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Abstract: Increased attention has been given to MRI in radiation-free screening for malignant nodules
in recent years. Our objective was to compare the performance of human readers and radiomic feature
analysis based on stand-alone and complementary CT and MRI imaging in classifying pulmonary
nodules. This single-center study comprises patients with CT findings of pulmonary nodules who
underwent additional lung MRI and whose nodules were classified as benign/malignant by resection.
For radiomic features analysis, 2D segmentation was performed for each lung nodule on axial CT,
T2-weighted (T2w), and diffusion (DWI) images. The 105 extracted features were reduced by iterative
backward selection. The performance of radiomics and human readers was compared by calculating
accuracy with Clopper–Pearson confidence intervals. Fifty patients (mean age 63 +/− 10 years) with
66 pulmonary nodules (40 malignant) were evaluated. ACC values for radiomic features analysis
vs. radiologists based on CT alone (0.68; 95%CI: 0.56, 0.79 vs. 0.59; 95%CI: 0.46, 0.71), T2w alone
(0.65; 95%CI: 0.52, 0.77 vs. 0.68; 95%CI: 0.54, 0.78), DWI alone (0.61; 95%CI:0.48, 0.72 vs. 0.73; 95%CI:
0.60, 0.83), combined T2w/DWI (0.73; 95%CI: 0.60, 0.83 vs. 0.70; 95%CI: 0.57, 0.80), and combined
CT/T2w/DWI (0.83; 95%CI: 0.72, 0.91 vs. 0.64; 95%CI: 0.51, 0.75) were calculated. This study is the
first to show that by combining quantitative image information from CT, T2w, and DWI datasets,
pulmonary nodule assessment through radiomics analysis is superior to using one modality alone,
even exceeding human readers’ performance.

Keywords: CT; MRI; pulmonary nodule; artificial intelligence; radiomics

1. Introduction

Pulmonary nodules are defined as well- or poorly defined radiographic opacities
with a diameter ≤ 3 cm, surrounded by lung tissue [1,2]. Incidental pulmonary nodules
are frequently found on routinely performed computed tomography (CT) scans of the
chest. In the United States, they are detected in approximately 30% of chest CT [3]. In
addition, lung cancer screening programs using low-dose chest CT (LDCT) have become
more widespread, with detection rates as high as 51% [4,5]. Most studies report that less
than 10% of nodules are malignant [6]. The challenge is to distinguish between the more
common benign nodules that do not require follow-up and the much rarer malignant
nodules that need immediate treatment to achieve survival benefits.

Increased attention has also been given to the use of magnetic resonance imaging
(MRI) in the detection and screening of malignant nodules in recent years [7–9]. Turbo spin
echo (SE)-based and gradient echo (GRE)-based techniques are important MRI sequences
that are widely used to detect pulmonary nodules [10]. Motion artifacts due to respiration
and heartbeat pose a particular challenge. The problem is currently addressed using
a respiratory-navigated sequence with radial k-space acquisition, commonly known as
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MultiVane (Philips, Best, The Netherlands), fBLADE (Siemens, Erlangen, Germany), or
PROPELLER (GE, Milwaukee, WI, USA), which provides excellent T2 contrast as it is
insensitive to cardiac motion [11]. Besides the obvious advantage of radiation absence,
studies concluded that MRI has similar sensitivity for nodule detection, with sensitivity
and specificity even higher in malignant than in benign lesions compared to CT [12–15].
However, it remains a question of whether an MRI of the lungs could be used as a stand-
alone diagnostic tool or in combination with CT to classify pulmonary nodules.

Artificial intelligence has a long history in the field of pulmonary nodule detection
and classification dating back to the 1960s [16,17]. In 2012, Lambin and colleagues coined
the term radiomics to describe quantitative imaging feature extraction to achieve better
diagnostic performance [18]. Pathological studies have demonstrated increased hetero-
geneity within malignant pulmonary nodules, which are not visible to the naked eye on
radiological examination but can be quantified with radiomics [19–21]. Therefore, the
purpose of this study was to compare the performance of radiomic features analysis and
radiologists in classifying pulmonary nodules based on stand-alone and complementary
CT and MRI imaging.

2. Materials and Methods
2.1. Study Design and Sample

The study was approved by the medical–ethical committee, and informed consent was
waived because of the retrospective collection of study data (RWTH Aachen University
Hospital, Aachen, Germany). The study was performed in accordance with relevant guide-
lines and regulations and contemporary data protection laws. The entire cohort dataset
was acquired from April 2019 to February 2022, including institutional picture archiving
and communication system records (IntelliSpace PACS; Philips, Best, The Netherlands),
using a standardized query for patients with pulmonary nodules who underwent standard-
dose contrast-enhanced or non-enhanced chest CT scans and non-enhanced lung MRI.
A radiologist with 5 years of experience in thoracal imaging screened patients with at
least one pulmonary nodule who had undergone surgical resection and histopathologic
examination of the lesion to determine benignity/malignancy. No distinction was made
between primary or secondary lung malignancy. Exclusion criteria were as follows: (a) CTs
with a slice thickness of >3 mm; (b) MRIs with incomplete or missing axial diffusion-(DWI)
and T2-weighted (T2w) sequences; (c) pulmonary nodules with unclear histopathological
results. If multiple pulmonary nodes were detected on CT, only histopathologic examined
nodules were included in the study. For each patient, characteristics such as age, sex,
average diameter, and pulmonary lobe were determined. Figure 1 provides an overview of
the inclusion and exclusion criteria.

2.2. CT Parameters

All chest CTs were performed with 128-row spiral CT scanners (Somatom x.Site or
Somatom Force, Siemens Medical Systems, Erlangen, Germany). The scans were acquired
in a craniocaudal direction during a single-breath-hold either contrast-enhanced or non-
enhanced. If contrast-enhanced CT was performed, a 1.0 mL/kg body weight bolus of
iopromide 370 mg/mL (Ultravist, Bayer, Leverkusen, Germany) was injected intravenously
by a power injector with an acquisition time of 75 s. Table 1 shows further technical details.

2.3. MRI Parameters

All chest MRIs were performed according to a standardized protocol using a 1.5 Tesla
MRI system (Ambition or Ingenia, Philips, Best, The Netherlands) with a 32-element body
surface coil. The standardized protocol contained axial and coronal T2w MultiVane-XD
(MVXD), axial diffusion-weighted spin echo (SE), and axial T2w turbo spin echo (TSE) with
and without fat saturation. Table 1 describes the detailed parameters of the pulse sequences
used for further analysis in this study.
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Figure 1. Inclusion and exclusion criteria for the patient cohort.

Table 1. Technical data CT and MRI protocol.

Type of CT Scanner Somatom x.Site or Somatom Force, Siemens Medical System,
Erlangen, Germany

Orientation axial
Direction craniocaudal
Section thickness 1/0.7 mm or 3/2 mm
Tube voltage 120 kV
Pitch factor 0.6
Section collimation 128 mm

Type of MRI Scanner 1.5 T Ambition/Ingenia; Philipps Healthcare, Best,
The Netherlands

Pulse sequence type 2D T2w MVXD 2D DWI SE
Orientation axial axial
Acquisition matrix 448 × 78 160 × 155
Field of view 360 mm 380 mm
Section thickness 5 mm 5 mm
TR 2500 2463.1
TE 110 86.7
b-value 0 50, 400, 800
Breath compensation Respiratory triggering Respiratory triggering
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2.4. Image Segmentation

Two-dimensional manual segmentation in axial orientation was performed by a ra-
diologist with 5 years of experience in thoracal imaging, using ITK-SNAP 3.6.0 (www.
itksnap.org accessed on 26 July 2021) [22]. The segmentations delineated the visible bor-
ders of each pulmonary nodule in the pulmonary window of CT images, in T2w MVXD
sequences, and in DWI SE sequences at a b-value of 800 s/mm2. In DWI SE sequences, a
second segmentation of similar size was drawn in the dorsal subcutaneous fat tissue for
harmonization purposes. All segmentations were validated by a senior radiologist with
12 years of experience in thoracal CTs.

2.5. Radiomic Features

Radiomic features were extracted using a PyRadiomics 3.0.1 framework [23] and
based on feature definitions described by the Imaging Biomarker Standardization Initiative
(IBSI) [24]. They included first-order statistical features, shape-based features, and texture
features (gray level co-occurrence matrix, gray level run length matrix, gray level size zone
matrix, neighboring gray-tone difference matrix, and gray level dependence matrix). A
total of 105 radiomic features were extracted from each segmentation.

2.6. Development of a Prediction Model

Firstly, the radiomic features of CT imaging were evaluated for their value by differen-
tiating pulmonary nodules into benign or malignant. To reduce the number of features,
backward selection was employed, i.e., the prediction model was tasked to reduce the
105 features one by one, iteratively eliminating features with the lowest discriminatory
value until only six features remained. To account for data scarcity, patient-by-patient
leave-one-out cross-validation (LOOCV) was used. That is, the prediction model was
trained repeatedly by leaving out one patient from the training set and training with the
remaining set of patients until an independent prediction could be obtained for each patient.
The backward selection process was then repeated for radiomic features in T2w MVXD
sequences and again for DWI SE sequences at a b-value of 800 s/mm2. The three features
with the highest discriminatory value resulting from separate training with T2w MVXD
and DWI SE segmentations were then combined. The total accuracy of the six features
was evaluated in a test set consisting of images corresponding to T2w and DWI MRI scans.
Lastly, the two features with the highest discrimination value resulting from separate
training with segmentations from T2w MVXD, DWI SE, and CT imaging were combined,
and the total accuracy of the six features was evaluated in a test set consisting of images
corresponding to CT, T2w, and DWI scans.

2.7. Human Reader Analysis

For comparative purposes, the same 2D image slices used for radiomic feature extrac-
tion were presented to three radiologists with 4, 8, and 12 years of experience in evaluating
pulmonary nodules. Consistent with the radiomic analysis, the radiologists were presented
with the standalone CT, T2w, and DWI datasets, followed by image sets corresponding to
T2w and DWI as well as CT, T2w, and DWI, each in random order. They were requested to
classify each nodule as benign or malignant. In the event of an interrater discrepancy, the
majority vote was recorded.

2.8. Statistical Analysis

All the statistical analyses were performed using the Python packages SciPy 1.7.0 [25]
and NumPy 1.21.0 [26]. Confusion matrices were calculated for each model. The perfor-
mance of radiomics and human readers was compared by calculating accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value with Clopper–Pearson
confidence intervals.

www.itksnap.org
www.itksnap.org
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3. Results

In this study, 57 patients with ≥1 pulmonary nodule, chest CT and MRI scans, and
a histopathologic workup of the nodule were screened for eligibility. The final group
comprised 50 patients with a mean age of 63 years with a standard deviation of 10 years.
Female patients totaled 18/50 (36%). Within this group, 66 pulmonary nodules were found
with an average diameter of 0.9 cm. There was a slightly higher incidence in the right lung
with 17 (26%) in the right upper lobe, 7 (11%) in the right middle lobe, and 12 (18%) in the
right lower lobe compared to 18 (27%) in the left upper lobe and 12 (18%) in the left lower
lobe. Of the 66 pulmonary nodules, 26 (39%) were benign and 40 (61%) were malignant,
including 16 (24%) primary lung carcinomas and 24 (36%) solitary lung metastases. Table 2
summarizes the epidemiologic, clinical, and histological characteristics.

Table 2. Epidemiologic, clinical, and histological characteristics.

Cohort size, no. 50
Age (years), mean (SD) 63 (10)
Gender, no. (%)

Male 32 (64)
Female 18 (36)

Pulmonary nodules, no. 66
Diameter (cm), mean (SD) 0.9 (0.4)
Location, no. (%)

Right upper lobe 17 (26)
Right middle lobe 7 (11)
Right lower lobe 12 (18)
Left upper lobe 18 (27)
Left lower lobe 12 (18)

Histological typing, no. (%)
Benign nodule 26 (39)
Primary lung cancer 16 (24)
Solitary lung metastasis 24 (36)

All 66 pulmonary nodules were visible to radiologists on CT. By contrast, only
61 (92.4%) of the nodules were visible in the T2w-weighted axial MultiVane XD sequence,
and the five nodules that were not detectable turned out to be benign. Only 42 (63.6%) of the
nodules were recovered in the axial diffusion-weighted spin echo sequence, with nodule
detection in DWI associated with an increased likelihood of malignancy. The detection rate
is summarized in Table 3.

Table 3. Detectability of pulmonary nodules in given image datasets by human investigators.

Computed tomography (CT), no. (%) 66/66 (100)
T2w MVXD (T2W), no. (%) 61/66 (92.4)

Benign nodule 21/26 (80.8)
Malign (primary lung cancer or solitary lung metastasis) 40/40 (100)

DWI SE (b-value 800 s/mm2), no. (%) 42/66 (63.6)
Benign nodule 7/26 (26.9)
Malign (primary lung cancer or solitary lung metastasis) 35/40 (87.5)

Figure 2 shows illustrative examples of CT images and T2-weighted and DWI MRI
sequences of a benign nodule, primary lung cancer, and solitary lung metastasis.

The backward selection process redacted the initial 105 radiomic features down to six
features with the highest discriminatory values for benign and malignant in each image dataset
(CT, T2w sequence, and DWI sequence), as shown in Table 4. For the combined analysis of
T2w and DWI datasets, the top three radiomic features from the T2w and DWI datasets alone
were used. For the combined analysis of CT, T2w, and DWI datasets, the top two radiomic
features from the datasets of CT alone, T2w alone, and DWI alone were used, respectively.
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Table 4. Top six radiomic features ranked by observed importance in single-image datasets.

CT Alone T2w Alone DWI Alone

CT, T2w & DWI
1. Difference Variance 1. 10th percentile 1. Mean

T2w and DWI2. Correlation 2. Skewness 2. Long Run Low Gray Level
Emphasis

3. Coarseness 3. Dependence Entropy 3. Gray Level Non Uniformity

4. Complexity 4. Total Energy 4. Small Area Emphasis

5. Zone Entropy 5. Interquartile Range 5. Dependence Non Uniformity
Normalized

6. 90th percentile 6. Dependence Non
Uniformity Normalized

6. Large Dependence High Gray
Level Emphasis

A description of radiomic features with the highest discriminatory values found in
each dataset is shown in Table 5.
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Table 5. Description of radiomic features with the highest discriminatory values in this study [24].

Difference Variance
First-order feature measuring heterogeneity by placing a higher
weight on differing intensity level pairs that deviate more from
the mean.

Correlation
Gray level co-occurrence matrix (GLCM) feature measuring the
linear dependency of gray level values on their respective voxels
in the GLCM.

Coarseness
Neighboring gray tone difference matrix (NGTDM) feature
measuring the average difference between the center voxel and its
neighborhood.

Complexity NGTDM feature measuring the number of primitive components
in the image.

Zone Entropy GLCM feature measuring the uncertainty/randomness in the
distribution of zone sizes and gray levels.

90th percentile First-order feature measuring the 90th percentile of voxel
intensities within the image region.

10th percentile First-order feature measuring the 10th percentile of voxel
intensities within the image region.

Skewness First-order feature measuring the asymmetry of the value
distribution about the mean value.

Dependence Entropy Gray level dependence matrix (GLDM) feature measuring the
randomness/variability of gray level dependencies in an image.

Total Energy First-order feature measuring the magnitude of voxel values
scaled by the volume of the voxel.

Interquartile Range First-order feature measuring the difference between the 75th and
25th percentile of the image array.

Dependence Non
Uniformity Normalized

GLDM feature measuring the similarity of dependence
throughout the image, with a lower value indicating more
homogeneity among dependencies in the image.

Mean First-order feature measuring the average gray level intensity
within the ROI.

Long Run Low Gray Level
Emphasis

Gray level run length matrix (GLRLM) feature measuring the joint
distribution of long-run lengths with lower gray-level values.

Gray Level Non Uniformity GLRLM feature measuring the similarity of gray-level intensity
values in the image.

Small Area Emphasis
Gray level size zone matrix (GLSZM) feature measuring the
distribution of small size zones, with a greater value indicative of
smaller size zones and more fine textures.

Large Dependence High
Gray Level Emphasis

GLDM feature measuring the joint distribution of large
dependencies with higher gray-level values.

The radiomic features analysis of the separate modalities and sequences showed
the highest accuracy for the CT dataset (ACC 0.68; 95% CI: 0.56, 0.79), followed by the
T2w (ACC 0.65; 95% CI: 0.52, 0.77) and DWI datasets (ACC 0.61; 95% CI: 0.48, 0.72).
Human readers achieved the highest accuracy based on DWI (ACC 0.73; 95% CI: 0.60, 0.83),
followed by T2w (ACC 0.68; 95% CI: 0.54, 0.78) and CT (ACC 0.59; 95% CI: 0.46, 0.71).
When the T2w and DWI datasets were available for combined radiomic features analysis,
the accuracy increased slightly (ACC 0.73; 95% CI: 0.60, 0.83) and when CT and MRI image
data were included, the accuracy of radiomic features analysis further increased (ACC 0.83;
95% CI: 0.72, 0.91). By contrast, radiologists’ accuracy remained essentially the same for the
combined image information of T2w and DWI (ACC 0.70; 95% CI: 0.57, 0.80) compared
to T2w or DWI alone. Given the combined image information from CT, T2W, and DWI,
radiologists’ accuracy displayed no improvement (ACC 0.64; 95% CI: 0.51–0.75). Table 6
provides a detailed comparison between radiomic analysis and radiologists’ results.
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Table 6. Comparison between radiomic features analysis and radiologists’ results based on the image
data provided. The 95% confidence interval is shown in brackets.

CT Alone T2w Alone DWI Alone T2w/DWI CT/T2w/DWI

R
ad

io
m

ic
an

al
ys

is Sensitivity 0.68 (0.51–0.81) 0.85 (0.70–0.94) 0.43 (0.27–0.59) 0.68 (0.51–0.81) 0.95 (0.83–0.99)
Specificity 0.69 (0.48–0.86) 0.35 (0.17–0.56) 0.89 (0.70–0.98) 0.81 (0.61–0.94) 0.65 (0.44–0.83)
Positive Predictive Value 0.77 (0.60–0.90) 0.67 (0.52–0.79) 0.85 (0.62–0.97) 0.84 (0.67–0.95) 0.81 (0.67–0.91)
Negative Predictive
Value 0.58 (0.39–0.76) 0.60 (0.32–0.84) 0.50 (0.35–0.65) 0.62 (0.44–0.78) 0.90 (0.67–0.99)

Accuracy 0.68 (0.56–0.79) 0.65 (0.52–0.77) 0.61 (0.48–0.72) 0.73 (0.60–0.83) 0.83 (0.72–0.91)

R
ad

io
lo

gi
st

s

Sensitivity 0.75 (0.59–0.87) 0.70 (0.55–0.83) 0.73 (0.56–0.85) 0.83 (0.67–0.93) 0.80 (0.64–0.91)
Specificity 0.35 (0.17–0.56) 0.62 (0.41–0.80) 0.73 (0.52–0.88) 0.50 (0.30–0.70) 0.39 (0.20–0.59)
Positive Predictive Value 0.64 (0.49–0.77) 0.74 (0.57–0.87) 0.81 (0.64–0.92) 0.72 (0.57–0.84) 0.67 (0.52–0.80)
Negative Predictive
Value 0.47 (0.25–0.71) 0.57 (0.37–0.76) 0.63 (0.44–0.80) 0.65 (0.41–0.85) 0.56 (0.31–0.79)

Accuracy 0.59 (0.46–0.71) 0.68 (0.54–0.78) 0.73 (0.60–0.83) 0.70 (0.57–0.80) 0.64 (0.51–0.75)

4. Discussion

Differentiating malignant from benign pulmonary nodules is a common diagnostic
challenge for radiologists. Recent advances in MRI for evaluating pulmonary nodules have
been increasingly used as a complementary or even stand-alone imaging modality to com-
puted tomography. At the same time, machine-learning tools have also been presented as
supporting tools for radiologists. Therefore, our objective was to compare the performance
of human readers to radiomic feature analysis based on stand-alone and complementary
CT and MRI imaging in classifying pulmonary nodules.

The study results show that the accuracy of radiomic feature analysis can increase if a
combination of CT, T2w, and DWI is used (ACC 0.83) instead of CT (ACC 0.68), T2w (ACC
0.65), or DWI (ACC 0.61) alone. Interestingly, combining CT and MRI image datasets (ACC
0.64) did not significantly improve accuracy in human readers compared to CT (ACC 0.59),
T2w (ACC 0.68), or DWI (ACC 0.73) alone. Each dataset consisted of images depicting the
same 66 lung lesions of which 26 were benign and 40 were malignant (16 primary lung
cancer and 24 solitary lung metastases). The mean diameter of the pulmonary nodules
was 0.9 cm (SD 0.4 cm), and the patients were 65 years old (SD 10 years) on average.
Based on these results, the supportive use of radiomic analysis in multimodal CT and
MRI assessment of pulmonary nodules should be considered and further investigated
to potentially improve radiologists’ assessments and decrease unnecessary biopsy rates
or resections.

Many studies have already demonstrated the value of analyzing radiomic features in
CT and MRI datasets in evaluating pulmonary nodules [27–32]. This study is the first to
show that by combining quantitative image information from CT, T2w, and DWI datasets
in a backward selection process, assessing pulmonary nodules through radiomics analysis
is superior to that of one modality alone, even exceeding human readers’ performance.

A decisive factor for the comparatively low performance of human readers in this
study is probably the small size of the nodules, with a mean of 0.9 cm. Since small
nodules generally have a regular and compact shape, shape features that are easier for the
human eye to recognize play a subordinate role, whereas texture features are of greater
importance [33]. These observations are also reflected in the final six feature radiomics set
found in this study. In this set, there are four first-order features concerning intensities and
texture, one GLCM feature, one GLRLM feature, and not a single shape feature. Therefore,
the transferability of the study results to larger nodules is limited, and results should be
viewed in the context of small pulmonary nodules.

Another important limitation of this study is that we used data from only one institu-
tion. In future studies, the true predictive power of the current method should be assessed
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with an independent test dataset. Further limitations include the retrospective nature of
the study and the small dataset of pulmonary nodules.

5. Conclusions

Quantitative image information from axial CT datasets or the DWI- or T2-weighted
MRI datasets alone allows the assessment of pulmonary nodules by radiomics analysis
compared to human readers’ performance. By providing image information from CT and
MRI sequences, radiomics analysis is better than using a single modality and even surpasses
the performance of human readers. Therefore, complementary CT and MRI assessment by
radiomic features analysis can potentially reduce unnecessary biopsies or resections.
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