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Abstract: Healthcare-associated infections (HAIs) are the most common adverse events in healthcare
and constitute a major global public health concern. Surveillance represents the foundation for the
effective prevention and control of HAIs, yet conventional surveillance is costly and labor intensive.
Artificial intelligence (AI) and machine learning (ML) have the potential to support the development
of HAI surveillance algorithms for the understanding of HAI risk factors, the improvement of patient
risk stratification as well as the prediction and timely detection and prevention of infections. AI-
supported systems have so far been explored for clinical laboratory testing and imaging diagnosis,
antimicrobial resistance profiling, antibiotic discovery and prediction-based clinical decision support
tools in terms of HAIs. This review aims to provide a comprehensive summary of the current
literature on AI applications in the field of HAIs and discuss the future potentials of this emerging
technology in infection practice. Following the PRISMA guidelines, this study examined the articles
in databases including PubMed and Scopus until November 2023, which were screened based on the
inclusion and exclusion criteria, resulting in 162 included articles. By elucidating the advancements
in the field, we aim to highlight the potential applications of AI in the field, report related issues and
shortcomings and discuss the future directions.

Keywords: artificial intelligence; hospital-acquired infections; diagnosis; forecasting; prediction;
antimicrobial resistance

1. Introduction

With the major challenges healthcare systems have encountered worldwide with the
rapid increase in the number of patients and excessive workload in diagnostic laboratories
during the coronavirus disease (COVID-19) pandemic, the implementation of automation
and machine learning (ML) has become more and more important in the field of infectious
diseases. In the clinical context, the interpretation of laboratory results by highly trained
microbiologists and/or laboratory personnel is critical, as these specimens provide impor-
tant clinical and diagnostic information which can direct therapy [1]. Therefore, in the
shortage of medical laboratory personnel, the use of artificial intelligence (AI) applications
for the automation of experimentally demanding and visually interpretative tasks offer
an advantage for the workflow in a clinical microbiology laboratory [2]. AI has been also
thoroughly investigated in terms of its application to the prediction and prevention on
infectious diseases in the healthcare settings. Hospital-acquired infections (HAIs), defined
as infections occurring during the process of care, are a global public health concern and
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represent the most frequent adverse events in healthcare with an estimated over 2.6 million
new cases of HAIs happening every year in Europe [3]. Considering the alarming problem
of antimicrobial resistance worldwide and the high incidence of HAIs with high mortality
and morbidity rates, forecasting infectious diseases in hospitals and intensive care units
(ICUs) by exploiting AI applications has become fundamental. While the surveillance of
HAIs represents the foundation for organizing, implementing and maintaining effective
infection prevention and control programs, AI has become a valuable tool applicable in this
context within healthcare facilities yet faces some challenges [4] (Table 1). The overarching
aim of this review is to give a comprehensive overview of AI applications in the field of
microbiology and the latest developments in the area of diagnosis and prevention of HAIs.

Table 1. Application of artificial intelligence to infectious disease research and management, ap-
proaches and challenges.

Application of AI
in Infectious Diseases Approaches Challenges

Laboratory and imaging
diagnosis

Digital culture plate reading Pathogen
detection and identification via

microscopy images
Analysis of RT-PCR data

Analysis of MALDI-TOF MS,
SERS spectra

Clinical radiography imaging analysis
Feature/factor analysis of clinical

laboratory data
Data standardization

among laboratories and
centers

Availability of big data
Data quality and

management
Risk of bias
Legal issues

Antimicrobial resistance
analysis

Detection of MDR pathogens
Antimicrobial susceptibility analysis
Analysis of genomic, sequencing and

spectral data

Antimicrobial discovery
Molecule screening

Chemical library mining
Design of antimicrobial peptides

Microbiome analysis
Mining of metagenomic,
metatranscriptomic and

metabolomic data

Clinical decision support

Infection prediction and risk
stratification

Tracking infection epidemiology
Tracking human behavior

and adherence

2. Materials and Methods
2.1. Search Strategy

In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [5], a systematic search was conducted using the databases
PubMed and Scopus to find potentially eligible articles. Search strategies focused on two
main concepts of the use of AI (using “machine learning”, “deep learning”, “artificial intel-
ligence”, “automated”) in (1) diagnostic microbiology using the following terms: “COVID-
19”, “imaging”, “RT-PCR”, “CT”, “X-ray”, “radiograph”, “ultrasound”, “diagnostic”,
“clinical”, “microbiology”, “laboratory”, “bacteria”, “virus”, “fungus”, “parasitic”, “para-
site”, “image”, “microscopy”, “culture”, “smear”, “microscopy”, “microbiology”, “colony”,
“MALDI-TOF”, “Raman”, “SERS”, whole genome sequencing”, “molecular typing”, “factor
analysis”, “blood parameters”, “urine parameters”, “antibiotic resistance”, “resistance
genes”, “resistant bacteria”, “antibiotic discovery”, “screening”, “peptides”, “chemical
library”, “microbiome”, “metagenomics”, “metatranscriptomics”, “metabolomics”; (2) in
hospital-acquired infections (HAIs) using the following terms: “intensive care unit”, in-
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fection”, “prediction”, “forecasting”, “risk factors”, “patient risk stratification”, “real-time
detection”, “HAI surveillance”, “HAI monitoring”, “clinical decision support”, “ventilator
associated pneumonia”, “central line associated bloodstream infections”, “surgical site
infections”, “sepsis”, “Clostridium difficile”, “multi-drug resistant”, and “hand-hygiene”.
No limitations were applied.

2.2. Study Selection

Original studies that assessed the application of machine learning in the surveillance,
diagnosis, prediction and prevention of infectious diseases and hospital-acquired infections
until November 2023 were considered eligible for inclusion. The exclusion criteria consisted
of commentary articles, correspondence, letters to the editor, conference abstracts, editorials,
and non-English language publications. Research that poses a significant risk of bias such
as M.Sc. and Ph.D. theses, seminars, and posters were also excluded. To find more pertinent
articles, the reference lists of the chosen articles were screened. Review articles were also
obtained in order to find more potential studies. Original articles for the ‘COVID-19’ section
of the manuscript included only those which were retrieved using “COVID-19” and “RT-
PCR”, as this was the gold standard for microbiological diagnosis. For this section, review
articles were selected using “COVID-19”, “CT”, “X-ray”, “radiograph”, “ultrasound” and
only selected comprehensive papers were mentioned in the manuscript, as this was not the
scope of the current review.

The titles and abstracts of all obtained studies were independently screened by two
reviewers (B.B. and F.T., associate and assistant professors in Medical and Clinical Micro-
biology with >10 years of research experience in infectious diseases). After the exclusion
of the duplicate studies, the full text of all eligible articles was assessed. All discrepancies
were addressed, and a mutual consensus was reached among the authors regarding the
final inclusion.

2.3. Data Extraction and Assessment of Quality

Authors’ names, years, and descriptive data of all studies including sample size, study
design, techniques, parameters, and the subject matter of each study were extracted. The
following characteristic data were also obtained if they were provided: the analysis tool that
was used for the study, including methods like regression models, LASSO, XGBoost, and
deep learning, convolutional neural networks; the performance measures, including the
area under the receiver operator curve (AUROC), accuracy, sensitivity, specificity, number
of variables included, and conclusion. The risk of bias in the selected studies was assessed
by two reviewers (B.B. and F.T.). Any disagreement regarding the judge was handled or
discussed with a third researcher (DUO).

3. Results

A total of 549 articles were found in the aforementioned databases after the searches,
of which 194 were excluded as they were duplicates or were marked as ineligible. The
initial screening of the remaining 283 articles by title and abstract resulted in the exclusion
of 24 that did not meet the inclusion criteria of the current review. Among the remaining
259 articles, 8 of them were excluded by two reviewers. A total of 251 articles were analyzed
and 89 were excluded for different reasons such as being unrelated and off-topic, not using
AI algorithms, being not in English language and full-text not being available. Finally,
162 articles met the inclusion criteria and were included in the current systematic review.
Figure 1 illustrated the PRISMA flow diagram for the search process.
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3.1. AI Applications in Microbiology
3.1.1. COVID-19

The gold standard for the diagnosis of COVID-19 is the detection of the causative
agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using a virus-
specific reverse transcriptase polymerase chain reaction (RT–PCR) test [6]. With the rapid
propagation of COVID-19 due to widespread person-to-person transmission during the
pandemic, an unprecedented necessity for PCR testing in diagnostic laboratories world-
wide was observed. In order to alleviate the heavy burden of healthcare and laboratory
personnel, a number of AI-aided detection models have been developed for the rapid and
reliable diagnosis of SARS-CoV-2 via RT-PCR. Alouani et al. proposed a deep learning
model, qPCRdeepNet, that utilizes a deep convolutional neural network for the analysis
of the fluorescent readings obtained during COVID-19 RT-PCR, which was indicated to
detect false positive results and improve test specificity [7]. Lee et al. also developed a deep
learning model trained with the long-term short memory (LSTM) method, in which the raw
data of fluorescence values in each 40 cycles of RT-PCR test were used. The authors reported
a shortened RT-PCR diagnosis time when evaluated with patient’s clinical characteristics,
blood test results and chest CT imaging data [8]. Similarly, an AI-based detection and clas-
sification system for COVID-19 RT-PCR diagnosis using fluorescent data and amplification
curves was developed in which the authors were able to automatically categorize RT-PCR
data as positive, weak-positive, negative or re-run. [9]. Moreover, Villarreal-González et al.
analyzed 4230 RT-PCR curves from patient data using different ML models, categorized
them into positive, early, no and abnormal amplifications, and indicated that the best
model was able to detect atypical profiles in PCR curves due to the contamination or
artifacts, thereby enabling rapid diagnosis and reducing false positives [10]. The detection
of SARS-CoV-2 variants has also been approached. Alvargonzález et al. investigated an
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ML algorithm based on the number of cycles (cycle threshold, Ct) in RT-PCR data obtained
during the pandemic and suggested that the distinguishable patterns in the Ct values of
PCR-positive samples can aid in the detection of various virus variants [11]. Similarly,
Beduk et al. has applied a Dense Neural Network (DNN) algorithm for the detection
of SARS-CoV-2 variants using laser-scribed graphene (LSG) sensors coupled with a gold
nanoparticles (AuNPs) biosensing platform [12]. The AI-driven SARS-CoV-2 diagnosis has
been invaluable for optimizing the time spent on the analysis of RT-PCR tests and helped
to reduce the human intervention required in laboratory practice.

Importantly, a number of studies have focused on the application of ML for the
prediction of SARS-CoV-2 positivity using patients’ blood test and serum profiling results.
Tschoellitsch et al. trained a Random Forest algorithm using routinely available blood test
results with 1353 unique features to predict the RT-PCR test results. The authors reported
that the model was able to detect SARS-CoV-2 test results with an accuracy of 81%, an area
under the ROC curve of 0.74, a sensitivity of 60%, and a specificity of 82% [13]. Brinati
et al., on the other hand, developed two ML classification models using hematochemical
values such as white blood cells counts, and the platelets, CRP, AST, ALT, GGT, ALP, and
LDH plasma levels from routine blood exams from 279 patients in an attempt to detect
COVID-19 infection. The authors reported that both models have an accuracy of 82–86%
and sensitivity of 92–95% for the identification of COVID-19 positive patients with respect
to the gold standard rRT-PCR [14]. On a similar note, Yang et al. constructed and validated
a ML model for COVID-19 diagnosis, identifying the most useful routine blood parameters
with high diagnostic accuracy [15]. Abayomi-Alli et al. also compared 15 supervised ML
algorithms and applied the ensemble learning approach to develop prediction models for
the effective detection of COVID-19 using routine laboratory blood test results [16]. The
potential of matrix-assisted laser desorption ionization–time of flight mass spectrometry
(MALDI-TOF-MS) combined with ML algorithms was also exploited for the detection of
COVID-19 positive and negative protein profiles using nasopharyngeal swab samples [17].
A clinically validated liquid chromatography triple quadrupole method (LC/MS-MS) for
the detection of amino acids from plasma specimens has also been described. In this
study, targeted plasma metabolomics combined with ML was proven to provide the rapid
discrimination of SARS-CoV-2-positive and negative patients [18]. Further studies also
focused on the identification of serological signatures of SARS-CoV-2 infection [19], the
use of MALDI-TOF-MS, surface-enhanced Raman scattering (SERS), LC-MS, and MALDI-
MS for the detection of SARS-CoV-2 in human saliva, nasal swabs, plasma and serum
samples [20–23].

Chest computed tomography (CT) also represents a valuable component of diagno-
sis in symptomatic patients with suspected SARS-CoV-2 infection and their consequent
isolation from the uninfected population [24]. Due to the exponential boost in the num-
ber of cases and the similarity of symptoms with other infectious lung diseases, AI has
been extensively used in the detection and classification of COVID-19 pneumonia via
automated image analysis. A plethora of pioneering studies utilized deep learning for the
categorization of chest X-ray (CX-R), CT and ultrasound images to assist radiologists as
well as infectious disease specialists with making decisions [25–36]. Transfer learning was
adopted by Apostolopoulos et al. to a collection of CX-R images including those images
with confirmed COVID-19 disease, confirmed common bacterial pneumonia, and images
of normal conditions. The authors indicated that the deep learning approach was able to
extract significant biomarkers related to the COVID-19 disease in image datasets, while
the best accuracy, sensitivity, and specificity obtained was 96.78%, 98.66%, and 96.46%,
respectively [25]. Singh and colleagues utilized convolutional neural networks (CNNs)
with multi-objective differential evolution (MODE) to analyze chest CT images in an effort
to classify the COVID-19-infected patients as infected or not infected, and they indicated
that the proposed model can efficiently classify the COVID-19 patients who have abnor-
malities in chest CT images with most having bilateral multiple lobular and subsegmental
areas of consolidation and ground-glass opacity in chest CT images [31]. While chest CT
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imaging is a valuable component in the evaluation of patients with suspected SARS-CoV-2
infection, CT imaging alone has been indicated to have a limited negative predictive value
for ruling out the infection due to normal radiological findings at early stages of the disease.
Therefore, Mei et al. have used AI algorithms to integrate chest CT findings with clinical
symptoms, history of exposure and laboratory testing to rapidly diagnose COVID-19 pos-
itive patients. The authors have reported that the AI system achieved an area under the
curve of 0.92 with an equal sensitivity compared to a senior thoracic radiologist [32].

A number of comprehensive systematic reviews on AI-assisted chest imaging for the di-
agnosis of COVID-19 and other types of pneumonia are also available in
literature [37–44]. In particular, diagnosis performance of deep learning models for the
interpretation of CT chest scans have been reported to be high. Wang et al., analyzing
51,392 confirmed COVID-19 patients and 7686 non-infected individuals, indicated the
pooled sensitivity, the pooled specificity, positive likelihood ratio, negative likelihood ratio
and the pooled diagnostic odds ratio (OR) to be 0.87, 0.85, 0.14), and 49, and the AU-
ROC to be 0.94. They also reported that Resnet had the best diagnostic performance with
the highest sensitivity of 0.91, specificity of 0.90, and AUROC of 0.96 with the following
ranking: Resnet > Densenet > VGG > Mobilenet > Inception > Effficient > Alexnet [42].
Ozsahin et al. provided a review of AI techniques for the diagnosis of COVID-19 with
CT imaging and reported the sensitivity, specificity, precision, accuracy, area under the
curve, and F1 score results to be as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%,
respectively, for the categorization of classification tasks including COVID-19/normal,
COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity [44]. As
the rapid identification and isolation of SARS-CoV-2 infected individuals was a critical
step for the early implementation of preventive interventions, these AI-aided tools have
been invaluable for assisting healthcare staff and curbing the spread of the pandemic. The
characteristics of the studies are listed in the table below (Table 2).

3.1.2. Image Analysis—Bacterial, Viral, Fungal, Parasitic

Image analysis is a central part of clinical microbiology laboratory diagnostics. Mi-
crobiologists are highly trained specialists who can examine and interpret a wide range of
clinical diagnostic materials such as Gram stains, fecal, urine and blood smears, which give
information regarding the presence of microorganisms and host inflammatory response.
Microorganisms also have various phenotypic characteristics and can represent as different
growth forms and colors on agar plates when cultured in the laboratory. A variety of
solid, semi-solid and liquid chromogenic differential media are utilized by experienced
microbiologists to make discriminatory observations when concluding a test result. Due
to the experimentally demanding and visually interpretative nature of the work flow, the
automation and digitalization of the diagnostic processes using AI represents an important
step toward advancing laboratory processes where a shortage of laboratory personnel exists.
Overall, the image discrimination capacity of AI has been proposed to increase the efficiency
and diagnostic accuracy of clinical microbiology laboratories, which has been thoroughly
discussed in a review by Smith et al. Complex, multilayered AI architectures known as
deep learning algorithms, of which a subset of these algorithms is known as CNNs, are
highly interconnected networks modeled after the human optical cortex that excel at image
classification. These algorithms have been used to aid in the diagnostic interpretation of
image data to detect infection-related markers, bacterial, fungal and parasitic cellular struc-
tures in clinical blood and urine smear specimens, Gram stains, agar plate, chromogenic
media, colony and microscopic morphologies of pathogenic microorganisms [45].
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Table 2. Summary of the included studies concerning the use of AI in the field of COVID-19 clinical laboratory and radiology detection.

Authors
(Year) n Diagnosis Method Input Model/Analysis Objective

Alouani et al. [7]
(2021) 50,146 Real-time PCR (RT-PCR) Fluorescent readings

Deep convolutional neural network-based
software (qPCRdeepNet) https://github.
com/davidalouani/qPCRdeepNet,
accessed date (18 February 2024)

Detection of false positive results and
improvement of test specificity, a
quality assurance tool

Lee et al. [8]
(2022) 5810 Real-time PCR (RT-PCR) Fluorescence values Long-term short memory (LSTM) Improvement of the speed of COVID-19

RT-PCR diagnosis

Özbilge et al. [9]
(2022)

560 Real-time PCR (RT-PCR) Amplification curves MobileNetV2 DCNN Rapid and reliable diagnosis

Villarreal-González et al. [10]
(2020) 14,230 RT-PCR RT-PCR curves

K-neighbor classifier, support vector
machine for classification (SVC), decision
tree classifier, random forest classifier (RFC)

Detecting atypical profiles in PCR curves
caused by contamination or artifacts

Alvargonzález et al. [11]
(2023) 20,418 rRT-PCR Ct values Support vector machine (SVM) and neural

network (NN)
Detection of a Ct pattern that is
characteristic of virus variants

Beduk et al. [12]
(2022) 63

Laser-scribed graphene (LSG)
sensors coupled with gold
nanoparticles (AuNPs)

Electrochemical sensor data Dense neural network (DNN) Utilization of point-of-care device as
biosensing platform for new variants

Tschoellitsch et al. [13]
(2021) 1357 SARS-CoV-2 RT-PCR test and

blood tests RT-PCR and blood tests results Random forest algorithm Prediction of SARS-CoV-2 PCR results
with routine blood tests

Brinati et al. [14]
(2020) 279 Routine blood tests and

COVID-19 RT-PCR tests
Blood test parameters and
COVID-19 RT-PCR test results

Decision tree (DT);
extremely randomized trees (ETs),
k-nearest neighbor (KNN)
Logistic regression (LR),
naïve Bayes (NB),
random forest (RF),
support vector machine (SVM)

Discrimination between SARS-CoV-2
positive and negative patients

Yang et al. [15]
(2020) 3,356 Routine blood tests, COVID-19

RT-PCR tests
Blood parameters, COVID-19
RT-PCR test results

Gradient boosting decision tree (GBDT),
random tree (RT), logistic regression (LR),
decision tree (DT)

Diagnosis of COVID-19 using the results
of routine laboratory tests

https://github.com/davidalouani/qPCRdeepNet
https://github.com/davidalouani/qPCRdeepNet
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Table 2. Cont.

Authors
(Year) n Diagnosis Method Input Model/Analysis Objective

Abayomi-Alli et al. [16]
(2022) 279 Routine blood tests Hematochemical values

KNN, linear SVM, RBF SVM, random forest,
decision tree, neural network (multilayer
perceptron), AdaBoost, extremely
randomized trees (ExtraTrees), naïve Bayes,
LDA, QDA, logistic regression, passive
classifier, ridge classifier, and stochastic
gradient descent classifier (SGDC)

Effective detection of COVID-19 using
routine laboratory blood test results

Rocca et al. [17]
(2020) 311 MALDI-TOF MS AND RT-PCR Main spectra profiles ClinPro Tools, GA/k-nearest

neighbor algorithm
Identification of biomarker patterns for
COVID-19

Le et al. [18]
(2023) 200 LC/MS-MS Mass spectra

SHapley Additive exPlanations (SHAP),
gradient boosted decision trees, scikit-learn
v0.23.2 for random forest, stratified k-fold
cross-validation, grid search

Development of an alternative diagnostic
strategy for SARS-CoV-2 diagnosis

Rosado et al. [19]
(2021) 550 Multiplex serological assay,

RT-PCR
IgG and IgM antibody responses,
RT-qPCR results Random forest algorithm Development of accurate serological

diagnostics

Nachtigall et al. [20]
(2020) 3621 MALDI-MS, RT-PCR Mass spectra

Decision tree, DT; k-nearest neighbors,
KNN; naive Bayes, NB; random forest, RF;
support vector machine with a linear kernel,
SVM-L; support vector machine with a
radial kernel, SVM-R)

Alternative detection of SARS-CoV-2 in
nasal swabs

Costa et al. [21]
(2022) 360 MALDI-TOF MS Mass spectra

Support vector machine with linear kernel
(SVM-LK), support vector machine with
radial basis function kernel (SVM-RK),
random forest (RF) and k-nearest neighbors
(K-NN), and linear discriminant
analysis (LDA)

Alternative method for detection of
SARS-CoV-2 in nasal swabs

de Fátima Cobre et al. [22] (2022) 192 LC-MS Mass spectra PLS-DA, ANNDA, XGBoostDA, SIMCA,
SVM, LREG and KNN

Prediction of COVID-19 diagnosis,
severity, and fatality

Ikponmwoba et al. [23]
(2022) 20 SERS Spectra Gaussian process classifier (GPC), k-fold

cross-validation
Predictive diagnosis of COVID-19 in
biological samples
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Using trained CNNs, a large set of image analysis studies have so far have been
performed. Smear analysis of various clinical samples by light microscopy is a widely
used method for the identification of certain infectious pathogens in the human body. A
good example is parasite diagnosis, which can be performed using thick and thin blood
smears. A number of AI models have been developed for the automated detection of
Plasmodium parasites, the causative agent of malaria, which may be highly beneficial in
affected regions. CNN using transfer learning has been proposed to automatically detect
and quantify Plasmodium falciparum at different cellular stages of infection, where diagnostic
accuracy is heavily dependent on the expertise of the microscopist [46–54]. In their study,
Oliveria et al. has applied multilayer perceptron and decision tree as a new approach
for detecting malaria parasites in full images of thick blood smears using pixel classifiers.
The authors reported precision rates of 91.71% and 93.14% with large parasite sizes, and
precision rates of 76.58% and 71.58% were obtained with small parasite sizes [48]. Sengar
et al., on the other hand, attempted to automatically detect and classify Plasmodium vivax
life cycle states for a predictive diagnostic decision and reported the performance of the
Vision Transformers (ViTs) model to reach 90.03% accuracy [49]. In a more sophisticated
approach, Park et al. investigated the utility of AI application to quantitative phase
spectroscopy for the automated analysis for the detection and staging of red blood cells
infected with Plasmodium falciparum at trophozoite or schizont stage to aid diagnosis. The
authors compared various ML techniques, including linear discriminant classification
(LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), and they
found that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage
infected cells, while NNC showed slightly better accuracy (99.5%) than either LDC (99.0%)
or LR (99.1%) for discriminating late trophozoites from uninfected RBCs [50]. In a 2023
study, Hemachandran et al. applied neural network models such as CNN, MobileNetV2,
and ResNet50 to investigate an automatic image identification system to diagnose malaria
blood smears, reporting an accuracy rate of 97.06% of the MobileNetV2 model for disease
detection [54]. Interestingly, point-of-care mobile digital microscopy and deep learning
methods for the detection of soil-transmitted helminths and Schistosoma haematobium has
also been looked at in the literature with a reported range of sensitivity 83.3–100% using
sequential algorithms [55].

Automated detection algorithms have also been applied to bacterial infections where
diagnosis is widely performed using microscopy. Sputum smear microscopy using acid-fast
stained slides is the primary and most widely used method for the diagnosis of tuberculosis
(TB). Mycobacterium tuberculosis, the causative agent of TB, can be observed under the
conventional light microscope when examined by experienced personnel; however, this
approach is notoriously time-consuming and requires training and expertise. Therefore,
computer-aided identification systems represent a promising approach for timely and re-
producible results. Candidate detection and classification using CNNs have been proposed
for the effective and accurate detection and identification of M. tuberculosis in various stud-
ies [56–60]. Kuok et al. have utilized a Refined Faster region-based CNN (Faster R-CCN)
model for the automated detection of acid-fast bacilli (AFB) detection in smear sputum
slides and reported an 86% detection rate of the Faster R-CCN model compared to support
vector machine (SVM), which demonstrated a 70.93% overall detection rate [56]. A 2020
study, which focused on a CNN-based active learning framework to identify mycobacteria
in digitized Ziehl–Neelsen stained human tissues, used two CNN models, CNNIN, CNNAL,
and reported F1 scores of 99.03% and 98.75%, as well as 99.04% and 98.48% accuracy,
respectively, to classify microscopy slides images to be AFB-positive and AFB-negative [57].

The automated interpretation of blood culture Gram stains to identify microorganisms
associated with bloodstream infections using a deep CNN has also been investigated by
Smith et al. [61]. This study reported the use of 25,488 images from positive blood culture
Gram stains for the training of a CNN model, which was reported to demonstrate an
accuracy of 94.9% for the automated detection of Gram-positive cocci in chains and pairs
and Gram-negative rods. Similarly, an automated detection and segmentation approach
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has been applied to Bacillus anthracis, which causes anthrax, in which neural networks
including UNet and UNet++ have been used for the image analysis of tissue slides of
patients suffering from the cutaneous anthrax disease to apply detection and segmentation
of the bacteria within the digital images with an overall accuracy of 97% [62]. A deep
learning method using hyperspectral microscope images was also described for the iden-
tification of non-O157 Shiga toxin-producing Escherichia coli [63]. On the other hand, ML
has also been applied to the analysis of microscopic agglutination tests (MATs) used to
diagnose leptospirosis, an infectious disease caused by the pathogenic bacterial species of
Leptospira, and it has been suggested to provide an opportunity for the automatization
of MATs [64]. In this research, the authors trained an SVM-based ML using MAT images
created with sera of Leptospira-infected (positive) and non-infected (negative) hamsters,
and they reported a sensitivity and specificity of 0.99 for the confirmed diagnosis. The
use of chromogenic agar and colony morphology represent an alternative method for the
classification of bacterial species in the clinical microbiology laboratory. Zielinski et al. has
demonstrated a method based on deep CNN that obtains image descriptors which are then
classified with SVM or random forest to analyze various genera and species of bacteria
based on colony morphology stained with Gramm’s method and reported a 97.24 ± 1.07%
accuracy of recognition [65]. Similar work was described by Ahmad et al., who employed a
deep ensemble approach for pathogen classification in large-scale images using patch-based
training and hyper-parameter optimization [66]. The automated detection of Streptococcus
pyogenes and Staphylococcus aureus based on chromogenic agar and AI detection module
software has also been described [67,68]. In the study by Gammel et al., the authors com-
pared manual interpretation to Automated Plate Assessment System (APAS Independence)
and showed positive and negative percent agreements (PPA and NPA, respectively) to be
100% and 97.3%, respectively. In addition, Rattray et al. investigated the identification of
Pseudomonas aeruginosa strains from colony image data from clinical and environmental
samples for a robust, repeatable detection of phenotype on the level of individual strains,
and they reported an average validation accuracy of 92.9% and an average test accuracy
of 90.7% for the classification of individual strains [69]. A new few-shot learning method
of bacterial colony counting was also described to be useful for Escherichia coli on Plate
Count Agar (PCA) with YOLOv3 models, aiding colony-forming unit (CFU) counting and
bacterial quantification in the clinical laboratory [70].

The ML-assisted automated detection of fungi has also been reported by a number of
studies which are mainly based on colony features and microscopic images [71–74], while
ML has been coupled with several different techniques such as Raman spectroscopy, loop-
mediated isothermal amplification and transmission electron microscopy for the detection
of viruses including SARS-CoV-2 and hepatitis B virus as well as influenza A and B virus
in clinical specimens [75–79]. The characteristics of the studies are listed in the table below
(Table 3).

While for many years, clinical diagnostic laboratories relied mostly on conventional
phenotypic and gene sequencing identification techniques which are time-consuming and
labor-intensive, more recently easy, rapid, high-throughput, low-cost and efficient iden-
tification techniques such as MALDI-TOF mass spectrometry (MALDI-TOF MS), whole
genome sequencing (WGS), multilocus sequence typing (MLST), random amplified poly-
morphic DNA (RAPD), amplified fragment length polymorphisms (AFLP), pulse field
gel electrophoresis (PFGE), and PCR-based replicon typing have been introduced in the
field of molecular microbiology and epidemiology. It is worth mentioning that with the
increased use of these modern techniques in the last few decades, the application of ML to
the interpretation of these techniques has become unavoidable [80–82]. Yet, a critical factor
for the expansion of AI research in this field is the availability of digital data including
genomic and metagenomic data generated using the above-mentioned techniques to all
researchers worldwide by the deposition into shared databases.
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Table 3. The characteristics of the studies included regarding the application of machine learning to image analysis in clinical microbiology laboratory.

Authors
(Year) n Diagnosis Method Input Model/Analysis Objective

Loh et al. [46]
(2021) 297 Blood smear microscopy Microscopic smear images Mask R-CNN Alternative method for automated rapid

malaria screening

Holmström et al. [47]
(2020) 125

Thin blood and
Giemsa-stained thick smear
microscopy

Microscopic smear images
Cloud-based machine-learning
platform (Aiforia Cloud and Create),
GoogLeNet network

Digitalization of blood smears, application
of deep learning (DL) algorithms to detect
Plasmodium falciparum

Oliveira et al. [48]
(2022) 676 Thick blood smear films Microscopy images Multilayer perceptron (MLP) and

decision tree (DT) Automated malaria diagnosis

Sengar et al. [49]
(2022) 2329 Thin blood smears Microscopic images Generative adversarial network

(GAN), Vision Transformers (ViTs)

Automated, non-invasive multi-class
Plasmodium vivax life cycle classification
and malaria diagnosis

Park et al. [50]
(2016) 413 Quantitative phase

spectroscopy
Quantitative phase images of
unstained cells

Linear discriminant classification
(LDC), logistic regression (LR), and
k-nearest neighbor classification
(KNC),

Automated analysis for detection and
staging of red blood cells infected with
Plasmodium falciparum at trophozoite or
schizont stage

Kassim et al. [51]
(2021) 5972 Thick smear films Annotated thick smear

microscopy images

Mask regional–convolutional neural
network (Mask R-CNN), ResNet50
classifier

Application of PlasmodiumVF-Net for
automated malaria diagnosis on both
image and patient level

Dey et al. [52]
(2021) 27,558 Thick blood films Blood smear cell microscopy

images
ResNet 152 model integrated with the
deep greedy network

Automating the detection of malaria
parasites in thin blood smear images

Ufuktepe et al. [53]
(2021) 955 Thin blood smears Thin blood smear microscopy Channel-wise feature pyramid

network for medicine (CFPNet-M)
Red blood cell detection, counting infected
cells or identifying parasite species

Hemachandran et al. [54]
(2023) 27,558 Blood smears Blood smear microscopy

images CNN, MobileNetV2, and ResNet50 Automatic image identification system for
parasite-infected RBC detection

Holmström et al. [55]
(2017) 7385 Iodine-stained stool sample

smears

Digital images from a mobile
microscope and whole
slide-scanner

Sequential algorithms Automated detection of soil-transmitted
helminths and Schistosoma haematobium

Kuok et al. [56]
(2019) 19,234 Sputum smears stained by

acid-fast staining Smear microscopy images Refined Faster region-based CNN,
support vector machine (SVM)

Two-stage Mycobacterium tuberculosis
identification system

Yang et al. [57]
(2020) 167 Ziehl–Neelsen stained human

tissue samples Digitized images CNNIN, CNNAL
Automated identification of mycobacteria
in human tissues
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Table 3. Cont.

Authors
(Year) n Diagnosis Method Input Model/Analysis Objective

Ibrahim et al. [58]
(2021) 1050 Acid-fast staining of sputum Microscopy images AlexNet model Automated detection of Mycobacterium

tuberculosis using transfer learning

Xiong et al. [59]
(2018) 3,088,492 Acid-fast stained tissue

samples Microscopy images CIFAR-10 CNN AI-assisted detection method for acid-fast
stained TB bacillus

Horvath et al. [60]
(2020) 15,204 Auramine-stained sputum

smears Slide microscopy images DNN classifier, Keras, TensorFlow
Machine-assisted interpretation of
auramine stains for microscopic
tuberculosis diagnosis

Smith et al. [61]
(2018) 25,488 Gram staining of blood

cultures Microscopy images Inception v3 CNN, Python,
TensorFlow

Automated interpretation of blood culture
gram stains

Hoorali et al. [62]
(2020) 954

Tissue slides of patients
suffering from cutaneous
anthrax

Microscopy images UNet and UNet++, Keras, TensorFlow
Automatic and rapid diagnosis of anthrax
via detection and segmentation of Bacillus
anthracis

Kang et al. [63]
(2020) 84,000 Hyperspectral microscope

imaging (HMI) method
Hyperspectral microscope
images

Linear discriminant analysis (LDA),
support vector machine (SVM)
and soft-max regression (SR)

Identification of non-O157 Shiga
toxin-producing Escherichia coli (STEC)
using deep learning

Oyamada et al. [64]
(2021) 910 Microscopic Agglutination

Test (MAT) MAT microscopic images Support vector machine (SVM)
Determine agglutination within
microscopic images for the diagnosis of
leptospirosis

Zieliński et al. [65]
(2017) 660 Stained clinical samples DIBas dataset of digital

bacterial images
CNN, support vector machine,
random forest

Deep learning-based classification of
bacterial genera and species

Ahmad et al. [66]
(2023) 480 Stained clinical samples High-resolution microscopic

images from DIBas dataset InceptionV3, MobileNetV2 Deep ensemble approach-based pathogen
classification in large-scale images

Van et al. [67]
(2019] 480

Clinical throat specimens on
CHROMagar confirmed by
MALDI-TOF MS

Microscopic images WASPLab PhenoMATRIX
chromogenic detection module

AI-detection of Streptococcus pyogenes
using CHROMagar

Gammel et al. [68]
(2021) 5913

Patient samples collected
from the nares plated onto
BD BBL CHROMagar MRSA
II and BD BBL CHROMagar
Staph aureus

Digital images Automated Plate Assessment System
(APAS Independence)

Evaluation of an automated plate
assessment system
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Table 3. Cont.

Authors
(Year) n Diagnosis Method Input Model/Analysis Objective

Rattray et al. [69]
(2023) 335

Culture specimens of clinical
and environmental P.
aeruginosa isolates

Digital colony images ResNet-50, VGG-19, MobileNetV2 and
Xception Identification of from colony image data

Zhang et al. [70]
(2022) 960 Escherichia coli cultures on

agar medium Digital colony images Random cover targets algorithm
(RCTA), YOLOv3

Deep learning-based bacterial colony
detection

Koo et al. [71]
(2021) 3707 Slides with skin and nail

specimens Microscopy images YOLO v4 Automated detection of superficial fungal
infections

Ma et al. [72]
(2021) 17,142

Dissecting microscopy
(DM)/stereomicroscopy
platform

Original colony images Xception
Validating a novel approach for the
detection of Aspergillus fungi via
stereomicroscopy

Liu et al. [73]
(2015) 1000 Fecal specimens Microscopic fecal images ANN-1, ANN-2 Automatic identification of fungi in fecal

specimens

Meeda et al. [74]
(2019) 30 Fungal cultures, confocal

microscopy
Colony fingerprint digital
images

Support vector machine (SVM) and
random forest
(RF)

Rapid discrimination of fungal species by
the colony fingerprinting

Khan et al. [75]
(2018) 119 Raman spectroscopy Spectral images Support vector machine (SVM) Analysis of hepatitis B virus infection in

blood sera using ML

Rohaim et al. [76]
(2020) 199

Reverse-transcribed
loop-mediated isothermal
amplification (LAMP) assay

Quantitative measurements
using qRT-PCR

CNN model with binary cross-entropy
and Adam

Rapid detection of SARS-CoV-2 using AI
in loop-mediated isothermal amplification
assays

Ito et al. [77]
(2018) 35 Transmission electron

microscopy (TEM) Microscopy images
Cross-point method (CPM), RDP,
spectral rings (SR), fully convolutional
neural networks (FCN and FCN+)

Automated feline calicivirus particle
detection in TEM images

Tong et al. [78]
(2019) 600 Raman spectroscopy of

serum samples Raman spectra Principal component analysis (PCA),
support vector machine (SVM)

AI-aided detection of hepatitis B virus
infection using Raman spectroscopy

Tabarov et al. [79]
(2022) 90

Surface-enhanced Raman
scattering spectroscopy
(SERS)

SERS spectra Support vector machine (SVM) Detection of A and B influenza viruses by
SERS coupled with ML
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3.1.3. Automated Factor Analysis

ML approaches have also been applied in the context of clinical sample analysis
which may contain variable datasets depending on the infection or no-infection state of
the patient. Using this approach, Wang et al. described an automated urine analysis
for the increased detection of Trichomonas vaginalis, which is a protozoan parasite which
causes a common sexually transmitted infection, trichomoniasis. Using classification
models constructed using random forest, linear regression and support vector machine,
the authors were able to analyze the importance of variables in urine analysis such as
levels of nitrite, protein, occult blood, leukocyte esterase, red blood cells, white blood
cells and epithelial cells as well as the patient age and gender, and they suggest that the
proposed ML-based urine analysis has a high prediction score and can significantly increase
the detection rate of T. vaginalis infection in a cost-effective manner [83]. Alternatively,
using an XGBoost algorithm, scientists also constructed an ML model for COVID-19
diagnosis based on routine blood parameters including eosinophil count, mean corpuscular
hemoglobin concentration (MCHC), albumin, international normalized ratio (INR) and
prothrombin activity percentage, and they proposed this model as a diagnostic tool in the
clinic [84]. A similar approach has also been used for the differential diagnosis of viral
and bacterial meningitis, in which multiple logistic regression (MLR), random forest (RF),
and naïve Bayes (NB) algorithms were applied to variables including cerebrospinal fluid
(CSF) neutrophil count, CSF lymphocyte count, neutrophil-to-lymphocyte ratio (NLR),
blood albumin, blood C-reactive protein (CRP), glucose, blood soluble urokinase-type
plasminogen activator receptor (suPAR), and CSF lymphocytes-to-blood CRP ratio (LCR)
as predictors. The study indicated that the accuracy for viral and bacterial meningitis
should be above 95% and 78%, respectively, in order to obtain optimal predictions of the
type of meningitis [85].

3.1.4. Antimicrobial Resistance Analysis

Antimicrobial resistance (AMR) remains one of the most challenging aspects of modern
medicine. The application of ML algorithms to the escalating problem of AMR has gained
increasing attention in the past 7 years due to the exponential growth of experimental
and clinical data, improvements in algorithm performance, investments in computational
capacity, and growing urgency for innovative approaches for the treatment of infections
due to multidrug-resistant (MDR) microorganisms. In particular, deep learning algorithms
have been utilized in the context of predicting antibiotic resistance genes from metage-
nomic data [86] and genome sequence data [87] as well as the identification of mutations
relevant to AMR [88] using traditional ML algorithms and CNN. ML has also been cou-
pled with high-throughput multiplex digital PCR and amplification and melting curve
analysis (AMCA), which have been suggested to accurately detect carbapenem-resistance
genes (blaIMP, blaKPC, blaNDM, blaOXA-48, and blaVIM) in clinical isolates [89]. Using
genome analysis and extreme gradient boosting (XGBoost)-based ML models, scientists
have also accurately explored the important genomic regions to predict minimum inhibitory
concentrations (MICs) for 15 antibiotics for Salmonella strains [90].

Surface-enhanced Raman spectroscopy (SERS) has been increasingly used for the
detection of antibiotic-resistant bacteria due to its various features such as high sensitivity,
requirement of a simple sample preparation procedure and low cost. A combination
of SERS and deep learning techniques has been used in the discrimination of antibiotic-
resistant bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and colistin-
resistant Klebsiella pneumoniae [91,92]. Fu et al. have also reported the possibility of rapid
identification of antibiotic sensitivity and MDR patterns among urinary tract pathogens
using SERS spectra and CNN [93]. A number of reviews have focused on the application
of AI for tackling antibiotic resistance [94–96]. Interestingly, a more recent study by Jeon
et al. has also explored the use of MALDI-TOF spectral data combined with ML for the
identification of MRSA using the MALDI-TOF MS technique. In this study, the authors
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were able to diagnose MRSA with a sensitivity, specificity and accuracy of 91.8%, 83.3%
and 87.6%, respectively [97].

3.1.5. Antimicrobial Discovery

An emerging application of AI is the discovery of novel antimicrobial peptides (AMPs)
to tackle the global challenge of AMR. Antibiotic discovery programs mostly depend on
large synthetic chemical libraries which contain hundreds of thousands to a few million
molecules, and these are typically costly to curate and limited in terms of chemical diver-
sity. Given the recent advancements in ML, this field is now adopting a deep learning
approach for the application of molecular property prediction to identify novel classes of
antibiotics [98]. With the innovation of modeling neural network-based molecular repre-
sentations, molecules can be continuously mapped to vectors which are subsequently used
to predict their properties. This method provides molecular representation that are highly
attuned to the desired property and is far more effective in property prediction accuracy. A
concrete example of deep learning-based small molecule discovery is the study by Wang
et al. in which various ML models including naïve Bayes, support vector machine, recursive
partitioning and k-nearest neighbor algorithm have been used to predict new antimicrobial
molecules against S. aureus [99]. Another ground-breaking research was reported by Stokes
et al., where the authors have leveraged a deep learning architecture called a message-
passing neural network (MPNN) to discover structurally novel antimicrobial molecules
against E. coli by screening ≈ 107 million structurally diverse chemicals [100]. Using this
pipeline, the study resulted in the discovery of eight antibacterial compounds that are
structurally distant from known antibiotics, among which one compound, halicin, exhib-
ited efficacy against broad-spectrum bacterial infections in vivo. A similar approach was
also explored by Liu et al., which resulted in the discovery of a structurally new molecule,
abaucin, with antibacterial activity against Acinetobacter baumanii [101]. Alternative deep
learning-coupled molecular dynamics simulations have also been shown to be effective in
the screening and discovery of peptides with antimicrobial activity [102,103]. Alternatively,
deep learning techniques such as the long short-term memory (LSTM) generative model
and bidirectional LSTM (BiLSTM) classification models have also been employed in the
design of novel AMP sequences [104]. These approaches have been systematically reviewed
by a number of studies present in the literature [105–107].

3.1.6. Microbiome Analysis

With the critical role of the microbiome in various human diseases and the growing im-
portance of microbiome research, characterization of the microbiome and host–microbiome
associations remains critical for our understanding of various complex diseases. The omics-
based methods, such as metagenomics, metatranscriptomics, and metabolomics, are widely
used in the study of gut microbiome due to their ability to provide high-throughput and
high-resolution data. The vast amount of data generated via these methods has led to the
development of computational methods for data processing and analysis, which is a field
where ML can be used as a powerful tool [108]. In this regard, ML provides new insights
into the development of models that can be used to predict outputs, such as classification
and prediction in microbiology, extrapolation of host phenotypes to predict diseases, and
the use of microbial communities to stratify patients by the characterization of state-specific
microbial signatures [109]. Advances in this field have been highlighted by several recent
studies [110–113].

The applicability of AI in the field of microbiology and infectious diseases is summa-
rized in Figure 2.



Diagnostics 2024, 14, 484 16 of 37

Diagnostics 2024, 14, x FOR PEER REVIEW 19 of 43 
 

 

metabolomics, are widely used in the study of gut microbiome due to their ability to pro-
vide high-throughput and high-resolution data. The vast amount of data generated via 
these methods has led to the development of computational methods for data processing 
and analysis, which is a field where ML can be used as a powerful tool [108]. In this regard, 
ML provides new insights into the development of models that can be used to predict 
outputs, such as classification and prediction in microbiology, extrapolation of host phe-
notypes to predict diseases, and the use of microbial communities to stratify patients by 
the characterization of state-specific microbial signatures [109]. Advances in this field 
have been highlighted by several recent studies [110–113].  

The applicability of AI in the field of microbiology and infectious diseases is summa-
rized in Figure 2. 

 
Figure 2. Artificial intelligence applications in the field of microbiology and infectious diseases with 
a focus on antimicrobial resistance and hospital-acquired infections. 

3.2. AI and Hospital-Acquired Infections 
Healthcare-associated infections (hospital-acquired infections, HAIs) are nosocomi-

ally acquired and are defined as infections that are not present in the patient before hos-
pitalization [114]. HAIs may occur in different wards during treatment and hospital stay, 
and they are most often associated with hospitalization in intensive care units (ICUs). In 
ICUs, patients have a 5 to 10 times higher risk of acquiring an HAI due to both intrinsic 
factors such as immunodeficiency and extrinsic factors such as the administration of med-
ical devices. An ICU is often regarded as the epicenter of microorganisms with MDR [115]. 
HAIs often occur as a result of using invasive procedures such as the administration of 
temporary indwelling devices including central venous catheters, urinary catheters, vas-
cular access devices, endotracheal tubes, tracheostomies, enteral feeding tubes, and 
wound drains or could emerge as a complication after surgical intervention associated 
with the administration of implants. HAIs comprised a wide range of infections catego-
rized based on infected medical equipment. This includes central line-associated blood-
stream infections (CLABSIs) and central venous catheter bloodstream infections 

Figure 2. Artificial intelligence applications in the field of microbiology and infectious diseases with
a focus on antimicrobial resistance and hospital-acquired infections.

3.2. AI and Hospital-Acquired Infections

Healthcare-associated infections (hospital-acquired infections, HAIs) are nosocomially
acquired and are defined as infections that are not present in the patient before hospitaliza-
tion [114]. HAIs may occur in different wards during treatment and hospital stay, and they
are most often associated with hospitalization in intensive care units (ICUs). In ICUs, pa-
tients have a 5 to 10 times higher risk of acquiring an HAI due to both intrinsic factors such
as immunodeficiency and extrinsic factors such as the administration of medical devices.
An ICU is often regarded as the epicenter of microorganisms with MDR [115]. HAIs often
occur as a result of using invasive procedures such as the administration of temporary
indwelling devices including central venous catheters, urinary catheters, vascular access
devices, endotracheal tubes, tracheostomies, enteral feeding tubes, and wound drains or
could emerge as a complication after surgical intervention associated with the administra-
tion of implants. HAIs comprised a wide range of infections categorized based on infected
medical equipment. This includes central line-associated bloodstream infections (CLABSIs)
and central venous catheter bloodstream infections (CVCBSIs), catheter-associated urinary
tract infections (CAUTIs), and ventilator-associated pneumonia (VAP). The second group
covers surgical site infections (SSIs) [116]. Furthermore, Clostridium difficile is considered
among the most common cause of nosocomial infectious diarrhea with increasing incidence
and severity [117]. Hand hygiene has been shown to be the most important risk factor in
HAIs [118].

The impact of HAIs is reflected as a considerable clinical and financial burden in
terms of prolonged hospital stay, excess death and long-term disability, increased microbial
resistance and increased direct costs for the healthcare system [119]. A meta-analyses study
estimated the cumulative annual burden of HAIs including CLABSIs, VAP, SSIs, CAUTIs
and C. difficile infections (CDIs) to be USD 10 billion in the United States [120].

The surveillance of HAIs is a critical component of the implementation and main-
tenance of effective infection prevention and control programs. HAI surveillance data
are generally used for the quantification and monitoring of HAIs burden, detection of
outbreaks, identification of risk factors to implement and evaluate control interventions
as well as the identification of areas for improvement. HAI surveillance programs enable
hospitals to monitor the outcomes of current practice and facilitate the timely feedback
to ensure practice improvement and better patient outcomes. ML is a field of AI which
allows computers to “learn” and represents an automatic optimization of mathematical
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models that fits the available data with progressive accuracy [121]. There are two main
types of ML: supervised and unsupervised. Supervised learning refers to the use of a
training set of data to produce a function that can be utilized to predict a labeled outcome.
If the discriminative model does not implement data that have been previously labeled by
domain experts, it is termed unsupervised. The application of ML to infection prevention
and control is considered as an advantageous approach for an improved understanding
of HAI risk factors, enhanced patient risk stratification and identification of transmission
routes as well as early detection and control [122].

3.2.1. Intensive Care Units (Predictions, Forecasting)

A considerable number of AI and ML models have been developed which can predict
the occurrence of an event in advance, which is commonly termed ‘forecasting’ (Figure 3).
Considering the excessive number of HAIs occurring in healthcare worldwide, the early
detection and possible prevention of HAIs using AI has attracted major attention in the field.
AI and ML hold the promise for the development of HAI surveillance algorithms aimed at
understanding HAIs risk factors, improvement of patient risk stratification, identification
of transmission pathways as well as timely or real-time detection on infections. In this
context, electronic health data represent a critical source of information and are increasingly
available today. A state-of-the-art data management system provides an opportunity to
implement real-time decision support systems for the automated surveillance of HAIs.
ML-enabled clinical decision support studies in ICUs focus on ML-supported monitoring
and diagnosis, the early identification of clinical events as well as outcome prediction and
prognostic assessment followed by treatment decisions to aid clinicians, researchers and
policy makers [123,124].
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So far, an emerging number of ML models have been developed in an effort to forecast
VAP, CLABSIs and SSIs as well as the risk of colonization/infection with an MDR pathogen
and CDI complications in the hospital setting. However, the forecasting of sepsis and/or
septic shock has dominated the field with most studies belonging to this domain.

3.2.2. Ventilator-Associated Pneumonia (VAP)

Ventilator-associated pneumonia (VAP) is defined as pneumonia occurring more than
48 h after a patient has been intubated and received mechanical ventilation [126]. It is
considered as the most common nosocomial pneumonia in critically ill patients [127]. The
early recognition of patients at a high risk of developing VAP and subsequent prevention
of its progression are highly significant in critical care units. Studies have shown that
some risk factors are associated with VAP. Although there are some patient-specific risk
factors such as age, pre-existing disease (chronic obstructive pulmonary disease, COPD)
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and a Glasgow Coma Scale (GCS) of 9 or less, also other care-related factors exist such as
head-of-the-bed angle, emergency intubation, aspiration, previous antibiotic treatment,
and reintubation [128]. A number of studies have focused on the application of ML
algorithms for the early prediction of VAP in critical care patients. A recent study by Liang
et al. has utilized a random forest algorithm to construct a base classifier for the early
discrimination of patients at a high risk of VAP 24 h after intubation. For the analysis,
38,515 ventilation sessions and a set of 42 variables were used, including age, sex, admission
source and type, reintubation, pre-existing diseases, the worst value of the partial pressure
of the arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio, white blood cell
count (WBC), body temperature in the first 24 h after ventilation, the worst value of the
APACHE III and its subcomponents, sequential organ failure assessment (SOFA) and
its subcomponents in the first 24 h after admission to the ICU, coma, aspiration, sepsis,
bacteremia, trauma/polytrauma, fracture and pneumothorax. Five-fold cross-validation
was performed for the evaluation of the model performance. The first five features for
the predictive model of VAP were listed as PaO2/FiO2 ratio, APACHE III score, body
temperature, age and WBC followed by admission source and SOFA score. The model
was found to achieve an AUC of 84% in the validation, 74% in the sensitivity and 71% in
the specificity 24 h after intubation [129]. A similar study was conducted by Giang and
colleagues in which the performances of a variety of ML models trained to predict VAP
during the patient stay were compared. Electronic health records (EHRs) from 6126 adult
ICU encounters lasting at least 48 h following the initiation of mechanical ventilation were
included in the study. Data used included a minimum of one observation of each of the
following vital signs and lab tests: diastolic blood pressure, creatinine, GCS, heart rate,
oxygen saturation (SpO2), platelet count, respiratory rate (RR), systolic blood pressure,
temperature, hematocrit, and WBC as well as antibiotics, sputum laboratory result, blood
culture result, presence of cirrhosis, congestive heart failure, fever, bacteremia, intracranial
hemorrhage, renal failure, respiratory distress, respiratory failure, sepsis, subarachnoid
hemorrhage, shortness of breath and acute respiratory distress syndrome (ARDS). Among
the seven models tested (logistic regression, multilayer perceptron, random forest, support
vector machines, XGBoost, CURB-65, PIRO), the highest overall AUROC was demonstrated
by XGBoost with an AUROC value of 0.854. The most important features for the best-
performing model were indicated to be the length of time on mechanical ventilation, the
presence of antibiotics, sputum test frequency, and the most recent GCS assessment [130].
The development of ML models may in the future aid in the implementation of a warning
system prior to or during VAP, which can improve diagnosis and prevent both under- and
over-treatment with antibiotics.

Similar studies have also been performed to develop a predictive model for individual-
ized risk assessment using ML in order to identify patients at risk of developing VAP [131]
and more recently to predict mortality in patients with severe pneumonia who require
ICU admission [132,133] as well as the prediction of VAP in defined patient groups such as
those with traumatic brain injury [134].

3.2.3. Central Line-Associated Bloodstream Infections (CLABSIs)

Central line-associated bloodstream infections (CLABSIs) are defined by the Centers of
Disease Control and Prevention (CDC) as laboratory-confirmed bloodstream infections that
cannot be attributed to a source other than the presence of a central line and develop 48 h
after central line placement [135]. The identification of high-risk patients may be beneficial
for clinical practice by enabling earlier or more intensive treatment and monitoring such
as the encouragement of more timely replacement of catheters and catheter site dressings.
A number of studies have focused on the development of ML algorithms to predict and
identify patients at a high risk of developing CLABSIs. In 2022, Rahmani et al. have used
data from EHRs of 27,619 patients who utilized a central line procedure and attempted to
develop an ML model with the inclusion of variables such as demographics (gender, age,
race, ethnicity), the number of days a patient had been hospitalized before placement of
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a central line, laboratory and vital values (WBC, neutrophil, hemoglobin, temperature),
and history of comorbidities (smoking, heart failure, chronic kidney disease (CKD), renal
failure, sepsis, valvular disease, diabetes, arrhythmia, presence of a stoma, tumor, cirrhosis,
trauma, peptic ulcer disease, peripheral vascular disease). The authors employed three
machine learning classifiers, XGBoost, logistic regression and decision tree, to evaluate
their performance in terms of AUROC and statistical analysis. In this study, XGBoost was
reported to outperform the other two classifiers for the ability to predict CLABSIs with
an AUROC of 0.762. The most important subset of features for the CLABSI prediction
in the XGBoost model was age, race, temperature, hemoglobin, WBC, neutrophil, and
any comorbidity, history of sepsis, chronic kidney disease, stoma, renal failure, valvular
disease and previous CLABSI [136]. Similarly, a predictive model was developed based
on retrospective data of 70,218 unique patients from a healthcare system which included
intrinsic risk factors including age, sex, history of CLABSI, history of immunodeficiency
in general, HIV, leukemia, lymphoma, and neutropenia as well as extrinsic risk factors
such as chlorhexidine bathing non-adherence (defined as cumulative missed days), routine
bathing non-adherence (defined as cumulative missed days), days in hospital prior to
placement of the central venous line (CVL), device days of having any CVL, device days
for specific CVLs (peripheral, internal jugular, port, femoral, tunneled, or non-tunneled),
device days cumulative of all CVLs, and parenteral nutrition. Having tested both models,
the authors indicated the random forest model to have a better performance compared to
logistic regression and identified age, number of days the patient had any CVL, and the
cumulative count of all days the patient had for all CVLs to be the most reliable variables in
the prediction of a CLABSI [137]. A comparative predictive analysis has also been reported
in literature, in which variables of six different severities of illness scores calculated on
the first day of ICU admission with their components and comorbidities from 57,786
patients were included. Predictive models were created for in-hospital mortality, central
line placement and CLABSI as outcomes using classifiers including logistic regression,
gradient boosted trees and deep learning. This study has proved that the classifier using
logistic regression for predicting CLABSI performed with an AUC of 0.722, and the classifier
using deep learning had the highest AUC for mortality followed by central line replacement
with AUC values of 0.885 and 0.816, respectively [138]. Another recent research group
from Boston Children’s Hospital built an ML model for the prediction of impending
CLABSIs in 7468 hospitalized cardiac patients and indicated that the model could predict
25% of positive blood cultures with the major predictors being prior history of infection,
elevated maximum heart rate, elevated maximum temperature, elevated C-reactive protein,
exposure to parenteral nutrition and use of alteplase for central venous catheter (CVC)
clearance [139]. These studies among others demonstrate models for identifying patients
who will develop CLABSIs and highlight that the early identification of these patients has
important implications for quality, cost and outcome improvements.

3.2.4. Surgical Site Infections (SSIs)

Surgical site infections (SSIs) are among the most common types of postoperative com-
plications associated with substantial morbidity and mortality, prolonged hospital stay, and
consequent financial burden to healthcare systems worldwide [140]. Expectedly, several
groups have applied ML to create predictive models for SSIs [141–146]. In 2021, Petrosyan
et al. utilized heath administrative datasets to develop an efficient three-stage algorithm
to identify SSIs within 30 days after surgery. In particular, the authors have developed
random forest algorithm to perform a preliminary screening of variables followed by the
high-performance logistic regression approach to select top 30 most important predictors
for SSIs with point system or risk scores. Using datasets including physician procedure
claims, hospital (ICD-10) codes and physician (ICD-9) diagnostic codes, the authors were
able to demonstrate a high performance of the random forest algorithm for the prediction
of SSIs with a high degree of accuracy [147]. In more recent research published in 2023, Wu
et al. described the development of an ML model for the detection of SSIs following total
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hip and knee arthroplasty in which nine XGBoost models were developed and validated to
identify incisional SSIs, organ space SSIs and complex SSIs using administrative data and
electronic medical records free text data. With data from 16,561 total knee arthroplasty and
10,799 primary total elective hip arthroplasty patients, the authors were able to predict SSIs
with XGBoost models achieving a high performance with an ROC AUC of 0.906, and ML
models were proposed for the automated detection of complex SSIs [148]. Similarly, Chen
et al. utilized perioperative factors from a total of 4019 patients who received a lumbar
internal fixation surgery to develop ML models for the prediction of SSI following posterial
lumbar spinal surgery. In this study, the authors screened specific variables using logistic
regression analysis with three ML algorithms, Lasso regression analysis, support vector
machine and random forest, and identified four predictors associated with SSIs including
Modic changes, sebum thickness, hemoglobin and glucose levels. By developing a predic-
tion model, the authors reported an ROC AUC value of 0.986 and suggested that the model
can help clinicians simplify the monitoring and prevention of SSIs [149]. While research
continues, several systems are already in use in healthcare. For instance, the University
of Iowa Hospitals & Clinics have utilized ML to reduce surgical site infections by 74%
over the past 3 years using Data Analytics for Safe Healthcare (DASH) analytics systems.
The hospital is using the high-definition care platform (HDCP) that integrates with the
hospital’s EHRs to assess the potential risks and predict SSIs before they occur [150].

3.2.5. Sepsis

In sepsis, the timeliness of detection of an incidence in progress is a crucial fac-
tor in the outcome for the patient. As for the AI-aided detection of several infections
which occur in the ICU, EHRs can be used as an effective tool for building ML models
to improve the timeliness of sepsis detection. So far, a number of studies have incorpo-
rated ML models trained from data in individual patient EHRs for the early detection
of sepsis [151–156]. Further to these studies, Wang et al. extracted and evaluated 55 fea-
tures from the electronic medical record data of a total of 4449 infected patients, and they
applied a random forest algorithm to predict the onset of sepsis. While the authors were
able to determine features including neutrophils %, D-Dimer, neutrophils, eosinophils %,
lymphocytes %, albumin, WBC, direct bilirubin, potassium, calcium and cholinesterase
among others to be of importance in the predictive model of sepsis events, the authors also
reported an ROC AUC of 0.91, indicating the good predictive ability of the established ML-
based model for sepsis patients in Chinese hospitals [157]. In a separate study, Lauritsen
et al. collected retrospective data from multiple Danish hospitals over a seven-year period
and compared three different approaches for early sepsis detection: a GB-Vital model, a
non-sequential MLP model with thousands of features and a sequential CNN-LSTM model
with an equal number of features. In this study, the authors demonstrated a performance
ranging from an AUROC of 0.856 3 h before sepsis onset to an AUROC of 0.756 24 h before
sepsis onset [158]. Furthermore, AI algorithms have also been developed for the early
diagnosis of sepsis in the ICU using real-time data, which have been indicated to have a
better performance than SOFA score in sepsis diagnosis, which is commonly regarded as
highly sensitive and predictive in the diagnosis of sepsis [159]. Similarly, Fagerström et al.
developed a LiSep LSTM; a long short-term memory neural network using 59,000 ICU
patient data and showed an AUROC 0.8306 for sepsis prediction [160]. The characteristics
of the studies are listed in the table below (Table 4).
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Table 4. The characteristics of the studies are included concerning the application of artificial intelligence algorithms to the prediction, surveillance and prevention
of hospital-acquired infections.

Authors
(Year) Dataset Input Model/Analysis Objective Results

Liang et al. [129]
(2022)

Multiparameter Intelligent
Monitoring in Intensive
Care (MIMIC)-III dataset

42 VAP risk factors at admission and
routinely measured the vital
characteristics and laboratory results
from 38,515 ventilation sessions

Random forest compared
to clinical pulmonary
infection score
(CPIS)-based model

Early prediction of
ventilator-associated
pneumonia in critical care
patients

AUC of 84% in the validation, 74%
sensitivity and 71% specificity 24 h
after intubation

Giang et al. [130]
(2021)

Multiparameter Intelligent
Monitoring in Intensive
Care (MIMIC)-III dataset

Data from 6126 adult ICU encounters

Five different ML models
trained: logistic
regression, multilayer
perceptron, random
forest, support vector
machines, and gradient
boosted trees

Prediction of
ventilator-associated
pneumonia with ML

The highest performing model
achieved an AUROC value of 0.854

Samadani et al. [131]
(2023) Philips eRI dataset 9204 presumed VAP events

XGBoost gradient
boosting algorithm,
random forest, logistic
regression, ADABoost,
KNN

Early prediction and
hospital phenotyping of
ventilator-associated
pneumonia

The model predicts the
development of VAP 24 h in
advance with an AUC of 76% and
AUPRC of 75%

Jeon et al. [132]
(2023)

SNU-SMG Boramae
Medical Center database

816 patient data including the period
from hospital admission to ICU
admission, age, APACHE II scores,
PaO2/FiO2 ratio, history of chronic
respiratory disease, history of
cerebrovascular accident (CVA) or
dementia, mechanical ventilation, use
of vasopressors

Logistic regression with
L2 regularization,
gradient-boosted decision
tree (LightGBM),
multilayer perceptron
(MLP)

ML-based prediction of
in-ICU mortality in
pneumonia patients

ML models significantly
outperformed the Simplified Acute
Physiology Score II (AU-ROC:
0.650 vs. 0.820 for logistic
regression vs 0.827 for LightGBM
0.838 for MLP

Wang et al. [133]
(2023)

MIMIC-IV and eICU
databases

MIMIC-IV (n = 4697) and eICU
(n = 13,760) databases, six variables
included: metastatic solid tumor,
Charlson Comorbidity Index,
readmission, congestive heart failure,
age, and Acute Physiology Score II

Logistic regression,
decision tree, random
forest, multilayer
perceptron,
XGBoost

Prediction of mortality in
pneumonia patients on
intensive care unit
admission

AUC value ranged in predicting
1-year and hospital mortality were
0.784–0.797 and 0.691–0.780,
respectively
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Table 4. Cont.

Authors
(Year) Dataset Input Model/Analysis Objective Results

Wang et al. [134]
(2023)

Medical Information Mart
for Intensive Care-III
(MIMIC-III) database

786 VAP incidences with traumatic
brain injury (TBI) patients

Random forest, XGBoost
and AdaBoost

Development of
algorithms for prediction
of ventilator associated
pneumonia in traumatic
brain injury patients

The random forest performed the
best on predicting VAP in the
training cohort with AUC of 1.000.
AdaBoost performed the best on
predicting VAP in the validation
cohort with a AUC of 0.706.

Rahmani et al. [136]
(2022)

National longitudinal
electronic health records

Demographics, number of days a
patient had been hospitalized before
placement of a central line, laboratory
and vital values (n = 27,619)

XGBoost, logistic
regression, decision tree

Early prediction of central
line associated
bloodstream infection
using ML

XGBoost was the highest
performing model with an AUROC
of 0.762 for CLABSI risk prediction
at 48 h after the recorded time for
central line placement

Beeler et al. [137]
(2018)

Indiana University Health
Academic Health Center
(IUH AHC) database

Intrinsic and extrinsic risk factors
(n = 70,218)

Logistic regression and
random forest

ML-based assessment of
patient risk for central
line-associated bacteremia

Random forest had AUROC of 0.82,
while AUROC curve for the logistic
regression model was 0.79

Parreco et al. [138]
(2018)

Multiparameter Intelligent
Monitoring in Intensive
Care III database

Variables included six different
severities of illness scores calculated
on the first day of ICU admission with
their components and comorbidities.
The outcomes of interest were
in-hospital mortality, central line
placement, and CLABSI (n = 57,786)

Logistic regression,
gradient boosted trees,
and deep learning.

Prediction of central
line-associated
bloodstream infections
and mortality using
supervised ML

Classifiers using deep learning
performed with the highest AUC
for mortality, 0.885 and central line
placement, 0.816. The classifier
using logistic regression for
predicting CLABSI performed with
an AUC of 0.722

Bonello et al. [139]
(2022)

Boston Children’s Hospital
database

Patient-level risk factors,
encounter-level risk factors,
demographics, vital signs
measurements from the preceding 24 h,
recent course-related risk
factors, laboratory
values and CVC-associated risk factors
(n = 7468)

Generalized linear
modeling, random forest,
lasso regression

Prediction of impending
CLABSI infections in
hospitalized cardiac
patients

ML predicted 25% of patients with
impending CLABSI with an FPR of
0.11% and AUC of 0.82
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Table 4. Cont.

Authors
(Year) Dataset Input Model/Analysis Objective Results

Hu et al. [141]
(2015)

Surgical patient database at
the University of Minnesota
Medical Center

Clinical data included six data types:
demographics, diagnosis codes, orders,
lab results, vital signs, and
medications. Demographics included
each patient’s gender, race, and age at
the time of surgery

Single-task learning,
Hierarchical classification,
offset method,
propensity-weighted
observations (PWO),
multi-task learning with
penalties (MTLP), partial
least squares regression
(PLS)

Automated detection of
postoperative
complications using EHR
data

The models demonstrated high
detection performance, which
ensures the feasibility of
accelerating manual chart review
(MCR)

Kuo et al. [142]
(2018)

Kaohsiung Chang Gung
Memorial Hospital
database

Dataset including 1836 patients with
1854 free-flap reconstructions and 438
postoperative SSIs

Feed-forward artificial
neural network (ANN)
and logistic regression
(LR) models

Artificial neural network
approach to predict
surgical site infection after
free-flap reconstruction in
patients receiving surgery
for head and neck cancer

ANN had a significantly higher
AUC (0.892) of postoperative
prediction and AUC (0.808) of
pre-operative prediction than LR

Sohn et al. [143]
(2017)

American College of
Surgeons National Surgical
Quality Improvement
Program (ACS-NSQIP)
cohort

Cohort data

Bayesian network
coupled with natural
language processing
(NLP)

Detection of clinically
important colorectal
surgical site infection

Bayesian network detected
ACS-NSQIP-captured SSIs with a
receiver operating characteristic
AUC of 0.827

Soguero-Ruiz et al.
[144] (2015)

EHR of the Department of
Gastrointestinal Surgery at
the University Hospital of
North Norway

A cohort based on relevant
International Classification of Diseases
(ICD10) or NOMESCO Classification
of Surgical Procedures (NCSP) codes
related to severe post-operative
complications (101 cases and 904
controls)

Gaussian process (GP)
regression, support vector
machine (SVM)

Data-driven temporal
prediction of surgical site
infection

Real-time prediction and
identification of patients at risk for
developing SSI was shown
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Table 4. Cont.

Authors
(Year) Dataset Input Model/Analysis Objective Results

Mamlook et al. [145]
(2023)

American College of
Surgeons’ National Surgical
Quality Improvement
Program (ACS
NSQIP) database

Data from 2,882,526 surgical
procedures

Logistic regression (LR),
naïve Bayes (NB), random
forest (RF), decision tree
(DT), support vector
machine (SVM), artificial
neural network (ANN),
and deep neural
network (DNN)

Prediction of surgical site
infections using patient
pre-operative risk and
surgical procedure factors

DNN model offers the best
predictive performance with
10-fold compared to the other 6
approaches considered (area under
the curve 0.8518, accuracy 0.8518,
precision 0.8517, sensitivity 0.8527,
F1-score 0.8518)

Cho et al. [146]
(2023)

Samsung Medical Center
clinical data
warehouse (CDW)

Clinical data

Python, Tensorflow,
Keras, Scikit-learn
libraries, random forest
(RF), gradient boosting
(GB), and neural network
(NN) with or without
recursive feature
elimination (RFE)

Development of ML
models for the
surveillance of colon
surgical site infections

NN with RFE using 29 variables
had the best performance with an
AUC of 0.963. PPV of 21.1%,
sensitivity of 95%

Petrosyan et al. [147]
(2021)

The Ottawa hospital
database

Patients aged 18 years and older who
underwent surgery, included in the
American College of Surgeons
National Surgical Quality
Improvement Program (NSQIP)
data collection

Random forest algorithm,
high-performance logistic
regression

Prediction of
postoperative surgical site
infection with
administrative data

Final model, including
hospitalization diagnostic,
physician diagnostic and
procedure codes, demonstrated
excellent discrimination (C
statistics, 0.91, 95% CI, 0.90–0.92

Wu et al. [148]
(2023)

Calgary, Canada acute care
hospital database

Cohort included adult patients
(age ≥ 18 years) who underwent
primary total elective hip (THA) or
knee (TKA) arthroplasty

XGBoost models

ML-aided detection of
surgical site infections
following total hip and
knee arthroplasty

XGBoost models using a
combination of administrative data
and text data to identify complex
SSIs achieved the best performance,
with F1 score of 0.788, ROC AUC
of 0.906
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Table 4. Cont.

Authors
(Year) Dataset Input Model/Analysis Objective Results

Chen et al. [149]
(2023)

The First Affiliated Hospital
of Guangxi Medical
University, Department of
Spine and Osteopathy
Ward database

Patients who underwent lumbar
internal fixation surgery at (n = 4019)

Lasso regression analysis,
support vector machine,
random forest

Application of ML to
predict surgical site
infection after lumbar
spine surgery

C-index of the model was 0.986,
ROC AUC curve 0.988

Wang et al. [157]
(2021]

Observational cohort from
the Intensive Care Unit of
the First Affiliated Hospital
of Zhengzhou University

Electronic medical record data, a set of
55 features (variables) from 4449
infected patients

Random forest
Application of ML for
accurate prediction of
sepsis in ICU patients

ROC AUC was 0.91 with 87%,
sensitivity, 89% specificity for
sepsis prediction

Lauritsen et al. [158]
(2020)

Retrospective data from
multiple Danish hospitals

EHR, including biochemistry,
medicine, microbiology, medical
imaging, and the patient
administration system (PAS)

Combination of a
convolutional neural
network and a long
short-term memory
network

Early detection of sepsis
utilizing deep learning on
EHR event sequences

Model performance ranged from
AUROC 0.856 (3 h before sepsis
onset) to AUROC 0.756 (24 h before
sepsis onset)

Yuan et al. [159]
(2020)

Prospective open-label
cohort study conducted at
Taipei Medical University
Hospital

Data including the vital signs,
laboratory results, examination reports,
text data, and image of every ICU
patient

Logistic regression,
support vector machine,
XGBoost, and neural
network

Development an AI
algorithm for early sepsis
diagnosis in the intensive
care unit

Established AI algorithm achieved
accuracy of 82%, sensitivity of 65%,
specificity of 88%, precision = 67%,
F1 = 0.66 ± 0.02. AUROC was 0.89

Fagerström et al. [160]
(2019)

Medical Information Mart
for Intensive Care database

Vital signs, laboratory data, and
journal entries (n = 59,000 ICU
patients)

LiSep LSTM; a long
short-term memory
neural network, Keras
with a Google TensorFlow

Application of ML
algorithm for early
detection of septic shock

LiSep LSTM outperforms a less
complex model, using the same
features and targets, with an
AUROC 0.8306
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3.2.6. Clostridium difficile Infection (CDI) and Complications

Despite the imminent burden of HAIs worldwide, the application of ML to this field is
still not well explored. In this context, surveillance and patient risk stratification using EHR
data remains vital. CDIs represent a prevalent condition which often arises in healthcare
settings. In a study based at two large academic health centers, a data-driven approach was
undertaken to develop risk prediction models for CDI that work well across institutions.
While this study demonstrated that the L2 models achieved AUROC values between 0.75
and 0.82, the authors importantly noted that many of the top predictive factors differed
between facilities [161]. Panchavati et al. also performed a comparative analysis of ML
approaches to predict C. difficile infection in hospitalized patients by incorporating data
inputs such as vital signs, laboratory tests, active medication treatment and comorbid
medical conditions. Using XGBoost, deep long short-term memory neural network, and
one-dimensional convolutional neural network, the authors demonstrated that XGBoost
achieved the highest performance with an AUROC of 0.815 for predicting in-hospital CDI
after only 6 h of hospital stay [162]. On the contrary, in a study by Escobar et al. evaluating
more than 150 potential predictors using multiple techniques including ML, despite a large
multi-center cohort and granular electronic medical record data, none of the developed
models were able to predict recurrent CDI [163].

Complications of CDI can be listed as ICU admission, development of toxic megacolon,
need for colectomy and death. Due to the complexity of treatment regimens for patients
with CDI, risk stratification models have so far been investigated. In their study, Li et al.
attempted to investigate the applicability of the ML approach for patient risk stratification
for complications in adult patients. Using selected patient features including admission
details, daily hospitalization details, presence at the hospital location during the 3-day
period, current hospitalization information such as high-creatinine flag and metastatic
cancer comorbidity, prior CDI, proton pump inhibitor use, Charlson–Deyo Comorbidity
Index score, concurrent non-CDI antimicrobial use, solid organ transplant as well as
continuous vital signs such as respiratory rate among 1118 cases of CDI, the authors
reported an AUROC of 0.69 of the developed model for the diagnosis of CDI complication.
The authors reported an improved performance of AUROC 0.90 using data extracted 2 days
after CDI diagnosis. This study proposed to accurately stratify CDI cases according to their
risk of developing complications [164].

3.2.7. Multidrug-Resistant (MDR) Pathogens

Colonization or infection by MDR microorganisms is a major threat for the vulnerable
patient population admitted to the ICU. MDR confirmation tests by the microbiology
laboratory can take up to 48 h, and hence several AI approaches have been applied to
predict risk factors during the first 48 h of ICU admission. In a study by Mora-Jimenez et al.
in 2021, the authors considered clinical and demographic features, the use of mechanical
ventilation and antibiotics taken by the patients during the time interval. By applying
feature selection strategies between MDR and non-MDR patient episodes, the authors were
able to define statistically significant features such as SAPS III, Apache II score, age and
department of origin for predicting the development of an infection by an MDR pathogen
in the ICU [165]. Similarly, in 2022, Liang and colleagues have constructed a carbapenem-
resistant Gram-negative bacteria (CR-GNB) carriage prediction model for the ICU. By
including 1385 patients with positive CR-GNB cultures and 1525 patients with negative
cultures, the authors used 16 variables in the multivariable logistic regression model
and built three ML models for all variables included in the study such as demographics,
primary disease, comorbidity and clinical characteristics data. The authors reported a
better performance of random forest compared to XGBoost and decision tree models.
Furthermore, the authors were able to successfully predict 74 cases out of 86 to have a
positive CR-GNB culture with an overall accuracy of 85.92%. These studies highlight
the possible application of ML models for the prediction of the colonization or infection
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occurrence within a one-week period in the ICU, guiding medical staff in real time to
identify high-risk groups in advance [166].

3.2.8. Hand Hygiene

The hands of healthcare personnel are known to be a primary source of transmis-
sion of HAIs, which can be effectively reduced by both practicing hand hygiene (HH)
and adhering to HH guidelines [167]. While it can be seen as a simple infection pre-
vention and control strategy, the application of HH can be problematic in the hospital
setting. Most studies focusing on HH use the Internet of Things (IoT) to enhance healthcare
workers’ self-awareness for HH. A wide range of studies utilized the IoT for monitoring
HH, such as the automatic and electronically assisted hand hygiene surveillance system
(AHHMS) in hospitals, ICUs, wards and inpatient departments. Among these studies,
most of them implemented a cloud-based server and a wearable device (electronic badge,
tag or bracelet) with or without automatic feedback (reminder) to improve the HH com-
pliance. In addition, Wi-Fi dispensers and counting systems are also being used in HH
improvement [168–171]. In terms of HH, some studies have attempted to use AI training
systems as a cost-effective method in monitoring and improving the quality and quantity
of HH [172,173]. These studies have suggested that AI-based training could improve the
quality of HH, yet the compliance still remains to be defined. Recently, Greco et al. adopted
a CNN to automatically analyze, in real time, the sequence of images acquired by a camera
to evaluate the quality of handwashing procedures in healthcare facilities [174]. Similarly,
Nagar and colleagues suggested the use of CNN and computer vision to detect an indi-
vidual’s microorganism level by monitoring their hand-washing technique in an effort to
prevent HAIs. Via the analysis of hand movements, the model—which aimed to ensure
that each hand wash step was completed according to the WHO guidelines—has been
shown to have an accuracy of 96.87% for hand detection, 93.3% for microorganism detection
and 85.5% for the compliance system, respectively [175]. The automatic detection of hand
hygiene using ML models have also been investigated in further recent studies [176–178].

4. Future Perspectives

While AI-aided tools are being gradually implemented in the infectious diseases,
techniques termed Explainable Artificial Intelligence (XAI) for all fields such as medicine,
healthcare, nursing, and engineering have recently emerged [179–181]. XAI is based on
AI and ML that aim to make the decision-making process of AI systems understandable
and interpretable by humans, since the deep learning models are often considered “black
boxes” due to their complexity, making it challenging to comprehend how they arrive at
specific predictions or decisions. It needs to be pointed out that in the near future, XAI will
play a crucial role in the prevention of HAIs in terms of predictive analytics, early detection
of HAI, risk stratification, decision support and patient education.

It is important to note that AI-based modeling for the diagnosis and prevention of
infections critically depends on the availability of healthcare data that are inherently multi-
modal, including EHR, personal health records, clinical data, medical images, molecular
and multi-omics data. Although there is a plethora of existing shared scientific databases,
the main forthcoming of this field is the limited accessibility of genomic, proteomic, metage-
nomic, and epidemiological data availability generated by researchers. The unavailability
of multimodal public data also poses as a limitation that hinders the development of corre-
sponding AI-based research. The leveraging of big healthcare data also requires proper
management, storage, and analysis, which imposes hinderances associated with big data
handling and digital healthcare with potential impacts on data privacy and security, quality
and standardization.

On the other hand, the expansion of AI systems brings along a number of other issues,
among which bias represents a major one. AI-based decision making has the potential
to magnify the existing biases and transform new categories and conditions, which have
the potential to lead to new types of bias. AI-based research is highly dependent on data



Diagnostics 2024, 14, 484 28 of 37

quality and completeness, robust reference standards as well as expert interpretation of
outputs. Otherwise, errors that are introduced during the ML training process may lead
to false negatives, misclassification, or lack of applicability. Depending on how data are
collected and the learning algorithms are designed, ML results have the potential to either
poorly classify new data (underfitting) or lose the ability to recognize similar patterns in
new data (overfitting). AI’s application in healthcare also creates a range of legal issues of
transparency, accountability, consensus, and secrecy.

5. Conclusions

AI applications are inevitably becoming a part of modern healthcare with a high
potential to aid caretakers and decision-makers in the fields of laboratory and imaging
diagnosis, antimicrobial stewardship, discovery of antimicrobials, microbiome-based trans-
lational interventions, infectious disease surveillance, prediction and prevention. The mass
digitalization of health records making data accessible and advances in computer power
has been instrumental and will remain crucial for future research and development in the
field. Although AI is commonly regarded as a threat for “common” jobs, its integration into
healthcare should instead be seen as an opportunity for improved patient care and infection
management, increased survival, better allocation of staff and resources and lowered costs
in healthcare systems.
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Abbreviations

AFB acid-fast bacilli
AFLP amplified fragment length polymorphisms
AHHMS automatic and electronically-assisted hand hygiene surveillance system
AI artificial intelligence
ALP alkaline phosphatase
ALT alanine transaminase
AMCA amplification and melting curve analysis
AMP antimicrobial peptide
AMR antimicrobial resistance
APAS automated plate assessment system
ARDS acute respiratory distress syndrome
AST aspartate aminotransferase
AuNPs gold nanoparticles
AUROC area under the receiver operator curve
BiLSTM bidirectional long-term short memory
CAUTI catheter-associated urinary tract infection
CDC Centers of Disease Control and Prevention
CDI C. difficile infection
CFPNet-M Channel-wise Feature Pyramid Network for Medicine
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CFU Colony-forming unit
CKD chronic kidney disease
CLABSI central line-associated bloodstream infection
CNN convolutional neural network
COPD chronic obstructive pulmonary disease
CPM cross-point method
CR-GNB carbapenem-resistant Gram-negative bacteria
CRP C-reactive protein
CSF cerebrospinal fluid
CT computed tomography
CVC central venous catheter
CVCBSI central venous catheter bloodstream infection
CVL central venous line
CX-R chest X-ray
DASH data analytics for safe healthcare
DNN dense neural network
DT decision tree
ET extremely randomized trees
Faster R-CCN Faster region-based CNN
FCN fully convolutional neural network
GAN generative adversarial network
GCS Glasgow Coma Scale
GGT gamma-glutamyl transferase
GPC Gaussian process classifier
HAI hospital-acquired infection
HDCP high-definition care platform
HER electronic health records
HH hand hygiene
ICU intensive care unit
IoT Internet of Things
KNN k-nearest neighbors
LC/MS-MS liquid chromatography with tandem mass spectrometry
LCR lymphocytes-to-blood CRP ratio
LDA linear discriminant analysis
LDC linear discriminant classification
LDC linear discriminant classification
LDH lactate dehydrogenase
LR logistic regression
LR logistic regression
LSP laser-scribed graphene
LSTM long short-term memory
MALDI-TOF matrix-assisted laser desorption ionization–time of flight mass spectrometry
Mask R-CNN mask regional-convolutional neural network
MAT microscopic agglutination tests
MCHC mean corpuscular hemoglobin concentration
MDR multidrug resistant
MIC minimum inhibitory concentration
MIMIC Multiparameter Intelligent Monitoring in Intensive Care
ML machine learning
MLP multilayer perceptron
MLR multiple logistic regression
MLST multilocus sequence typing
MODE multi-objective differential evolution
MPNN message-passing neural network
MRSA methicillin-resistant Staphylococcus aureus
NB naïve Bayes
NLP natural language processing
NLR neutrophil-to-lymphocyte ratio
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NN neural network
NNC nearest neighbor classification
NPA negative percent agree
PaO2/FiO2 partial pressure of the arterial oxygen/fraction of inspired
PCA plate count agar
PFGE pulse field gel electrophoresis
PPA positive percent agree
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RAPD random amplified polymorphic DNA
RCTA random cover targets algorithm
RF random forest
RFE recursive feature elimination
RT–PCR reverse transcriptase polymerase chain reaction
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SERS surface-enhanced Raman scattering
SGDC stochastic gradient descent classifier
SHAP SHapley Additive exPlanations
SOFA sequential organ failure assessment
SpO2 oxygen saturation
SR soft-max regression
SSI surgical site infection
suPAR blood-soluble urokinase-type plasminogen activator receptor
SVC support vector machine for classification
SVM-LK support vector machine with linear kernel
SVM-RK support vector machine with radial basis function kernel
SVM support vector machine
TB tuberculosis
VAP ventilator-associated pneumonia
ViTs Vision Transformers
WBC white blood cell count
WGS whole genome sequencing
XAI explainable artificial intelligence
XGBoost extreme gradient boosting
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