www.ncbi.nlm.nih.gov/pubmed/35263785
https://doi.org/10.1007/s10554-022-02656-2
https://doi.org/10.1080/23808993.2016.1164013
https://doi.org/10.3389/fonc.2021.620981
https://www.ncbi.nlm.nih.gov/pubmed/33842325
https://doi.org/10.3389/fmed.2022.777368
https://www.ncbi.nlm.nih.gov/pubmed/35360712
https://doi.org/10.1038/s41598-022-13650-y
https://www.ncbi.nlm.nih.gov/pubmed/36797285
https://doi.org/10.21037/qims-22-821
https://doi.org/10.1155/2023/2831024

	Introduction 
	Materials and Methods 
	Study Population 
	Scanning Protocol 
	Automatic Segmentation, Feature Extraction and Selection and Statistical Analysis 

	Results 
	Patient Cohort 
	Cluster Analysis 
	Radiomics Feature Selection 
	Logistic Regression Model 

	Discussion 
	Conclusions 
	References

