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Abstract: Keratoconus (KC) is the most common corneal ectasia. Optical coherence tomography
angiography (OCT-A) is a relatively new non-invasive imaging technique that allows the visualization
and quantification of retinal and choriocapillary blood vessels. The aim of this study is to assess
retinal and choriocapillary vessel density (VD) differences between KC patients and healthy controls
and to investigate correlations between VD and KC severity. Fifty-two eyes were included in this
exploratory study: twenty-six eyes from 26 KC patients and twenty-six eyes from 26 age- and gender-
matched healthy controls. All patients underwent Scheimpflug corneal topography with Pentacam,
axis lengths measurement and optical coherence tomography angiography (OCT-A). The thinnest
spot in corneal pachymetry, maximum K (Kmax) and KC severity indices from the Belin/Ambrósio
enhanced ectasia display (BAD) were also assessed. There was a distinct reduction particularly in
the retinal VD of the superficial capillary plexus (SCP). Correlation analyses showed strong and
moderate negative correlations between the VD in the macular SCP and BAD KC scores and between
the SCP VD and Kmax. There was no difference in retinal thickness between the KC and healthy
controls. With this study, further evidence for altered VD measurements by OCT-A in KC patients is
given. For the first time, we demonstrated negative correlations between BAD KC scores and retinal
blood vessel alterations. A major limitation of the study is the relatively small sample size. Since an
artefactual reduction of the quantitative OCT-A measurements due to irregular corneal topography
in KC must be assumed, it remains to be investigated whether there are also actual changes in the
retinal microcirculation in KC.

Keywords: keratoconus; Pentacam; Belin Ambrosio enhanced ectasia display; D score; optical
coherence tomography angiography; retinal vessels; choriocapillaris

1. Introduction

Keratoconus (KC) is the most common corneal ectasia, with a prevalence of 50–230 cases
per 100,000. It is an asymmetric bilateral disorder characterized by a progressive steepening
and thinning of the central cornea [1]. It affects mostly young people, and it typically
presents in the second decade of life [2]. Keratoconus can lead to impaired visual acuity,
and serious complications such as acute corneal hydrops are possible [3]. The pathogenesis
is multifactorial. Among the risk factors, which have been described, are environmental
factors like eye rubbing and atopy [4]. A positive family history in many cases suggests a
genetic component, and several genes have been identified as risk factors [5]. However, the
pathophysiology of the disease remains poorly understood. In KC, structural changes in the
cornea occur. A thinning of the corneal stroma, an interruption in the Bowman’s membrane
and the formation of iron deposits can be observed [3]. Collagen is a key structural protein
in the cornea, which plays a crucial role in maintaining its integrity. The expression of
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collagens I and IV and of other structural proteins is reduced in KC patients [6]. Similar
molecular changes happen in connective tissue diseases and a link between Ehlers–Danlos
syndrome, Marfan’s syndrome, osteogenesis imperfecta and mitral valve prolapse and KC
has been proposed, although, in general, the scientific evidence is weak and few studies
exist on this topic [7].

Different grading systems for KC are based on clinical parameters [8]. In the last
years, other gradings systems like the Amsler-Krumeich classification were introduced,
which consider, in addition to refraction and the presence of corneal scars, keratometry
values and corneal thickness [9]. The Scheimpflug-based corneal imaging such as Pentacam
(Pentacam, OCULUS GmbH, Wetzlar, Germany) is a method that analyzes both anterior
and posterior corneal elevation data and has become established for the diagnosis, grading
and follow-up of KC [10–13]. The Belin/Ambrósio enhanced ectasia display (BAD) has
been demonstrated to have a high sensitivity and is especially useful in the detection of
early and subclinical KC [14,15]. BAD criteria include the standard deviation (SD) of mean
changes in the anterior elevation (df), the SD of mean changes in the posterior elevation
(db), the SD of the mean pachymetric progression (dp), the SD of the mean thinnest point
thickness (dt), the SD of the mean thinnest point displacement (dy) and the D score, which
is calculated by a regression analysis of five determinants [16].

Detection of KC at an early stage can reduce the need for corneal transplantation [17].
It is also essential to recognize early or subclinical KC before performing refractive surgery
to avoid inducing iatrogenic ectasia [18]. In everyday clinical routine, the diagnosis and
monitoring of KC is generally based on slit lamp examination, on the determination
and observation of astigmatism and on Scheimpflug imaging. These diagnostic tools
have their limitations, so ways to improve the detection of subclinical forms of KC are
being investigated. Recently, it has been demonstrated that the analysis of Scheimpflug
imaging, in combination with clinical and demographic parameters, using machine learning
algorithms can lead to the improved detection of subclinical KC [19]. OCT imaging is
nowadays an integral part of everyday ophthalmological practice, particularly for detecting
and monitoring retinal disorders. However, the use of OCT is also increasing in corneal
diagnostics [20]. Previous studies have shown that patients with keratoconus display an
altered corneal epithelial thickness compared to healthy controls, which can be detected by
corneal OCT imaging [21,22].

Optical coherence tomography angiography (OCT-A) is a relatively new imaging
technique that provides high-resolution imaging of the retina and choriocapillaris with
a resolution in the micrometer range [23–25]. OCT-A technology has been described in
detail [23]. Briefly, a precise visualization of the blood vessels is achieved by the detection of
signal differences caused by the movement of blood cells through multiple, high-resolution
scans of a specific area of the retina [23,26,27]. In contrast to conventional dye-based
methods such as fluorescein angiography (FA) and indocyanine green angiography (ICG),
OCT-A enables non-invasive three-dimensional imaging of the retinal and choriocapillary
vasculature [28]. Thus, the retinal vascular plexuses and the choriocapillaris can be visual-
ized and quantified separately [24,29]. With OCT-A, even minor vascular alterations like
small quiescent neovascularization, that cannot be detected with conventional dye-based
methods can be visualized and monitored [30,31]. In contrast to FA and ICG, OCT-A can
be performed in case of dye intolerance, severe renal insufficiency or pregnancy [23,32].

For these reasons, OCT-A is increasingly being used in research, as well as in everyday
clinical practice. The most frequently used quantitative OCT-A parameters are the vessel
densities (VDs) in the retinal plexuses and in the choriocapillaris and the size of the foveal
avascular zone (FAZ) [26,33].

Numerous factors that influence the quantitative measurement parameters of OCT-A,
such as axial length, the presence of cardiovascular disease and diabetes mellitus and the
presence of cilioretinal vessels and age, have been described [30,34–36].

In view of the growing importance of OCT-A in research and clinical application,
it is important to detect further possible confounding factors on OCT-A measurements.



Diagnostics 2024, 14, 707 3 of 17

Moreover, the structural changes in KC and the described association with vascular disease
make it desirable to assess retinal and choriocapillary vascular changes in KC patients.
Given the importance of the detection of KC and recognition of progression at an early
stage, further precise diagnostic options for KC would be desirable. A reduction in VD
measured by OCT-A in KC has been described in previous studies, which could make
the measurement of retinal VD a potential further diagnostic tool in the detection and
monitoring of KC.

In this exploratory study, we aim to evaluate differences in the OCT-A measurements
between KC eyes and age-, gender- and axial length-matched healthy controls.

We also analyzed the correlation between retinal and choriocapillary perfusion (as
measured by quantitative OCT-A data) and the severity of KC.

2. Materials and Methods

Twenty-six eyes from 26 KC patients and twenty-six eyes from 26 healthy controls
were enrolled in this study. The study was approved by the Ethics Committee of the
University of Muenster, North Rhine Westphalia, Germany (No. 2015-402-f-S). Written
consent about the scientific use of the patient’s data was obtained from all participants. The
study adhered to the tenets of the Declaration of Helsinki. Patients with media opacities
preventing high-quality imaging, vitreoretinal disease, previous retinal or corneal surgery
(including corneal crosslinking), macular edema, glaucoma, arterial hypertension, diabetes,
or neurological disease were excluded from the study. All study participants underwent
an ophthalmic examination, including an anterior segment examination, binocular fundus
examination, corneal topography analysis (details: see below), measurement of the axial
length (IOL Master 700, Carl Zeiss Meditec AG, Jena, Germany) and OCT-A imaging
(details: see below). Myopia has been described to affect the OCT-A parameters; therefore,
patients and participants with axial lengths > 24.5 mm were excluded [37]. Only individuals
with normal corneal topographies (as defined by normal K and Kmax values, normal radii,
normal corneal thickness and corneal astigmatism ≤ 1 diopter) were included in the healthy
control group; normal values were defined based on mean values and standard deviations
from previously published data on healthy subjects [38–40].

2.1. Optical Coherence Tomography Angiography

OCT-A imaging was performed with the AngioVue™ Imaging System (RTVue XR
Avanti with AngioVue; Optovue Inc., Fremont, CA, USA). The OCT-A technology has been
described before in detail [23]. Briefly, this OCT system with a light source can perform
70,000 scans per second in the A-scan mode centered at 840 nm and with a bandwidth
of 45 nm. The axial resolution of this system is 5 µm, and the transverse resolution is
15 µm. The split-spectrum amplitude-decorrelation angiography algorithm is used to
create OCT-A data, which were created automatically and displayed and analyzed using
Revue software (version 2017.1.0.151, Optovue Inc., Fremont, CA, USA). OCT B-scans
obtained progressively at the same location are identical, except for the cell movement
within the retinal blood vessels. Thus, blood flow can be visualized by comparing multiple
OCT images of the same retinal region by calculation of pixel-by-pixel variations between
the scans. The 3 × 3 mm2 scans were used for creating OCT-A imaging of the macula, and
4.5 × 4.5 mm2 scans were used to acquire pictures of the peripapillary region with the
radial peripapillary capillaries (RPCs). Only high-quality OCT-A images were included in
this study; scans with artifacts including lines or gaps because of a weak signal strength or
motion of the participant were excluded. FAZ boundaries were automatically recognized
and marked, and FAZ sizes and FAZ acircularity indices (AI) were calculated by the
software. Before data processing and analysis, the automated segmentation and the FAZ
marking were verified by an experienced reader. OCT-A imaging of the macula was
performed using a 3 × 3 mm scan and OCT-A of the RPCs with a 4.5 × 4.5 mm scan. After
checking the automatic segmentation, the retinal thicknesses of the entire retina and of the
inner retinal layers (internal limiting membrane to the inner nuclear layer) and of the outer
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retinal layers (outer plexiform layer to the Bruch’s membrane) were extracted and analyzed.
In Figure 1, OCT-A images with the different plexuses and layers and the subregions are
displayed exemplarily.
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Figure 1. Exemplary images of the optical coherence tomography angiography (OCT-A) vessel
density (VD) measurements. Exemplary participants from the KC group (top) and the control group
(bottom). Displayed are from left to right: heat map of the VD of the superficial capillary plexus
(SCP), vessel visualization of the SCP, vessel visualization of the deep capillary plexus (DCP), the
choriocapillaris (CC) and the radial peripapillary capillaries (RPCs). The blue circles indicate the
subregions. Note the reduced VD in the SCP heat map in the KC eye compared to the healthy control.

2.2. Scheimpflug Corneal Topography

All study participants underwent Scheimpflug corneal topography with Pentacam
(Pentacam, OCULUS GmbH, Wetzlar, Germany). Scheimpflug topography was conducted
by an experienced examiner under the same conditions, and only examination results with-
out data gaps were used for the study. The Kmax and thinnest spot in corneal pachymetry
were extracted and analyzed; furthermore, the BAD measurements were calculated auto-
matically using the Pentacam software (version 1.25, OCULUS GmbH, Wetzlar, Germany).

2.3. Statistics

Data were collected in Microsoft Excel 2016. Statistical analyses and the generation
of graphs were performed using GraphPad Prism for Windows, Version 10 (GraphPad
Software, Boston, MA, USA).

Statistical advice was obtained in advance of the data analysis (Institute for Biometry
and Clinical Research, University of Muenster, Muenster, Germany).

Kolmogorov–Smirnov tests were performed in order to test for normality distribution.
Since not all data sets were normally distributed, all p-values were evaluated using Mann–
Whitney U tests for uniformity. Continuous variables are presented as medians and 25%
and 75% quartile values.

All p-values and confidence limits were intended to be exploratory rather than confir-
matory. Therefore, no adjustment for multiplicity was made. Exploratory p-values < 0.05
were considered statistically noticeable.

Correlations between two continuous variables were reported as Spearman’s correla-
tion coefficients (r) with 95% confidence intervals.

3. Results
3.1. Demographic Data and Ocular Data

Demographic data and eye-related data with an emphasis on the KC parameters of
the study groups (KC patients and healthy controls) are displayed in Table 1.
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Table 1. Demographic and ocular data.

KC (n = 26) Controls (n = 26) p

n 26 26 n.a.

gender 4/22 4/22 n.a.

age (y) 25.48 [20.48, 34.78] 26.05 [23.68, 29.83] 0.8382

axial lengths (mm) 23.81 [23.30, 24.14] 24.04 [23.54, 24.22] 0.3465

corneal astigmatism (dpt) 2.00 [1.35; 3.90] 0.8 [0.60; 0.98] <0.0001

thinnest spot corneal
pachymetry (µm) 482.00 [467.00, 505.30] 538.50 [523.30, 558.00] <0.0001

Kmax (dpt) 50.95 [47.55; 53.85] 43.60 [42.50, 44.43] <0.0001

df 4.42 [3.39; 9.44] 0.42 [−0.25; 0.86] <0.0001

db 3.29 [2.33; 7.14] −0.29 [−0.67; −0.08] <0.0001

dp 5.43 [3.79; 7.17] 0.83 [0.25; 1.13] <0.0001

dt 1.75 [1.07; 2.34] −0.07 [−0.79; 0.42] <0.0001

dy 2.72 [2.29; 3.09] 0.56 [0.35; 0.99] <0.0001

D 5.65 [3.64; 7.21] 0.99 [0.40; 1.31] <0.0001
Left: Keratoconus (KC) patients, right: healthy controls. Displayed are absolute numbers and medians with 25th
and 75th percentiles (in parentheses). corneal pachymetry: thinnest spot in corneal pachymetry measurement,
df: standard deviation (SD) of mean changes in the anterior elevation, db: SD of mean changes in the posterior
elevation, dp: SD of the mean pachymetric progression, dt: SD of the mean thinnest point thickness, dy: SD of the
mean thinnest point displacement, D: D score, dpt: diopters, Kmax: maximum keratometry, mm: millimeters, µm:
micrometers, n: number, n.a.: not applicable and y: years. Bold: p-values < 0.05.

No difference regarding axial lengths (KC group 23.81 [23.30, 24.14] mm, controls
24.04 [23.54, 24.22] years, p = 0.8382) was found between the two study groups.

Corneal parameters such as the corneal astigmatism; thinnest spot in corneal pachymetry;
Kmax; d values (df, db, dp, dt and dy) and D score were notably different between the two
groups (corneal astigmatism: KC 2.00 [1.35; 3.90] dpt, controls: 0.8 [0.60; 0.98], p < 0.0001;
corneal pachymetry: KC 482.00 [467.00, 505.30] µm, controls 538.50 [523.30, 558.00] µm,
p < 0.0001; Kmax: KC 50.95 [47.44; 53.85] dpt, controls 43.60 [42.50, 44.43] dpt, p < 0.0001;
df: KC 4.42 [3.39, 9.44], controls 0.42 [−0.25, 0.86] µm, p < 0.0001, db: KC 3.29 [2.33; 7.14],
controls −0.29 [−0.67; −0.08] µm, p < 0.0001; dp: KC 5.43 [3.79; 7.17], controls −0.83 [0.25;
1.13] µm, p < 0.0001; dt: KC 1.75 [1.07; 2.34], controls −0.07 [−0.79; 0.42] µm, p < 0.0001; dy:
KC 2.72 [2.29; 3.09], controls 0.56 [0.35; 0.99] µm, p < 0.0001; D: KC 5.65 [3.64; 7.21], controls
0.99 [0.40; 1.31] µm, p < 0.0001).

3.2. Optical Coherence Tomography Angiography Data

A noticeable reduction in the SCP of the macular whole en-face OCT-A and in the
parafoveal region of the SCP was detected (SCP whole en face: KC 44.40 [41.58; 47.13],
controls 47.40 [46.33; 48.83] µm, p = 0.0002; SCP parafovea: 46.70 [44.70; 49.28], controls
50.10 [47.95; 51.93] µm, p = 0.0010). There was a trend to the reduction in the foveal region of
the SCP (SCP fovea: 17.35 [14.00; 26.15], controls 21.75 [20.25; 25.30] µm, p = 0.0719). There
were also noticeably reduced VD in the foveal CC VD and the inside disc VD of the RPC
OCT-A (CC fovea: KC 71.97 [68.72; 74.02], controls 73.55 [72.01; 75.03], p = 0.0310, inside
disc RPC: KC 44.30 [39.55; 49.10], controls 49.90 [46.45; 52.28], p = 0.0033). No noticeable
differences were found for the other parameters.

Data from the OCT-A measurement outcome analysis is presented in Table 2. Ad-
ditionally, boxplots of the variables with statistically noticeable differences are displayed
in Figure 2.
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Table 2. Optical coherence tomography angiography measurement results.

KC (n = 26) Controls (n = 26) p

SCP (VD)

whole en face 44.40 [41.58; 47.13] 47.40 [46.33; 48.83] 0.0002

Fovea 17.35 [14.00; 26.15] 21.75 [20.25; 25.30] 0.0719

Parafoveal 46.70 [44.70; 49.28] 50.10 [47.95; 51.93] 0.0010

DCP (VD)

whole en face 50.60 [46.55; 54.25] 50.70 [48.20; 53.40] 0.5871

Fovea 36.10 [31.55; 42.53] 38.35 [34.73; 42.58] 0.3016

Parafoveal 53.35 [48.85; 55.75] 52.60 [50.20; 54.65] 0.9819

CC (VD)

whole en face 73.73 [71.41; 75.21] 73.15 [71.74; 74.70] 0.7682

Fovea 71.97 [68.72; 74.02] 73.55 [72.01; 75.03] 0.0310

Parafoveal 73.79 [71.27; 76.10] 72.67 [71.51; 74.62] 0.2245

RPC (VD)

whole en face 47.70 [46.00; 50.90] 47.65 [46.00; 50.10] 0.6359

inside disc 44.30 [39.55; 49.10] 49.90 [46.45; 52.28] 0.0033

Peripapillary 51.10 [49.35; 53.80] 50.45 [48.88; 53.15] 0.4571

CRT (µm) 264.00 [248.50; 276.30] 264.5 [254.00; 270.30] 0.7889

FAZ (mm2) 0.23 [0.14; 0.30] 0.20 [0.14; 0.25] 0.2590

AI 0.13 [0.11; 0.16] 0.12 [0.11; 0.16] 0.6388

RT: all layers (µm)

whole en face 334.80 [320,10; 339.50] 332.70 [323.20; 343.20] 0.4593

Fovea 273.60 [255.30; 288.90] 275.60 [266.60; 281.10] 0.7039

Parafoveal 343.40 [330.50; 349.20] 341.30 [332.70; 352.80] 0.9442

RT: inner layers (µm)

whole en face 172.60 [167.90; 181.00] 175.60 [170.90; 183.30] 0.9283

Fovea 89.10 [76.40; 106.90] 94.40 [91.30; 106.40] 0.7490

Parafoveal 183.50 [177.90; 191.20] 184.90 [180.70; 191.50] 0.7642

RT: outer layers (µm)

whole en face 157.10 [152.20; 162.90] 156.60 [150.90; 160.80] 0.6384

Fovea 180.30 [174.50; 189.00] 182.30 [170.80; 186.70] 0.6672

Parafoveal 157.60 [152.10; 163.40] 156.20 [149.80; 161.40] 0.7279
Left: Keratoconus (KC) patients, right: healthy controls. Displayed are absolute numbers and medians with 25th
and 75th percentiles (in parentheses). AI: acircularity index, CC: choriocapillaris, CRT: central retinal thickness,
DCP: deep retinal capillary plexus, FAZ: foveal avascular zone size, RPCs: radial peripapillary capillaries, RT:
retinal thickness, SCP: superficial retinal capillary plexus, inner retinal layers: internal limiting membrane to the
inner nuclear layer and outer retinal layers: outer plexiform layer to the Bruch’s membrane. Bold: p-values < 0.05.

3.3. Correlation Analysis

Moderate negative correlations (r ≥ 0.4) were detected for the Kmax and the whole
en-face macular SCP VD (r = −0.5836 [−0.7964; −0.2423]), as well as for the df, db, dp and
dy values and the whole en-face macular SCP VD (df: r = −0.4702 [−0.7311, −0.0894], db:
r = −0.5733 [−0.7907; −0.2276], dp: r = −0.5497 [−0.7774; −0.1946] and dy: r = −0.5734
[−0.7907; −0.2277]). A strong negative correlation (r ≥ 0.6) was found for the D score
and the whole en-face macular SCP VD (r = −0.6304 [−0.8220; −0.3107]). Strong negative
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correlations were also calculated for the Kmax, db value and D score and the foveal SCP
VD (Kmax: r = −0.6240 [−0.8185; −0.3012], db: r = −0.6448 [−0−8297; −0.3324] and D:
r = −0.6496 [−0.8322; −0.3397]) and moderate correlations for the df, dp and dy values and
the foveal SCP VD (df: r = −0.5616 [−0.7814; −0.2112], dp: r = −0.5110 [−0.7552; −0.1424]
and dy: r = −0.5103 [−0.7547; −0.1414]). Only weak correlations (r < 0.4) were detected for
the control group, except for moderate negative correlations between the db values and the
whole en-face macular SCP VD (r = −0.4064 [−0.6921; −0.0105]) and db values and the
parafoveal subregion of the SCP VD (r = −0.4435 [−0.7150; −0.0558], p = 0.0232).
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Figure 2. Visualization of the variables with a statistically noticeable difference. Displayed are the 
measurement outcomes of the vessel densities (VD) obtained by optical coherence tomography 
angiography (OCT-A). (Top left) Superficial capillary plexus (SCP) whole en face OCT-A values, 
(top right) SCP OCT-A values of the parafoveal region, (down left) foveal region OCT-A values of 
the choriocapillary VD and (bottom right) radial peripapillary plexus (RPC) OCT-A VD in the inside 
disc region. Box plots represent medians and 25th and 75th percentiles, and whiskers represent 10th 
to 90th percentiles. p-values are shown above the brackets (Mann–Whitney U tests). KC: keratoconus 
group, control: healthy controls (n = 26 for each group). 

  

Figure 2. Visualization of the variables with a statistically noticeable difference. Displayed are
the measurement outcomes of the vessel densities (VD) obtained by optical coherence tomography
angiography (OCT-A). (Top left) Superficial capillary plexus (SCP) whole en face OCT-A values,
(top right) SCP OCT-A values of the parafoveal region, (down left) foveal region OCT-A values of
the choriocapillary VD and (bottom right) radial peripapillary plexus (RPC) OCT-A VD in the inside
disc region. Box plots represent medians and 25th and 75th percentiles, and whiskers represent 10th
to 90th percentiles. p-values are shown above the brackets (Mann–Whitney U tests). KC: keratoconus
group, control: healthy controls (n = 26 for each group).

Moderate and strong correlation analysis graphs for the KC group are displayed in
Figure 3.
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3.4. Summary of the Results 

Figure 3. Correlations between whole en-face (WEF) and parafoveal vessel densities (VDs, in %) of the
superficial capillary plexus (SCP) and KC severity parameters. Linear regression curves are displayed,
and the correlation was calculated as the Spearman correlation coefficient (r) in parentheses: 95%
confidence intervals. df: standard deviation (SD) of mean changes in the anterior elevation, db: SD
of mean changes in the posterior elevation, dp: SD of the mean pachymetric progression, dt: SD of
the mean thinnest point thickness, dy: SD of the mean thinnest point displacement, D: D score, dpt:
diopters and Kmax: maximum keratometry.

3.4. Summary of the Results

In summary, there is a noticeably reduced VD, especially in the SCP but also in the
foveal region of the choriocapillary VD and in the inside disc region of the RPC in the KC
group, compared to healthy controls. KC therefore appears to have a negative influence on
the retinal VD, particularly in the macular SCP. Moderate to strong negative correlations
were found between the VD of the SCP and the BAD KC severity scores. The possible
reasons for the reduced VD depending on the KC severity and the significance of this
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finding for the use of OCT-A in science and everyday clinical practice are discussed in
detail in the following.

4. Discussion

In this study, we demonstrate that there are noticeable reductions of the VD, especially
in the SCP, in KC patients compared to the healthy controls. The VD was negatively
correlated to the Kmax and BAD parameters.

OCT-A is increasingly being used. The unique possibility of rapid and non-invasive
imaging of blood vessels and the implication of common diseases like cardiovascular
disease, diabetes mellitus and autoimmune diseases on the VD makes OCT-A a promising
new technology in diagnosing and monitoring these disorders [36,41–43]. It is therefore
important that potential confounding factors influencing OCT-A measurement results are
known and thus can be considered in the interpretation of measurement results in both
scientific applications and in daily clinical practice. Due to the negative correlation of the
VD with the severity of KC, which is demonstrated in this study, retinal VD measurements
for screening and monitoring the progression of KC could even be a possible further
application of OCT-A in the future. Using artificial intelligence (AI) to analyze and interpret
OCT-A-generated images can contribute to the enhanced detectability of pathologies and
to a more precise quantification of retinal perfusion [44]. In future studies, AI approaches
could also potentially assist in more accurately elucidating the impact of KC on OCT-A-
based vascular imaging.

Despite the possibilities of OCT-A for high-resolution and detailed visualization of
the retinal and choriocapillary vessels, there are technical limitations that are decisive for
the image quality and thus for the validity of the OCT-A parameters. The more obvious
image errors include motion artifacts, projection artifacts and segmentation errors [45]. It
has been shown that artifacts and, in particular, projection artifacts frequently occur in
OCT-A examinations in clinical use [46]. The Signal Strength Index (SSI) is an important
reference point for the image quality of the OCT-A measurement and for the validity of the
quantitative OCT-A parameters [47]. In studies where OCT-A parameters are compared,
usually only measurements with a SSI above a defined threshold are used to achieve a
certain standard of validity, as it was done in this study [35,42,43,48]. However, a high SSI
and the virtual absence of obvious image artifacts do not alone guarantee that unbiased
OCT-A measurement parameters are generated. Defocus significantly influences the OCT-
A parameters by reducing the visibility of fine capillary vessels, consequently leading to
artificially lower measured VD. Interestingly, defocusing appears to have a limited impact
on the SSI, suggesting that falsely low measured VD may occur even with acceptable SSI
values [49].

There is evidence about the impact of astigmatism on the OCT-A parameters. In a
study by Jung et al., it was shown that an induced with-the-rule astigmatism leads to a
reduced VD measurement in OCT-A, which the authors attribute to an underestimation of
the VD due to a spherical defocus [50]. Another study by Vidal-Oliver et al. demonstrated
that, in patients with mild astigmatism, an optical correction of the astigmatism led to a
significantly higher mean VD in the OCT-A measurements [51]. A more recent study by the
same work group described a significant reduction of the OCT-A VD measurements in eyes
with an astigmatism over two diopters. Interestingly, this reduction was more profound in
the SCP than in the DCP [52]. Thus, a non-adjustable irregular astigmatism, as found in
KC, seems to artefactually influence the OCT-A parameters.

The question arises as to whether there are actual changes in the retinal and chori-
ocapillary microcirculation in KC patients apart from artifact-induced reductions in VD
due to optical defocus. This possibility has been postulated and discussed in detail in
previous publications investigating the influence of KC on OCT-A measurements [53,54].
In the following, we discuss the possibility of actual blood vessel changes in KC against the
background of the current state of our knowledge.
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Although the pathophysiology of KC remains poorly understood until today, changes
in collagen structures in KC are eminent. Structural alterations of collagens play a pivotal
role in the pathogenesis of connective tissue disorders such as Marfan’s syndrome, Ehlers–
Danlos syndrome and osteogenesis imperfecta [55]. These alterations lead to compromised
connective tissue strength and abnormal vascular elasticity [56–58]. In Marfan’s syndrome,
a hereditary connective tissue disorder, there is a deficiency of normal fibrillin-1, an essential
component of microfibrils in the extracellular matrix [59]. In the context of Ehlers–Danlos
syndrome, a heterogeneous group of disorders characterized by hypermobility and skin
fragility, the collagen alterations primarily involve types I, III and V [60]. A link between
connective tissue disorders and KC has been proposed: studies have demonstrated that
a greater proportion of KC patients shows a hypermobility of joints [61,62]. In patients
with Marfan’s syndrome, corneal abnormalities like flattening and astigmatism have been
found [63]. Osteogenesis imperfecta is linked to gene mutations responsible for type
1 collagen synthesis [64]. Against the background of the high prevalence of type 1 collagen
in the cornea, several studies have investigated the correlation between osteogenesis
imperfecta and corneal conditions such as KC. Studies have found a familial clustering of
KC cases in families affected by osteogenesis imperfecta and an unusually early onset of
KC in these patients [65]. Moreover, the central corneal thickness has been demonstrated to
be significantly lower in osteogenesis imperfecta patients [66,67]. KC patients have been
demonstrated to have different biophysical characteristics of the skin compared to healthy
controls, which is interesting in the context of the frequent skin affection by connective
tissue disorders [68].

Connective tissue disorders are linked to vascular alterations. Recent OCT-A studies
have demonstrated a reduced retinal VD especially in Marfan patients with systemic
vascular disease, and a correlation between VD, FAZ sizes and cardiac function has been
proposed [69,70]. Changes in retinal vascular morphology have also been observed in
Ehlers–Danlos syndrome patients. In KC, alterations in collagen expression have been
described, and it has been hypothesized that elevated levels of matrix metalloproteinases
and inflammatory cytokines cause a degradation of collagens [71]. There is also evidence
that increased oxidative stress is a contributing factor to degradation of the extracellular
matrix in KC [72]. Moreover, collagen type I is disorganized and deformed [73]. The
extracellular matrix, containing mainly collagens and elastin, is the main constituent of
blood vessel walls [74]. It has been hypothesized that elevated levels of proinflammatory
cytokines also affect the cardiovascular system. An association between KC and mitral
valve prolapse has been assumed since the 1980s, and a recent meta-analysis, including
six studies, indeed found a significant coexisting prevalence between KC and mitral valve
prolapse [75]. Back difference elevation measured by Scheimpflug corneal tomography
was found to be significantly higher in patients with aortic aneurysm, suggesting a link
between aortic aneurysm and KC [76].

The reduced VD in keratoconus, which has been observed several times in the retinal
vessels in different studies independently of each other, could indicate possible changes in
the structure of the vessel walls. Although there have been few studies on the changes in
large vessels, the link between mitral valve prolapse and other connective tissue diseases
suggests that there is an association between KC and these diseases and that KC itself may
be a generalized connective tissue disease affecting blood vessels. These results indicate
a link between cardiovascular disease and KC, and they suggest that there are systemic
microvascular changes in KC. However, this assumption remains hypothetical. Further
studies of other microvascular systems such as the kidney or skin capillaries using, e.g.,
capillary microscopy would be desirable in order to detect whether generalized vascular
changes occur in KC.

Decreased retinal vessel densities in KC patients have been observed in previous
studies investigating KC patients with OCT-A. Wylęgała et al. found significantly reduced
vessel densities in KC patients in a recent study, which included 79 KC eyes and 47 healthy
eyes from 70 subjects. The reduction was eminent in the full 6 × 6 mm OCT-A, as well
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as in the subregions (central 1 mm, inner 3 mm without the center 1 mm, outer 6 mm
without the inner and center and total area of the ETDRS circle). Moreover, a significantly
smaller FAZ area was observed. In this study, the correlation analysis revealed only weak
or non-significant correlations between the corneal parameters and VD [53].

Another recent study by Dogan et al. included 32 eyes of 22 KC patients and 24 eyes
of 24 age- and sex-matched healthy controls. In this study, there was significantly reduced
VD of the macular SCP and DCP and of the inside disc RPC VD, but in contrast to Wylę-
gała et al., no difference in FAZ sizes was observed in the KC patients [53,54]. Moreover,
the choriocapillary flow area was significantly higher in the KC patients [54]. A further
study by Pierro et al. included 32 eyes with KC and 32 age- and axial length-matched
control eyes with mostly early-stage KC [77]. In this study, a significant reduction of the
peripapillary and the macular SCP VD was detected.

Zırtıloğlu also demonstrated reduced VD mainly in the SPC. In this study, a negative
correlation between the KC stage (as defined by the Amsler-Krumeich classification staging
system) was found [78].

It is known that the retinal VD, especially in the SCP, correlates with the retinal
thickness [79–83]. In numerous conditions like axial myopia, diabetes mellitus, glaucoma
and Alzheimer’s disease, a reduced VD has been reported, which is correlated with a
reduction in retinal thickness [84–88]. There are differing results in the literature regarding
retinal thickness in KC measured by OCT. Some studies have reported no differences in
macular retinal thicknesses between KC and healthy controls [89,90], which also applies
to the OCT-A study by Wylęgała et al., where the central macular thickness was also
assessed [53]. Other studies have shown reduced retinal thicknesses, both in terms of
macular thickness, as well as retinal nerve fiber layer thickness and ganglion cell layer
thickness [91,92]. Further studies have reported a higher retinal and macular thickness
in KC [93,94]. One study demonstrated an increased thickness of the inner nuclear layer
with a reduced thickness of the outer retinal layers [95]. Changes in the retinal thickness
in KC are often interpreted in the literature as structural changes in the posterior segment
parameters as an expression of retinal plasticity [93,96]. In this study, we observed no
difference in the average retinal thickness across the entire 3 × 3 mm OCT-A scan, as well
as in the subregions (foveal and parafoveal). This applies to both the overall thickness
and the separately analyzed thickness of the inner retina and the outer retina. This could
be interpreted as an indication that a defocus-related optical error due to uncorrectable
irregular astigmatism is the cause of the reduced VD in the SCP rather than actual retinal
vascular changes.

It is noticeable that the reduction in VD occurs primarily in the SCP and not in
the whole en-face RPC or the whole en-face CC. The reasons for this are speculative. It
could be hypothesized that the VD of the RPC and the CC is less validly measurable and
therefore provides less conclusive results. However, previous studies have shown that the
reproducibility of the RPC and CC VD is good [97–101]. If this is the case, a pure defocus
and a purely artificial reduction of the VD due to uncorrected irregular astigmatism would
not be the only sufficient explanation for the reduced VD in the SCP, as a reduction of all
retinal vascular plexuses, the CC VD and the RPC VD would then have to be assumed.
Further research is needed to answer the question of the reasons for the reduced VD mainly
of the SCP in KC patients. A possible approach for further studies would be to conduct
VD measurements in KC patients wearing contact lenses that compensate for the irregular
astigmatic refractive errors. This was not possible in this study, as the patients had to
adhere to contact lens cessation for the validity of the Scheimpflug measurements.

In summary, there is a potential association between keratoconus (KC) and vascular
alterations. However, due to the confounding influence of defocus, caused by irregular
and not fully correctable astigmatism in KC, the described OCT-A changes do not provide
definite information about a genuine VD reduction and alterations in the retinal perfusion
in KC.
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In our study, we found a noticeable negative correlation between the whole en-face
and parafoveal VD in the SCP and main KC severity factors (Kmax and BAD parameters).
This suggests a relationship between the severity of KC and the reduced VD in the SCP.

The reduced retinal VD is a result that has been found by previous OCT-A studies
on KC patients by Wylęgała et al., Dogan et al., Pierro et al. and Zırtıloğlu et al., as
well [53,54,77,78]. However, the results regarding the VD in the DCP, the CC VD and the
FAZ size are not consistent between our study and the two previous OCT-A studies on
KC. In contrast to our results, Wylęgała et al. reported a significantly reduced FAZ size in
KC [53], Dogan et al. demonstrated a significant reduction in DCP VD and an increased
VD in the whole en-face CC VD [54] and Zırtıloğlu et al. also showed reduced VD in the
whole DCP and the whole RPC OCT-A VD measurements [78]. These differences may
be due to the following reasons: First, Wylęgała et al. used a different OCT device and
different software to obtain the OCT-A images (Zeiss Cirrus 500, Carl Zeiss Meditec AG,
Jena, Germany and Angioplex software, version 11) [53]. It is known that the results of
the different systems are only comparable with each other to a limited extent. Even in
young, healthy subjects, there is little agreement in the measurements among the different
devices, and thus, their results are not interchangeable [102]. This applies to VD, as well as
to FAZ measurements [103,104]. Second, even though the results from different studies are
incongruent, some studies reported a higher interpersonal variation of VD measurements
in the DCP than in the SCP, which would make the overall evaluability and comparability
of the DCP measurements less reliable [82,105]. Moreover, divergent results between the
SCP and DCP have been reported in OCT-A studies of various conditions [42,106,107]. It is
well known that axial myopia negatively influences OCT-A-based VD measurements [37].
The average axial length in KC eyes has been reported to be longer than in emmetropic
eyes [64], which is why a possible bias should be excluded in OCT-A studies with KC
patients using axial length measurements. However, in the studies by Wylęgała et al. and
by Zırtıloğlu et al., no axial length measurements were conducted [53,78].

Further, larger studies with KC patients and healthy controls would be desirable to
deeper analyze the incongruities between the different studies.

5. Limitations

One limitation of the study is the relatively small number of patients, which is because
patients with previous crosslinking or other media opacities such as corneal scars after
corneal hydrops were excluded, thus limiting the number of available subjects in a tertiary
medical center where the proportion of complicated KC cases was higher than in primary
care. In addition, only OCT-A images of good quality were used, and patients with axial
lengths > 24.5 mm were excluded, which further limited the number of eyes to be included.

It is likely that optical errors, such as defocus due to the irregular corneal surface and
astigmatism in KC, influenced the OCT-A measurements. As a result, it cannot be stated
whether actual vascular alterations in KC patients exist, even though this has been assumed
in earlier studies. The anticipated difference in refractive errors between the KC group and
the healthy subjects represents another limitation of the study.

6. Conclusions

In summary, our results demonstrate that retinal VD measured by OCT-A is noticeably
reduced in KC patients. We found a negative correlation between important parameters for
the grading of KC severity and the VD.

As defocus caused by not correctable astigmatism significantly impacts the validity
of OCT-A measurements and leads to artefactually reduced VD measurements, no clear
conclusion can be drawn regarding actual changes in retinal microcirculation in KC. More
scientific evidence regarding the systemic implications of keratoconus, particularly on the
vascular system and especially on the microcirculation, would be desirable in order to
better understand the connections between KC and vascular disease.
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Considering the growing importance of OCT-A and the frequency of KC, it is important
to identify KC as an influencing factor on OCT-A based measurements and to be able to
take it into account accordingly, for example, in the interpretation of VD measurements or
as an exclusion criterion for healthy control groups in comparative studies.
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