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Highlights:
What are the main findings?
• This multicenter retrospective study, encompassing two hospital sites for training and leveraging

data from forty-seven different hospitals for testing, aimed to develop machine learning models
utilising both clinical and radiomics features (individually and in combination) extracted from
pre-treatment CT scans. The objective was to predict PFS and OS in patients with PDAC.

• Among the various models developed, the model based on the combination of clinical and CT-
derived tumour radiomics features demonstrated superior performance for OS with a C-index
of 0.72 in the testing dataset. Conversely, the model based solely on clinical features excelled in
predicting PFS, achieving a C-index of 0.70 in the testing dataset.

What is the implication of the main finding?

• The analysis further highlighted the high relevance of clinical features both for OS and PFS
outcomes in patients with PDAC.

Abstract: Purpose. This multicenter retrospective study aims to identify reliable clinical and radiomic
features to build machine learning models that predict progression-free survival (PFS) and overall
survival (OS) in pancreatic ductal adenocarcinoma (PDAC) patients. Methods. Between 2010 and
2020 pre-treatment contrast-enhanced CT scans of 287 pathology-confirmed PDAC patients from
two sites of the Hopital Universitaire de Bruxelles (HUB) and from 47 hospitals within the HUB
network were retrospectively analysed. Demographic, clinical, and survival data were also collected.
Gross tumour volume (GTV) and non-tumoral pancreas (RPV) were semi-manually segmented and
radiomics features were extracted. Patients from two HUB sites comprised the training dataset,
while those from the remaining 47 hospitals of the HUB network constituted the testing dataset.
A three-step method was used for feature selection. Based on the GradientBoostingSurvivalAnalysis
classifier, different machine learning models were trained and tested to predict OS and PFS. Model
performances were assessed using the C-index and Kaplan–Meier curves. SHAP analysis was applied
to allow for post hoc interpretability. Results. A total of 107 radiomics features were extracted from
each of the GTV and RPV. Fourteen subgroups of features were selected: clinical, GTV, RPV, clinical
& GTV, clinical & GTV & RPV, GTV-volume and RPV-volume both for OS and PFS. Subsequently,
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14 Gradient Boosting Survival Analysis models were trained and tested. In the testing dataset,
the clinical & GTV model demonstrated the highest performance for OS (C-index: 0.72) among all
other models, while for PFS, the clinical model exhibited a superior performance (C-index: 0.70).
Conclusions. An integrated approach, combining clinical and radiomics features, excels in predicting
OS, whereas clinical features demonstrate strong performance in PFS prediction.

Keywords: radiomics; computed tomography (CT); pancreas; pancreatic ductal carcinomas; survival
analyses

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies.
Its incidence continues to rise, but it maintains a low 5-years survival rate, below 12% [1].
The poor prognosis is a result of a lack of early screening biomarkers, late diagnosis, early
metastatic dissemination, and tumour resistance to systemic therapies. Surgery remains
the only treatment with curative intent but less than 20% of the patients are candidates at
the time of the diagnosis.

Differences in response to treatment and in clinical outcomes have been related to
PDAC high molecular heterogeneity [2] and to the presence of a predominant stromal
component comprising up to 90% of the total tumour volume [3]. Based on gene expressions
and stromal characteristics, several subtypes of PDAC have been identified which differ in
their clinical behaviour and response to treatment [4].

Inter-patient heterogeneity is a key problem that has led to the failure of many clinical
trials, highlighting the need for a more stratified therapeutic approach based on PDAC
taxonomy. However, pragmatic approaches to subtyping for clinical implementation and
survival prediction are lacking.

The answer may come from the emerging field of radiomics where image-derived
features and radiomics features are linked to genomic profiles and beyond. This process,
based on sophisticated statistical and machine learning approaches, may provide non-
invasively important tumour characteristics, reflecting tumour biology with a major impact
on the optimization and personalization of therapeutic strategies, on individual patients’
benefit and on overall disease survival [5]. The extraction of these quantitative radiomics
features can be correlated with different clinical outcomes, highlighting information that is
not visible to the human eye which can be obtained from different imaging methods [6,7].
Radiomics features can be extracted from conventional imaging modalities and provide
information about cancer biology; for example, tumour heterogeneity, which can be man-
ifested at different levels (phenotypic, genomic, . . .) and reflects tumour aggressiveness,
tumour grade, clinical outcomes, response to treatment and survival outcomes [7–11].

The usefulness of this new approach has been reported in several cancer types, in-
cluding PDAC, for predicting response to treatment and survival outcomes [11]. More
recent results of a radiogenomic approach for PDAC have demonstrated the possibility of
identifying features correlated with gene mutations (mainly SMAD4, which could be asso-
ciated with disease-free survival) and stromal content [12–15]. Both genetic mutations and
stromal components have been considered to be predictive of response to treatment [2,3,15].
Other studies have also demonstrated the role of radiomics in characterising PDAC and
predicting resectability, risk of recurrence and overall survival [6,11].

However, previous studies in this area have often involved small patient cohorts with
limited external validation, leading to findings that may not be generalizable. Notably, mul-
ticentric studies in this specific research domain are scarce, which restricts the dependability
of the established knowledge [16–19]. In response to these gaps, the present study aims to
identify predictive biomarkers for overall survival (OS) and progression-free survival (PFS)
in patients with PDAC, using the radiomics-based approach of pre-treatment computed
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tomography (CT) images and clinical data. Our non-invasive approach, which synergizes
medical imaging with machine learning, holds promise for improving patient management.

A key contribution and innovation of this study is its multicentric design, involving
data from a network of 47 different hospitals, enabling a comprehensive evaluation of the
proposed models’ effectiveness in a clinical routine. This large-scale, real-world scenario
assessment underscores the practical utility of our methodology across diverse clinical
settings. Moreover, the study delves into the significance of both clinical and radiomic
features in the predictive models, providing insights into their utility in personalised care
strategies based on survival outcomes prediction.

The structure of this article is organised to provide a comprehensive exploration of
the study. Following the “Introduction”, which sets the stage by introducing the topic and
outlining the rationale of our study, the manuscript is divided into several key sections.
The “Materials and Methods” section elaborates on the methodology employed, detailing
the patient selection process, the clinical data included in the study and the radiomic
procedure—from image selection to the creation and testing of models—as well as the
statistical analyses undertaken. The “Results” section presents the findings, focusing on
the performance of the models, model explainability, and the survival curves of identified
groups with varying risk levels. Finally, the “Discussion” section reflects on these results,
comparing them with relevant literature, and addresses the limitations of the current study.

2. Material and Methods
2.1. Study Population

This retrospective study has been approved by the ethical review boards of the Hopital
Universitaire de Bruxelles (HUB), respectively, of the Hopital Erasme (HE) site and of the
Institut Jules Bordet (IJB) site and patient written consent was waived.

Between January 2010 and December 2020, patients with histologically proven PDAC
were identified from HE (dataset 1), from IJB (dataset 2) and from the remaining hospital
network connected to HUB (dataset 3—images stored in HUB archive system).

Inclusion criteria were: histologically proven PDAC (based on endoscopic-driven
biopsy), patients older than 18 years, pre-treatment contrast-enhanced CT at the portal
phase with a slice thickness greater than 1 mm and with clearly visible PDAC lesion.
Exclusion criteria were: patients with no pretreatment CT, or with a pretreatment CT
without portal phase or with biliary stent at the moment of CT scanner and patients with
final diagnosis other than PDAC.

For each included patient the following clinical, histological and radiological data,
representing the clinical features, were collected: age, gender, body mass index (BMI),
alcohol consumption, tobacco consumption, Ca19.9, treatment type, treatment strategy,
histological grade, resection margin, pancreatic tumour location, presence/absence of
metastatic disease, disease subgrouping based on NCCN guidelines (version 2.2022 [20,21]).

OS was calculated in months from the date of diagnosis to date of death and PFS was
calculated in months from the date of treatment initiation to the date of first progression.
For PFS and OS, patients were considered to be censored if they were lost during follow-up.
Additional details can be found in the Supplementary material “Clinical, radiological and
histological data”. If clinical features were missing, data were filled using the MissForest
package version 0.2.0 (https://pypi.org/project/MissForest/ (accessed on 13 May 2023)).

2.2. Patients Stratification

The exams in dataset 1 and dataset 2 were used as the training and validation dataset,
specifically for feature selection and model evaluation through ten-fold cross-validation.
Exams from dataset 3, comprising data from 47 different hospitals with varying CT acquisi-
tion protocols, were used as the testing dataset, which remained separate throughout the
feature selection and model training phases. This stratification was used for both outcomes,
OS and PFS.

https://pypi.org/project/MissForest/
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2.3. Data Analysis

All patients underwent abdominal pretreatment contrast-enhanced CT. All the DICOM
data were stored in the radiological department server of IJB, in accordance with the
approbation of the ethical review boards. The portal phase was taken into account for
this study.

Subsequently, radiomics analysis was applied to the acquired images. This process
involved: segmentation of the regions of interest, extracting quantitative features from
the CT images (which capture the texture, shape, and intensity of the tumour region),
feature selection to identify the most relevant features for our predictive models. These
radiomic features were then used in conjunction with the clinical data to develop the
predictive models for PFS and OS in PDAC patients. Further details are provided in the
following paragraphs.

2.3.1. Segmentation and Features Extraction

Contrast-enhanced CT images were anonymized, and portal imaging sequences were
sent to an archive connected with MIM 7.1.5™ (MIM Software Inc., Cleveland, OH, USA).

The CT images had different resolutions; therefore, all the exams were resampled
to the same resolution, using the SimpleITK sitkBSpline interpolator for exams and the
SimpleITK sitkNearestNeighbor interpolator for segmentations.

A radiologist with 12 years’ experience in abdominal imaging (RC, Reader 1) delineated
and segmented semi-manually each tumour using MIM 7.1.5™ to obtain gross tumour volume
(GTV1) (Figure 1). To assess the intra-rater reliability of features, Reader 1 performed the tumour
segmentations a second time (GTV2) in 45 randomly chosen patients after a few months. To
assess the inter-rater reliability of features for GTV, a first-year radiologist resident (AM, Reader
2) delineated and segmented the pancreatic tumours from the same 45 randomly chosen patients
(GTV3). Intra-rater and inter-observer reliability evaluation of features was obtained by using
the IntraClass Correlation two-way mixed effect single measurement (ICC2). Only features with
ICC2 greater than 0.75 were selected [22,23].
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An automated segmentation tool developed at Maastricht University was used to de-
lineate and automatically segment the non-tumoral pancreas (RPV) [24]; subsequently, the
RPV segmentations were manually verified and modified, using ITK-SNAP [25] (Version
3.8.0, http://www.itksnap.org/ (accessed on 13 May 2023)) (an example is provided in
Supplementary Materials Figure S1) by the two readers in consensus.

Radiomics features were extracted from GTV1, GTV2, GTV3 and RPV segmenta-
tions with PyRadiomics [26]. For each segmentation, a total of 107 distinct features
were extracted, encompassing seven primary groups: shape (14 features), first order
(18 features), GLCM (24 features), GLDM (14 features), GLRLM (16 features), GLSZM
(16 features) and NGTDM (5 features). Definitions of extracted features are described at
https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 13 May 2023).
To assure better reproducibility, the intensity discretisation bin width was set to 25 [27].

2.3.2. Feature Selection

Clinical features and features obtained from segmentations (GTV1, RPV) were used
individually and in combination and the following feature subsets were obtained: clini-
cal, GTV1, RPV, clinical&GTV1, clinical&GTV1&RPV, for both OS and PFS, resulting in
10 feature groups.

Initially, the features with the highest reliability based on the aforementioned ICC2
cutoff were selected (this step was applied only to GTV1 features).

Subsequently, for each group, highly correlated and redundant features were elimi-
nated by applying a Spearman correlation coefficient threshold of 0.80.

Then, a univariate analysis was conducted to identify the most significant features
that exhibit the highest C-index within Cox’s Proportional Hazards [28,29].

Lastly, for every group and using the previous assessment of the single features’
importance, the features were progressively combined to determine the most optimal
combination, employing a Cox Proportional Hazards model.

Further details regarding the feature selection process are described in the GitHub
repository: https://github.com/roberto-casale/RadPanc-clinical-radiomics-based-models
(accessed on 13 January 2024).

In addition, as distinct sets, we used the volume measure for GTV1 and RPV, both for
OS and PFS, resulting in a total of 14 sets of features (Figure 2).
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It is worth mentioning that these steps were computed only on the training–validation
dataset (dataset 1 and dataset 2).

2.4. Model Building and Evaluation

Using the GradientBoostingSurvivalAnalysis classifier (scikit-survival version
0.19.0.post1) [28], ten-fold cross-validation was performed on the training–validation
dataset to tune the hyperparameter and for evaluation. Fourteen different models were
trained, in particular they were based on each set of features, both for OS and PFS and
tested on the testing dataset.

http://www.itksnap.org/
https://pyradiomics.readthedocs.io/en/latest/features.html
https://github.com/roberto-casale/RadPanc-clinical-radiomics-based-models
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2.5. Model Interpretability

To explain the model’s prediction, we used SHapley Additive exPlanations (SHAP),
a post hoc interpretability technique that assigns a SHAP value to each feature [30,31]. The
SHAP value of each feature quantifies its impact on the model’s output. Positive SHAP
values show that the presence of a feature pushes the prediction higher than the baseline
and negative values suggest the opposite. The magnitude of these values demonstrates the
strength of the feature’s influence on the model’s output. To provide a more comprehensive
understanding, we used SHAP global summary plots. A SHAP summary plot ranks the
features based on their average absolute SHAP values across all predictions and it helps
to visualise their overall importance. Hence, SHAP helps to identify the most influential
features and their trends in our best models for predicting OS and PFS.

2.6. Statistical Analysis

Chi-squared and Mann–Whitney were used to compare the clinical features between
the training–validation and testing datasets. To analyse the various models, including
those based solely on volume, we employed the C-index. This index generalises the area
under the receiver operator characteristic curve (AUC) by assessing how well the model
can separate the survival curves [32].

A two-sided permutation test was used to assess the statistical significance of the
C-index for survival prediction across the different models in the testing dataset.

For survival prediction, the top-performing models that predicted OS and PFS were
analysed and used to obtain the risk score through the GradientBoostingSurvivalAnalysis
model. For the classification of high and low-risk groups, we used the median risk score
from the training–validation dataset as a threshold [33]. Specifically, patients in the test
set with risk scores above this median were classified as high risk, while those with scores
below the median were categorised as low risk.

Subsequently, survival curves were generated using the Kaplan–Meier method to
showcase the survival probabilities over time for these two groups. To assess the statistical
difference between the low-risk group curve and high-risk group curve, in the testing
dataset, the two-log-rank test was used.

The Spearman correlation coefficient was used to calculate the inter-correlation among
the selected features and with volume.

All the above mentioned parts of the pipeline were computed using Python 3.8;
the features were standardised using sklearn.preprocessing.StandardScaler (scikit-learn
version 1.1.2) [34].

3. Results
3.1. Clinical Data and Patient Stratification

The total patient population from the three datasets was 1040. In total, 753/1040
(72.4%) patients were excluded (Figure 3). The final study population consisted of 287/
1040 patients (27.6%). The median OS was 9 months (range 0 to 63) and the median PFS
was 3 months (range 0 to 35). Of the patients, 37/287 (12.9%) were censored for OS and
77/287 (26.8%) were censored for PFS because of a lack of follow-up.

The study population was categorised into a training–validation group (only pa-
tients from dataset 1 and dataset 2) and a testing group (only patients from dataset 3).
The clinical data from the training–validation datasets and test datasets are presented in
Table 1; additional details regarding ordinal encoding for clinical data can be found in the
Supplementary Material “Ordinal encoding for clinical data”.
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Table 1. Demographic characteristics of the final study population according to the training—
validation group and the testing group. Median and range are reported for age, BMI, Ca19.9 and OS.
Data for categorical value are presented as: number of observations. PY: pack-year. For treatment
type, we refer to the initial treatment approach.

Datasets 1 and 2 Dataset 3 p-Value

Number of patients

Total 173 (60.3%) 114 (39.7%)

Age (years) 66 (34–89) 66.5 (38–89) 0.65

Gender 0.77

Men 85 (49.1%) 54 (47.4%)

Women 88 (50.9%) 60 (52.6%)

BMI (kg/m2) 24.2 (12.84–36) 24.16 (16.76–39.06) 0.72

Tobacco history 0.62

No smoking 79 (45.7%) 57 (50.0%)

<20 cigarette/day or <15 PY 34 (19.7%) 21 (18.4%)

>20 cigarette/day or >15 PY 27 (15.6%) 12 (10.5%)

Stopped 20 (11.6%) 11 (9.6%)

Alcohol consumption 0.76

No consumption 70 (40.5%) 42 (36.8%)

<1 unit/day 33 (19.1%) 25 (21.9%)

1–2 unit/day 16 (9.2%) 14 (12.3%)

>3 unit/day 26 (15.0%) 14 (12.3%)

Old consumption 16 (9.2%) 8 (7.0%)

Ca19.9 (kU/L) 1100 (0.6–243,000) 580 (0.6–357,437) 0.163

Localisation of the lesions 0.04

Head 77 (44.5%) 68 (59.6%)

Body 57 (33.0%) 26 (22.8%)

Tail 39 (22.5%) 20 (17.5%)

Subgroup 0.01

Resectable 13 (7.5%) 16 (14.0%)

Borderline Resectable 30 (17.3%) 31 (27.2%)

Unresectable 23 (13.3%) 6 (5.3%)

Metastatic 107 (61.8%) 61 (53.5%)

R_margins 0.02

No surgery 144 (83.2%) 79 (69.3%)

Open-closed without resection 7 (4.0%) 4 (3.5%)

Resection margin R0 10 (5.8%) 16 (14.0%)

Resection margin R1-R2 12 (6.9%) 15 (13.2%)

Histological grade 0.35

Well differentiated 11 (6.4%) 7 (6.1%)

Moderately differentiated 24 (13.9%) 30 (26.3%)

Poorly differentiated 31 (17.9%) 25 (21.9%)
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Table 1. Cont.

Datasets 1 and 2 Dataset 3 p-Value

Treatment type 0.24

FOLFIRINOX 57 (33.0%) 46 (40.4%)

Gemcitabine + Abraxane 85 (49.1%) 48 (42.1%)

Cisplatin + 5-Fluorouracil 4 (2.3%) 4 (3.5%)

Gemcitabine + Cisplatin 5 (2.9%) 0 (0.0%)

No treatment 22 (12.7%) 16 (14.0%)

Treatment strategy 0.01

Only surgery 2 (1.2%) 8 (7.0%)

Surgery + Adjuvant 10 (5.8%) 7 (6.1%)

Neoadjuvant 28 (16.2%) 29 (25.4%)

Only palliative 133 (77.0%) 70 (61.4%)

OS (months) 9 (0–72) 10 (0–123) 0.634

PFS (months) 3 (0–28) 3 (0–123) 0.496

3.2. Image Acquisition and Segmentation

CT exams were obtained from 24 different scanners, from 49 different centres (more
details in Supplementary Table S7); CTscanners included 16-slice, 64-slice and 128-slice
scanners. Slice thicknesses ranged from 1 to 5 mm; the median value of the resolution
was 0.73 × 0.73 × 1.5 mm3 in the whole dataset and it was 0.72 × 0.72 × 1.5 mm3 in the
training–validation dataset.

Before feature extraction, all the data were resampled to a resolution of
0.72 × 0.72 × 1 mm3.

3.3. Features Selection

A total of 107 features were extracted separately from GTV1, GTV2, GTV3 and RPV.
There were no missing radiomics feature values after feature extraction.

For the GTV1 segmentations, the median volume was 11.7 cm3 (range 0.8–225.4 cm3);
for the RPV segmentations, the median volume was 65.2 cm3 (range 8.3–151.0 cm3).

After assessing the intra-rater and inter-observer reliability, 63/107 features were
selected for GTV1 (more details in Supplementary Materials “Assessment of feature re-
peatability”). The evaluation and removal of highly correlated features is shown in
Supplementary Materials “Independent features”. Finally, after the univariate analysis, us-
ing a Cox proportional hazards model, and the search for the best combination, 10 different
sets of features were obtained for the following subsets: clinical, GTV1, RPV, clinical&GTV1
and clinical&GTV1&RPV, for both OS and PFS (Tables 2 and 3).

The intercorrelation among the selected features, including volumes, was assessed in
the testing dataset (Supplementary Materials Figure S2 and Table S6).

3.4. Model Performances

Using the GradientBoostingSurvivalAnalysis classifier (setting parameters are re-
ported in Supplementary Materials), fourteen different models were built (seven for
predicting OS and seven for predicting PFS). A C-index was computed for each model
trained on the training–validation dataset using ten-fold cross-validation and on the testing
dataset using models trained on the training–validation dataset (results are presented in
Tables 4 and 5 and in Supplementary Materials Figure S3).
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Table 2. Selected Features for predicting models (OS).

Predicting Models for OS

Clinical GTV1 RPV Clinical&GTV1 Clinical&GTV1&RPV

Subgroup original_firstorder_
90Percentile_GTV

original_glcm_Cluster
Shade_RPV Subgroup Subgroup

CA19 original_firstorder_
Skewness_RPV CA19 CA19

R_Margins original_shape_
Sphericity_RPV R_Margins R_Margins

Grading original_glcm_Inverse
Variance_RPV Grading Grading

Age original_shape_
Flatness_RPV Age Age

original_glcm_
Contrast_RPV

original_firstorder_
90Percentile_GTV

original_glcm_Cluster
Shade_RPV

original_shape_Least
AxisLength_RPV

original_firstorder_90
Percentile_GTV

original_firstorder_
Skewness_RPV

Table 3. Feature selected for predicting models (PFS).

Predicting Models for PFS

Clinical GTV1 RPV Clinical&GTV1 Clinical&GTV1&RPV

Subgroup original_glcm_
Contrast_GTV

original_glcm_
Contrast_RPV Subgroup Subgroup

CA19 original_glcm_
Correlation_RPV CA19 CA19

R_Margins R_Margins original_glcm_
Correlation_RPV

Localization original_glcm_
Contrast_GTV R_Margins

Age original_firstorder_
90Percentile_GTV

Alcohol_quant original_glcm_
Correlation_GTV

Gender Localization’

Tobacco_quant original_glcm_
Idn_GTV

Grading Age

The models that relied solely on volume as a predictive factor exhibited poor perfor-
mances (Supplementary Materials Figure S4).

The results of the univariate analysis for each individual clinical and radiomic feature
used in the models are presented in the Supplementary Materials “Univariate analysis”.

The results pertaining to the c-index values for the prediction of OS and PFS, using the
best-performing models within distinct patient subgroups undergoing different types of
treatment, are available in the Supplementary Materials “C-Indexes across different types
of treatment”.
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Table 4. The C-index results for the training–validation and testing datasets for OS (* indicates
a statistically significant difference between the proposed model and the clinical model).

Models Training–Validation Set Testing Set p-Value

CLINICAL 0.71 ± 0.07 0.7 -

GTV1 0.55 ± 0.05 0.63 0.156

RPV 0.62 ± 0.06 0.56 0.001 *

CLINICAL&GTV1 0.72 ± 0.08 0.72 0.212

CLINICAL&GTV1&RPV 0.71 ± 0.08 0.71 0.817

GTV1 volume 0.5 ± 0.08 0.58 0.005 *

RPV volume 0.5 ± 0.1 0.44 0.0002 *

Table 5. The C-index results for the training–validation and testing datasets for PFS (* indicates
a statistically significant difference between the proposed model and the clinical model).

Models Training–Validation Set Testing Set p-Value

CLINICAL 0.67 ± 0.08 0.7 -
GTV1 0.62 ± 0.08 0.51 0.004 *
RPV 0.55 ± 0.09 0.5 0.002 *
CLINICAL&GTV1 0.67 ± 0.11 0.66 0.657
CLINICAL&GTV1&RPV 0.63 ± 0.06 0.67 0.388
GTV1 volume 0.52 ± 0.08 0.51 0.001 *
RPV volume 0.48 ± 0.06 0.54 0.003 *

3.5. Explainability of the Models

In Figures 4 and 5, the colour coding is used to represent the values of the features for
the best-performing models. Specifically, a red colour indicates high feature values, while
a blue colour signifies low feature values. According to the C-index, the Clinical&GTV1
model was the best model for OS prediction; for the subgroups CA19, R_Margins, Age and
Grading, higher feature values were found to be positively correlated with a higher risk
score, indicating a poorer prognosis (Figure 4). Conversely, first_order_90Percentile (from
GTV1) exhibited an inverse relationship, with lower values being associated with a higher
risk score. It is worth noting the highest value for R_Margins meant that patients did not
undergo surgery.
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According to the C-index, the clinical model was the best model for PFS prediction;
the SHAP summary plot (Figure 5) showed that the subgroups R_Margins, Tobacco, Local-
ization, CA19 and Grading demonstrated higher feature values related to higher risk scores
(the highest value for Localisation meant tumours located at the tail); while age and alcohol
consumption highlighted that the lowest value was associated with a higher risk score.
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3.6. Survival Prediction

For OS and PFS prediction, we partitioned the testing dataset into two risk groups.
Figures 6 and 7 illustrate Kaplan–Meier survival plots and counts indicating the respective
quantities of patients who were at risk, censored and observed at various time points in the
survival plots. According to the two log-rank tests, the high-risk group exhibited significantly
inferior survival compared to the low-risk group (p < 0.005) for both PFS and OS.
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4. Discussion

In this study, a comparative evaluation was performed on various models that inte-
grated either or both clinical and radiomics features extracted from pretreatment CT scans
to predict OS and PFS. Our findings indicate that the combination of clinical and GTV1
radiomics features yielded the best predictive model for OS, achieving a C-index of 0.72 in
the testing dataset. Conversely, for PFS prediction, the best model was obtained using only
clinical features, with a C-index of 0.70 for the testing dataset. The efficacy of the alternative
models was relatively inferior in comparison.

Examining the statistical comparison among the different models, it is evident that
models relying solely on clinical features showcase excellent performance in predicting
both OS and PFS. While the Clinical&GTV1 model slightly surpasses the Clinical model
in terms of C-index for OS, the difference between the two models lacks statistical signifi-
cance (p-value = 0.212; Supplementary Materials Figure S5). The analysis underscores the
robustness of clinical-based models in prognostication for OS and PFS.

From another perspective, in the absence of clinical data, the radiomic model based
solely on GTV1 can be a viable alternative for predicting OS, as no statistically signifi-
cant difference was observed between the Clinical and GTV1 models (p-value = 0.156;
Supplementary Materials Figure S6). Regarding PFS, however, the Clinical model demon-
strates a statistically superior C-index compared to the other models based solely on
radiomic features.

Examining the Kaplan–Meier curves, the risk score derived from the top-performing
models can be utilised to categorise patients into high-risk and low-risk categories for both
OS (Figure 6) and PFS (Figure 7).
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Our findings are consistent with the recent literature. For predicting survival time
after the surgical resection, Park et al. [35] reported a C-index of 0.74 for their clinical and
radiomics model; differently from our results, they demonstrated a slight increase in the
C-index when adding RPV features to the clinical + GTV model. Cheng et al. [16] observed
that CT texture analysis was associated with PFS and OS; by combining texture features and
tumour size, they achieved an AUC of 0.756 for predicting OS. In contrast to our findings,
CA19.9 levels were not found to be correlated with either OS or PFS. This discrepancy
in the importance of CA19.9 might be attributed to the relatively small dataset, which
consisted exclusively of 41 patients with unresectable PDAC. Separate from our findings,
both previous studies [16,35] did not investigate the inter- or intra-observer reliability of
segmentations. In a study by Yang et al. [36], a radiomics signature was proposed to predict
early death (within one year) in patients with advanced PDAC exhibiting stable disease.
The radiomics signature achieved an AUC of 0.84 in the internal testing set and 0.87 in the
external testing set. However, their inclusion criteria focused on pancreatic tumours with
a size greater than or equal to 20 mm and patients with stable disease after chemotherapy.
Healy et al. [37] identified a pre-operative clinical–radiomic model for predicting OS and
disease-free survival (DFS) in resectable PDAC patients. In the testing dataset, the model
based solely on radiomic features achieved superior results for both OS (C-index of 0.564)
and DFS (C-index of 0.573) compared to clinical and AJCC TNM models. In contrast to our
findings, the radiomics model outperformed the clinical models. This disparity may be
attributed to the exclusion of several clinical features in their models, such as R_margins,
alcohol and tobacco consumption. Furthermore, their dataset exclusively included patients
who met the criteria for a resectable PDAC.

Regarding the explainability of radiomics features, firstorder_90Percentile (from GTV1)
was the unique radiomics features, selected in the OS Clinical&GTV1 model; a lower value
showed a higher risk score, meaning that tumours with lower attenuation were associated
with a poorer prognosis. This observation aligns with several studies [37,38], indicating
that tumours exhibiting reduced enhancement on CT imaging, indicative of decreased
vascularity, are associated with poorer OS. Lower density could be related to regions of
tissue death due to venous invasion or hypoxia necrosis, both patterns of a more aggressive
tumour behaviour [39–42].

In relation to the explainability of other features in the OS Clinical&GTV1 model, the
SHAP analysis proved that high values of CA19, Subgroup, Age, R_Margins and Grading
are associated with a higher risk score; it is to be noted that, according to our feature map-
ping, the highest value for R_Margins represented patients that did not undergo surgery.

With regard to PFS prediction, the SHAP analysis showed a similar trend for Subgroup,
CA19, R_Margins and Localization. Investigating the last mentioned feature, the highest
value for Localisation meant tumours located at the tail; there are several studies showing
different impacts based on the localization of the tumours, which also have contradictory
results. Some articles [43–45] did not discover a difference in mortality among tumours
localised in the head and body/tail; however, other studies [46–48] demonstrated that tail
or body/tail localisation had a worse prognosis. Moreover, for PFS we observed a trend
indicating higher alcohol consumption may lead to a lower risk; as indicated by published
research, several studies have presented conflicting outcomes regarding the prognostic
significance of alcohol in patients diagnosed with PDAC [49–53].

To summarise, the SHAP analysis reveals and emphasises that, in predicting survival
outcomes, clinical features exert a stronger influence compared to radiomics features.

There are several limitations in this study that need to be acknowledged.
The first limitation is the inclusion of data from 49 different centres, resulting in

CT exams being performed on various CT scanners with different acquisition protocols.
Unfortunately, the utilisation of ComBat for image harmonisation was not feasible due
to the unavailability of at least 20 scans per centre, as suggested in [54,55]. To mitigate
this bias, we utilised portal phases and resampled the voxel size to a consistent value for
all exams.
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The second limitation is the statistical differences observed between the training–
validation dataset and the testing dataset within patient subgroups (p-value of 0.01) and
R_margins (p-value of 0.02). It is worth considering that the baseline CT scans performed
at the HUB IJB and HUB HE (the training–validation datasets) included cases spanning the
entire spectrum of severity, and subsequently received surgical or non-surgical treatment
options. On the other side, a most important part of exams in the testing dataset (performed
in the hospital network connected to HUB) were redirected to the HUB IJB and HUB HE
for surgical intervention (without repeating CT exam). This could explain the difference
between the two datasets.

The third limitation is the explainability of radiomics features for temporal data.
Radiomics features primarily capture static tumour characteristics, potentially limiting
their ability to reflect dynamic changes in disease progression over time. Addressing this
concern, delta–radiomics features can be utilised to elucidate the underlying biological
mechanisms. Future investigations should aim to incorporate histological and genetic
information, enhancing a more accurate representation of temporal changes and boosting
the predictive capacity of radiomics models.

In conclusion, the clinical and radiomics models presented in this study, derived
from a multicentric study and designed to predict OS and PFS in patients with PDAC,
offer a non-invasive approach with the potential to improve patient management and care.
Additionally, we utilised SHAP analysis to gain insights into the interpretability of the
model. In order to validate and further enhance the clinical applicability of our findings, it
will be mandatory to conduct prospective studies in a real clinical setting and to integrate
histological and genetic data.

5. Conclusions

Clinical and radiomics models, based on pre-treatment portal CT images, could
provide a reliable non-invasive approach for predicting OS and PFS in PDAC, offering
an improved strategy for personalised healthcare. The risk score obtained from the best
performing models can be applied to stratify patients into high-risk and low-risk groups
for both OS and PFS. SHAP analysis demonstrated the particular significance of clinical
features in this context. Furthermore, the strength of this study lies in the utilisation of
a testing dataset from 47 hospitals, enhancing the generalizability of the proposed models
to real clinical practice.
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Abbreviation
AUC Area Under the Curve
BMI Body Mass Index
CT computed tomography
GTV Gross tumour volume
HE Hopital Erasme
HUB Hopital Universitaire de Bruxelles
IJB Institut Jules Bordet
OS overall survival
PDAC Pancreatic adenocarcinoma
PFS progression-free survival
PY Pack-year
RPV Non tumoral pancreas
SHAP Shapley additive explanations
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