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Abstract: Cutaneous squamous cell carcinoma (cSCC) is an invasive malignancy that disproportion-
ately afflicts immunosuppressed individuals. The close associations of cSCC with immunosuppres-
sion and human papillomavirus (HPV) infection beget the question of how these three entities are
intertwined in carcinogenesis. By exploring the role of T cell immunity in HPV-related cSCC based
on the existing literature, we found that the loss of T cell immunity in the background of β-HPV in-
fection promotes cSCC initiation following exposure to environmental carcinogens or chronic trauma.
This highlights the potential of developing T-cell centred therapeutic and preventive strategies for
populations with increased cSCC risk.

Keywords: cutaneous squamous cell carcinoma; human papillomavirus; T cell; immunosuppression;
animal model

1. Introduction

Cutaneous squamous cell carcinoma (cSCC) is an invasive malignancy that arises from
keratinocytes. Its rising global incidence and its severe burden on immunosuppressed
individuals put forth an urgent need to develop novel approaches for preventing and
treating cSCC [1–4].

The human papillomavirus (HPV) has been implicated as a risk factor for cSCC.
There is an increased HPV prevalence (in particular β-HPVs) in cSCC compared to normal
skin [5,6]. However, the causal relationship between HPV and cSCC remains controversial.
HPV may exhibit direct oncogenic effects, but it may also act as a co-carcinogen with other
risk factors (e.g., UVB radiation) to amplify the risk of developing cSCC [6–9].

Immunosuppression profoundly elevates the risk of cancers associated with viral
infection, including cSCC. Immunosuppressed patients have up to 100-fold higher cSCC
rates compared with the general population [10–13]. Antiviral immunity is chiefly regulated
by the adaptive immune system, where T cells orchestrate effective long-lived responses.
Immunosuppression profoundly diminishes T cell function, metabolism, and proliferation.
This results in compromised protection against HPV proliferation in the skin, which likely
contributes to carcinogenesis.

In this study, we aimed to clarify the role of T cell immunity in HPV-related cSCC
based on the current literature. We identified potential causal relationships among T cell
immunity, HPV, and cSCC, which may guide future preventive and therapeutic approaches,
particularly in high-risk populations.

2. Materials and Methods

A systematic search of research databases (PubMed, Embase, Scopus, Cochrane Li-
brary) was performed on 27 August 2023 in accordance with PRISMA guidelines (Figure 1;
PROSPERO registry number CRD42023470491). Article screening and data extraction were
performed in duplicate. Full-text studies (in vitro, in vivo, ex vivo, clinical) published in
English that investigated T cell immunity in HPV-related cSCC were included.
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Figure 1. PRISMA flow diagram.

The retrieved sources were screened by two independent authors (SHT and CCO)
using titles and abstracts for inclusion. In situations where article suitability was uncertain,
full text assessment was conducted, and discrepancies were resolved by a vote of consensus.
Articles were selected based on the following inclusion criteria: (1) written in the English
language, (2) using validated in vitro and in vivo models of HPV-related cSCC, ex vivo
studies on patients with HPV-related cSCC, or randomised control trials (RCTs) on patients
with HPV-related cSCC, and (3) having an emphasis on T cell immunity. Articles were
excluded for the following reasons: (1) not reporting original data, (2) not focusing on
HPV-related cSCC, (3) not focusing on T cell immunity, (4) observational clinical studies,
and (5) lacking available full text.

3. Results

Our literature search enabled us to retrieve 706 articles, from which 8 were included
for the final qualitative analysis (Figure 1).
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3.1. T Cell Immunity in HPV-Related cSCC Carcinogenesis

A total of six articles discussed T cell perturbations in HPV-related cSCC carcinogenesis
(Tables 1 and 2). All articles employed cSCC mouse models and one of the six reported
additional data from human cSCC samples. For the cSCC mouse models, five of the six
studies focused on β-HPVs—HPV8 mice were used in two of the six studies and Mus
musculus papillomavirus 1 (MmuPV1)-colonised mice in three of the six studies. Only one
of the six studies investigated α-HPVs with HPV16 mice. For carcinogenesis protocols, four
of the six studies utilised spontaneous tumorigenesis, four of the six looked into ultraviolet
B (UVB) irradiation, while one of the six investigated 7,12-Dimethylbenz(a)anthracene-12-
O-tetradecanoylphorbol-13-acetate (DMBA-TPA) chemical carcinogenesis.

Table 1. Key T cell perturbations in α-HPV-related cSCC carcinogenesis.

Author and Year Study Population Key T Cell Perturbations

De Visser et al. (2005) [14]

cSCC mouse models

• Rag1−/−:K14-HPV16 mice,
CD4−/−:K14-HPV16 mice,
CD8−/−:K14-HPV16 mice,
CD4−/−CD8−/−:K14-HPV16 mice

• Spontaneous tumorigenesis

• Genetic elimination of CD4+ and/or CD8+ T
cells did not reduce mast cell and granulocyte
recruitment into premalignant skin (vs.
K14-HPV16 mice, p = n.s.)

cSCC, cutaneous squamous cell carcinoma; HPV, human papillomavirus; K14, keratin 14; n.s., non-significant.

3.1.1. T Cell Immunity in α-HPV-Related Epithelial Carcinogenesis

De Visser et al. (2005) hypothesised that an activated adaptive immunity promotes
chronic inflammation in premalignant skin, thereby facilitating de novo epithelial carcino-
genesis (Table 1) [14]. To address this, de Visser et al. used a transgenic mouse model of
multistage epithelial carcinogenesis that expresses early region genes of HPV16 under the
control of the human keratin 14 (K14) promoter/enhancer and is Recombination–Activating
Gene-1 homozygous null (Rag1−/−) [15,16]. HPV16 is one of the most common high-risk
α-HPVs, responsible for most HPV-related anogenital and head and neck cancers [17].
Rag1−/− mice are deficient in mature B and T lymphocytes [16].

HPV16/Rag1−/− mice had reduced infiltration of innate immune cells and minimal
inflammation in premalignant skin, which was associated with a decreased cSCC incidence.
However, the lack of mature CD4+ and/or CD8+ T lymphocytes alone (using CD4−/−:K14-
HPV16, CD8−/−:K14-HPV16, CD4−/−CD8−/−:K14-HPV16 mice) did not replicate the
clinical phenotype (Table 1). On the contrary, the adoptive transfer of B lymphocytes and
serum transfer from HPV16 mice into HPV16/Rag1−/− mice restored the characteristic
chronic inflammation in premalignant skin and reinstated processes that are necessary for
malignant progression. This study thus suggests a limited role for T cells in inflammation-
associated α-HPV-driven, de novo epithelial carcinogenesis.

3.1.2. T Cell Immunity in β-HPV-Related Epithelial Carcinogenesis

Of the five major HPV genera, β-HPVs are the most implicated genus in cSCC. β-
HPVs are commensal viruses of the skin that are usually associated with asymptomatic
infection in healthy individuals. However, several studies have reported increased β-HPV
replication in the skin and greater β-HPV seropositivity in cSCC patients, which suggest a
potential role for viral oncogenesis [18]. More importantly, the increased incidence of cSCC
with concomitantly higher rates of β-HPV amongst solid organ transplants suggests a role
for anti-β-HPV immunity in carcinogenesis [10–13].

Borgogna et al. (2023) and Antsiferova et al. (2017) utilised transgenic mice that ex-
press early region genes (encoding E1, E2, E4, E6, and E7) of HPV8, the prototypical β-HPV
that is studied in HPV-related cSCC [19–21]. Borgogna et al. demonstrated accelerated
papilloma development and greater accumulation of UVB-induced epidermal DNA dam-
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age in Rag2−/−:K14-HPV8 mice, which lack mature B and T lymphocytes (Table 2). They
proposed that adaptive immune deficiency, such as that in solid organ transplant patients,
sensitised β-HPV-infected skin to UVB-induced inflammation and promoted subsequent
epithelial carcinogenesis.

Antsiferova et al. [20] reported more epidermal CD4+ (including presumptive CD4+CD25+

regulatory T cells) and CD8+ T cells in tumorous skin of activin A-overexpressing mice com-
pared to that of age-matched wild-type mice (Table 2). Activin A, a member of the TGF-β
superfamily, is a growth and differentiation factor that promotes wound healing and skin
morphogenesis [22]. It has been shown to be upregulated in skin wounds and human non-
melanoma skin cancers (including cSCC) [22,23]. The authors also observed fewer epidermal
gamma delta T cells for the same comparison (Table 2). However, CD4+ T cell depletion did
not significantly reduce the tumour-promoting effect of activin A overexpression (Table 2).
Hence, T cell perturbations alone appear to be insufficient for driving β-HPV-associated cSCC
initiation, especially in the context of activin A overexpression.

Table 2. Key T cell perturbations in β-HPV-related cSCC carcinogenesis (HPV8 mice).

Author and Year Study Population Key T Cell Perturbations

Borgogna
et al. (2023) [19]

cSCC mouse models

• Rag2−/−:K14-HPV8 mice
• Spontaneous tumorigenesis, UVB

• Genetic elimination of T and B cells increased spontaneous tumour
incidence in Rag2−/−:K14-HPV8 mice (vs. Rag2+/+:K14-HPV8 mice;
week 10: p < 0.05; Week 25: p < 0.0001)

• Genetic elimination of T and B cells increased percentage of
spontaneously affected skin in Rag2−/−:K14-HPV8 mice (vs.
Rag2+/+:K14-HPV8 mice; week 24: p < 0.0001)

• Genetic elimination of T and B cells increased percentage of affected
skin following UVB irradiation in Rag2−/−:K14-HPV8 mice (vs.
Rag2+/+:K14-HPV8 mice and non-transgenic control mice; week 30:
both p < 0.01)

• Genetic elimination of T and B cells increased epidermal thickness
following UVB irradiation in Rag2−/−:K14-HPV8 mice (vs.
Rag2+/+:K14-HPV8 mice; p < 0.0001)

• Genetic elimination of T and B cells increased epidermal DNA
damage following UVB irradiation in Rag2−/−:K14-HPV8 mice (vs.
Rag2+/+:K14-HPV8 mice; γH2AX-positive nuclei: p < 0.001,
53BP1-positive foci: p < 0.001)

• Genetic elimination of T and B cells was associated with accumulation
of epidermal DNA damage following UVB irradiation in
Rag2−/−:K14-HPV8 mice (vs. Rag2−/−:K14-HPV8 mice without UVB
irradiation; p < 0.0001)

Antsiferova
et al. (2017) [20]

cSCC mouse models

• HPV8-Act, HPV8-wt mice ± CD4KO
• Spontaneous tumorigenesis

• Accumulation of epidermal and dermal CD4+ and CD8+ T cells in
tumour-laden ear skin of 10-week-old HPV8-Act mice (vs.
age-matched wt mice, CD4: p < 0.0001, CD8: p = 0.0009; vs.
age-matched HPV8-wt mice, CD4: p < 0.0001, CD8: p = 0.0022)

• Accumulation of epidermal CD4+CD25+ T cells in tumour-laden ear
skin of 10-week-old HPV8-Act mice (vs. age-matched wt mice,
p = 0.0004; vs. age-matched HPV8-wt mice, p = 0.0007)

• Large increase in tumour incidence in HPV8-Act-CD4KO mice vs.
HPV8-wt-CD4KO (p < 0.0001)

• Slight but statistically insignificant increases in tumour incidence in
HPV8-wt-CD4KO mice vs. HPV8-wt mice, and in HPV8-Act-CD4KO
vs. HPV8-Act-wt (p = n.s.)

• Loss of epidermal gamma delta T cells in tumour-laden ear skin of
10-week-old HPV8-Act mice (vs. age-matched wt mice, p < 0.0001; vs.
age-matched HPV8-wt mice, p = 0.0007)

Act, activin A-overexpressing; cSCC, cutaneous squamous cell carcinoma; HPV, human papillomavirus; KO,
knockout; n.s., not significant; UVB, ultraviolet B; wt, wild-type.

Strickley et al. (2019), Johnson et al. (2022), and Dorfer et al. (2020) relied on another
experimental model for studying commensal HPV interaction with human hosts: MmuPV1-
colonised mice [24–26]. By doing so, these studies sought to interrogate T cell immunity
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through an infection-based system that models the natural history of HPV-related cSCC
carcinogenesis [27].

Strickley et al. (2019) [24] observed that the adoptive transfer of T cells from MmuPV1-
immune mice into wild-type FVB mice promoted wart rejection and protected against
DMBA-TPA chemical carcinogenesis (Table 3). They also noticed an increased ratio of epi-
dermal CD8+ tissue–resident memory T (TRM) cells to total T cells in the skin of MmuPV1-
colonised mice compared to their sham-infected controls following chemical or UVB carcino-
genesis (Table 3). Hence, the authors hypothesised that CD8+ T cells mediate anti-tumour
immunity that is induced by MmuPV1 skin colonisation. They showed that CD8+ T cell
depletion in MmuPV1-colonised mice increased the tumour incidence following chemical
carcinogenesis (Table 3). Furthermore, they observed fewer CD8+ T cells and CD8+ TRM
cells alongside a higher β-HPV load in cSCC samples from immunosuppressed patients
than in those from immunocompetent individuals (Table 3). β-HPV E7 peptides activated
CD8+ T cells that were isolated from the normal facial skin of immunocompetent adults
(Table 3). As such, the results showed that MmuPV1-immune mice were protected against
epithelial carcinogenesis in a CD8+ T cell-dependent fashion. This finding suggests a role
for commensal β-HPV-specific adaptive immunity in eliminating virus-positive malignant
keratinocytes, thereby achieving anti-tumour protection.

Table 3. Key T cell perturbations in β-HPV-related cSCC carcinogenesis (MmuPV1-colonised mice).

Author and Year Study Population Key T Cell Perturbations

Strickley et al.
(2019) [24]

cSCC mouse models

• MmuPV1-colonised FVB mice,
MmuPV1-colonised SKH-1 mice

• DMBA-TPA (FVB), DMBA-UVB
(SKH-1)

• Human cSCC patients
(immunosuppressed,
immunocompetent)

• Adoptive transfer of T cells from MmuPV1-immune mice
into wild-type FVB mice with persistent warts reduced skin
wart burden (vs. mice that received control T cells from
spleen of uninfected wild-type FVB mice, n = 3 each group)

• Adoptive transfer of T cells from MmuPV1-immune mice
into wild-type FVB mice promoted wart rejection and
protected against DMBA-TPA chemical carcinogenesis (vs.
mice that received control T cells from spleen of uninfected
wild-type FVB mice, n = 3 each group)

• Increased ratio of epidermal CD8+ TRM cells to total T cells
in the skin of MmuPV1-colonised mice following
DMBA-TPA chemical carcinogenesis (vs. sham-infected
mice, p = 0.0287) and DMBA-UVB carcinogenesis (vs.
sham-infected mice, p = 0.0054)

• More tumour-infiltrating CD8+ T cells in
MmuPV1-colonised mice following DMBA-TPA chemical
carcinogenesis (vs. sham-infected mice, p = 0.0208)

• CD8+ T cell depletion in MmuPV1-colonised mice increased
tumour incidence following DMBA-TPA chemical
carcinogenesis (vs. IgG-treated immunocompetent control
mice, p = 0.0009)

• Fewer tumour- and skin-infiltrating CD8+ T cells and CD8+

TRM cells in cSCC of immunosuppressed patients (vs. cSCC
of immunocompetent patients; tumour-infiltrating CD8+ T
and CD8+ TRM: both p < 0.0001; skin CD8+ T: p = 0.0001;
skin CD8+ TRM: p = 0.0009)

• CD8+ T cells from normal facial skin of immunocompetent
adults activated by β-HPV E7 peptides (vs. negative control;
CD69+: p < 0.01, CD137+CD69+: p < 0.01), but not by
high-risk α-HPV HPV16 E7 peptides (vs. negative control;
CD69+: p = n.s., CD137+CD69+: p = n.s.)
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Table 3. Cont.

Author and Year Study Population Key T Cell Perturbations

Johnson et al.
(2022) [25]

cSCC mouse model

• MmuPV1-colonised SKH-1 mice
• DMBA-UVB

• CD8+ T cell depletion increased MmuPV1 DNA levels in
virus-colonised mouse skin following DMBA-UVB
carcinogenesis (vs. IgG-treated immunocompetent control
mice; p = 0.0229)

• CD8+ T cell depletion resulted in higher antibody titres to
MmuPV1 E6, E7, and L1 antigens following DMBA-UVB
carcinogenesis (vs. IgG-treated immunocompetent control
mice; E6: p = 0.0030, E7: p = 0.0220, L1: p = 0.0041)

Dorfer et al.
(2020) [26]

cSCC mouse models

• MmuPV1-colonised FVB mice ±
CsA immunosuppression

• NMRI-Foxn1nu/nu mice
• Spontaneous tumorigenesis, UVB

• MmuPV1 infection of back skin resulted in cSCC
development in CsA-immunosuppressed mice
(non-UVB-treated: n = 7/10; UVB-treated: n = 9/20), but not
in immunocompetent mice (non-UVB-treated: n = 0/10;
UVB-treated: n = 0/5)

• MmuPV1 infection increased mean CD4+ T cell numbers in
back skin tissue of
CsA-immunosuppressed/non-UVB-treated mice (vs.
non-infected, equally treated controls; p < 0.05)

• Non-tumorous back skin in MmuPV1-infected,
CsA-immunosuppressed/UVB-treated mice had higher
CD8+ T cell numbers (vs. non-tumorous back skin in
CsA-immunosuppressed/non-UVB-treated mice; p < 0.05)

• Higher FoxP3+ T cell numbers in tumorous back skin of
MmuPV1-infected,
CsA-immunosuppressed/non-UVB-treated mice (vs.
non-tumorous back skin of same mice; p < 0.05)

• Intradermal administration of primary cSCC cells of passage
11 (MmuPV1 DNA undetectable) to athymic
NMRI-Foxn1nu/nu mice gave rise to secondary tumours at
30 days post-inoculation (n = 2)

CsA, cyclosporine A; cSCC, cutaneous squamous cell carcinoma; DMBA, 7,12-Dimethylbenz(a)anthracene;
HPV, human papillomavirus; MmuPV1, Mus musculus papillomavirus 1; n.s., not significant; TPA, 12-O-
tetradecanoylphorbol-13-acetate; TRM, tissue-resident memory T; UVB, ultraviolet B; wt, wild-type.

Following up on Strickley et al. (2019) [24], Johnson et al. (2022) [25] investigated
if a compromised T cell immunity could explain the increased β-HPV replication and
seropositivity that is found in patients with an increased cSCC risk, such as those under
immunosuppression. The authors demonstrated that CD8+ T cell depletion did increase
the MmuPV-1 DNA levels in virus-colonised mouse skin and resulted in higher antibody
titres to MmuPV1 E6, E7, and L1 antigens (Table 3). Interpreting both Strickley et al.
(2019) and Johnson et al. (2022) in conjunction, it appears that the loss of T cell immu-
nity against commensal β-HPVs confers an increased cSCC risk and higher viral load in
immunosuppressed patients.

Dorfer et al. (2020) [26] also looked into how MmuPV1 infection can induce cSCC
development in the context of immunosuppression. For this study, they treated mice
with cyclosporine A (CsA), which inhibits calcineurin and preferentially suppresses T cell
activation. The authors reported that MmuPV1 infection of back skin caused cSCC devel-
opment in CsA-immunosuppressed mice but not in immunocompetent mice. Additionally,
athymic NMRI-Foxn1nu/nu mice developed secondary tumours after receiving intradermal
administration of primary cSCC cells that were isolated from a cSCC of a MmuPV1-infected,
CsA-immunosuppressed/UVB-treated mouse (Table 3). These primary cSCC cells were
multiply passaged and lacked MmuPV1 DNA. Thus, this study concurs with the prior two
articles that a deficient T cell immunity in the presence of β-HPV infection predisposes to
cSCC initiation. It also implicates β-HPVs as non-essential in cSCC maintenance.
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3.2. T Cell Immunity in Potential Vaccination Strategies against β-HPV-Related
cSCC Carcinogenesis

Marcuzzi et al. (2014) and Hufbauer et al. (2022) assessed potential vaccination
strategies against β-HPV-related epithelial carcinogenesis by relying on the preclinical
keratin-14 (K14)-HPV8 transgenic mouse model [28,29]. This model preferentially expresses
all early genes (E1, E2, E4, E6, and E7) of HPV8 in the epidermis and developing hair
follicles [21,30,31]. Viral gene expression is controlled by the human K14 promoter. At
baseline, the viral antigens are synthesised at a subthreshold level that does not induce
carcinogenesis, which is comparable to asymptomatic colonisation in immunocompetent
individuals. Mechanical skin irritation from tattooing and/or tape-stripping induces
epithelial carcinogenesis by activating high levels of HPV8 early gene expression.

Marcuzzi et al. (2014) [28] first showed that tattooing HPV8 E6 DNA onto the skin
could prevent papilloma formation, which depends on anti-HPV8-E6-specific T cell immu-
nity (Table 4). The HPV8 transgenic skin grafts of 6/15 tattooed (i.e., HPV-E6-immunised)
mice did not develop papillomas after mechanical wounding. Following a HPV8 E6 epitope
aa76-90 challenge and subsequent ELISpot assaying, splenocytes that were isolated from
these six mice yielded a higher median number of spots (reflecting IFN-γ-producing cells
per 100,000 splenocytes) than splenocytes from mice with papillomas (Table 4). Hence, a
cytotoxic T cell response induced by skin tattooing of HPV E6 DNA may offer protection
against HPV8-related epithelial carcinogenesis, albeit unreliably.

Table 4. Key T cell perturbations in potential vaccination strategies against HPV-related cSCC
carcinogenesis.

Author and Year Study Population Vaccination Strategy Key T Cell Perturbations

Marcuzzi et al.
(2014) [28]

cSCC mouse model

• K14-HPV8-CER mice
• Mechanical wounding

HPV8 E6 DNA tattooing
onto skin

• Higher median number of spots reflecting
IFN-γ-producing cells per 100,000
splenocytes (via IFN-γ ELISpot) following
HPV8 E6 epitope aa76-90 challenge in
splenocytes of DNA-immunised mice
without papilloma (vs. with papilloma,
p < 0.00001)

Hufbauer et al.
(2022) [29]

cSCC mouse model

• K14-HPV8-CER mice
• Mechanical wounding

Poly(I:C) tattooing
onto skin

• More total and activated CD4+ T cells
detected in poly(I:C)-treated
non-tumorigenic sites (vs. untreated skin,
total CD4: p < 0.001, activated CD4:
p < 0.01)

• More activated CD8+ T cells detected in
poly(I:C)-treated non-tumorigenic sites (vs.
untreated skin, p < 0.01)

• CD4+ T cell depletion resulted in tumour
formation in poly(I:C)-treated sites
(n = 5/6 mice)

• CD8+ T cell depletion resulted in tumour
formation in poly(I:C)-treated sites, but to a
smaller extent (n = 2/6 mice)

• CD4+ T cell depletion resulted in larger
tumour sizes in poly(I:C)-treated sites (vs.
CD8+ T cell depletion)

aa, amino acid; CER, complete early genome region; cSCC, cutaneous squamous cell carcinoma; ELISpot, enzyme-
linked immunosorbent spot; HPV, human papillomavirus; IFN, interferon; K14, keratin-14; poly(I:C), polyinosinic-
polycytidylic acid.

Hufbauer et al. (2022) [29] explored if innate immunity-driven in situ autovaccination
against the patients’ own commensal β-HPV types in the skin could induce T cell immunity
against β-HPV-related epithelial carcinogenesis in high-risk groups. Tattooing polyinosinic–
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polycytidylic acid (poly[I:C]) prevented tumour formation in eight out of eight treated mice.
Poly(I:C) is a synthetic analogue of double-stranded RNA, a known ligand for the innate
immune receptors TLR3 and MDA5 [32]. In poly(I:C)-treated non-tumorigenic sites, there
were more activated CD4+ and CD8+ T cells than in untreated skin (Table 4). CD4+ T cell
depletion and, to a smaller extent, CD8+ T cell depletion resulted in tumour formation in
poly(I:C)-treated sites (Table 4). CD4+ T cell depletion also resulted in larger tumour sizes
in poly(I:C)-treated sites compared to CD8+ T cell depletion (Table 4). As such, CD4+ T
cells are likely the main effectors of poly(I:C)-mediated protection against HPV8-related
epithelial carcinogenesis.

4. Discussion

The coexistence of impaired T cell immunity, β-HPV infection, and carcinogen ex-
posure (such as UVB irradiation and DMBA) or chronic trauma promote cSCC initiation
(Figure 2). An impaired T cell immunity exists in certain populations, such as organ trans-
plant recipients on chronic immunosuppression, atypical epidermodysplasia verruciformis
(EV), and EV-like phenotypes [10–13,33–35]. Consequently, these individuals possess
markedly weakened anti-β-HPV defences, which are primarily orchestrated by T cells.
The compromised β-HPV-specific T cell immunity reduces the clearance of β-HPVs and
virus-positive malignant keratinocytes that have spawned following carcinogen exposure
or chronic trauma, thereby potentiating cSCC initiation.
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Figure 2. Loss of T cell immunity in the background of β-HPV infection promotes cSCC initiation
following exposure to environmental carcinogens or chronic trauma. β-HPV, beta human papillo-
mavirus; cSCC, cutaneous squamous cell carcinoma. Created with BioRender.com (accessed on 31
December 2023).

The host specificity of HPV has restricted the translatability of preclinical models when
studying HPV-related cSCC [36]. An HPV transgenic mouse or animal papillomavirus-
based infection model does not fully replicate the complex skin microbiome of human skin,
is limited by inherent discrepancies in both innate and adaptive immunity, and may be
affected by variations in experimental conditions. Nevertheless, the multitude of cSCC
mouse model studies that were reviewed in this article have proved invaluable in revealing
the anti-tumour effects of β-HPV-specific T cells in a tractable manner, which is otherwise
not possible to conduct in human studies.

There is a significant lack of granularity regarding the specific T cell perturbations in
HPV-related cSCC carcinogenesis. The included studies primarily relied on the enumeration
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of total T cell counts in affected skin and the depletion of total CD4+ and/or CD8+ T
cells. Given that T cell diversity is wide-ranging, ranging from effector to regulatory, it
is reasonable to hypothesise that specific T cell populations drive anti-tumour immunity.
Addressing the β-HPV specificity of these populations is also pertinent, as the findings
will provide crucial mechanistic evidence for whether the loss of β-HPV-specific T cell
immunity or the de novo oncogenic effect of β-HPVs predominantly raises cSCC risk.
Doing so will bridge key findings on T cell immunity in non-HPV-related cSCC models,
where tumour-specific cytotoxic T cells (primarily Th1 and CD8+ T cells) inhibit UVB
and/or chemical carcinogenesis, while tumour-infiltrating regulatory T cells (Tregs) likely
suppress anti-tumour immunity [37].

Topical imiquimod has emerged as a potential treatment for actinic keratosis, the
prototypical premalignant lesion of cSCC that often possesses high β-HPV loads [38]. Its
promise has been highlighted in pre-invasive α-HPV-related neoplasms of the female
lower tract, whereby imiquimod may be a valid, cost-effective first-line treatment to avoid
surgical excision [39]. Imiquimod directly induces apoptosis of malignant keratinocytes
and partially overcomes HPV E6/E7 activity to stimulate robust Th1-Th17 responses [39].
Thus, it would be interesting to explore if imiquimod is effective as a monotherapy or in
combination with other modalities to impair HPV-related cSCC initiation by enhancing
β-HPV-specific T cell immunity.

The advent of spatial omics technologies can address these issues by permitting in
tumorous and non-tumorous skin the high-dimensional interrogation of immune pertur-
bations extending beyond just T cells [40,41]. The in situ single cell-level profiling would
greatly complement traditional reductionist approaches in resolving the complexities of the
tumour microenvironment, by uncovering spatio-temporal relationships between T cells,
malignant keratinocytes, and other contributors to carcinogenesis. Doing so will clarify
the role of T cells and simultaneously assess other cellular players like macrophages in
protecting against HPV-related cSCC. Another advantage of these technologies is their
amenability to limited tissue samples, facilitating ex vivo human studies. Discoveries via
these modalities can rapidly aid explorations and validation in animal models, thereby
seeding the future for improved therapy and prevention in high-risk populations.

All in all, T cells are intimately involved in the defence against HPV-related cSCC
(specifically β-HPV), as their deficiency potentiates carcinogenesis in high-risk popula-
tions. Studies integrating omics approaches and appropriate animal models are warranted
to elucidate T cell-mediated immunosurveillance and inhibition of HPV-related cSCC
initiation. In parallel, further characterisation of the skin virome in immunocompetent
and immunosuppressed individuals will shed light on the immunogenicity of different
β-HPV types and the viruses’ differential contributions to carcinogenesis. Future work can
build upon these mechanistic studies to focus on protecting high-risk individuals with the
prospects of T cell-centred vaccines against commonly occurring β-HPVs, β-HPV-specific
T cell immunotherapy, and prognostication with β-HPV-specific T cells.
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