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Abstract: Alzheimer’s disease (AD) and vascular dementia (VaD) are the two most common forms
of dementia. However, their neuropsychological and pathological features often overlap, making
it difficult to distinguish between AD and VaD. In addition to clinical consultation and laboratory
examinations, clinical dementia diagnosis in Taiwan will also include Tc-99m-ECD SPECT imaging
examination. Through machine learning and deep learning technology, we explored the feasibility
of using the above clinical practice data to distinguish AD and VaD. We used the physiological
data (33 features) and Tc-99m-ECD SPECT images of 112 AD patients and 85 VaD patients in the
Taiwanese Nuclear Medicine Brain Image Database to train the classification model. The results, after
filtering by the number of SVM RFE 5-fold features, show that the average accuracy of physiological
data in distinguishing AD/VaD is 81.22% and the AUC is 0.836; the average accuracy of training
images using the Inception V3 model is 85% and the AUC is 0.95. Finally, Grad-CAM heatmap was
used to visualize the areas of concern of the model and compared with the SPM analysis method to
further understand the differences. This research method can quickly use machine learning and deep
learning models to automatically extract image features based on a small amount of general clinical
data to objectively distinguish AD and VaD.

Keywords: ECD SPECT images; Alzheimer’s disease; vascular dementia; classification prediction

1. Introduction

In populations aged 65 and older, Alzheimer’s disease (AD) stands out as the most
prevalent type of dementia. Vascular dementia (VaD) ranks as the second most common
type [1]. From therapeutic and prognostic perspectives, distinguishing between AD and
Subcortical Ischemic Vascular Dementia (SIVD) is important. Notably, the incidence and
mortality rates of VaD, inclusive of SIVD, are significantly higher compared to pure AD, pri-
marily due to its more frequent association with vascular risk factors and mobility disorders.
Further, VaD is associated with a 50% reduction in median survival (from 6–7 years down
to 3–4 years), increased medical costs, higher rates of comorbidity, institutionalization, and
the need for caregiving services [2].
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Demographic studies indicate that, among the elderly population, the probability of
females developing AD is slightly higher than that of males. This elevation is primarily
attributed to an increased risk of AD after age-adjustment, with a relative risk (RR) of
1.3 [3]. Conversely, VaD, stroke, and other atherosclerotic cardiovascular diseases are more
prevalent in males [3]. It is mentioned in the literature [4] that VaD represents a heteroge-
neous group of dementias caused by ischemic, hemorrhagic, anoxic, and hypoxic brain
damage. Ischemic VaD may arise from macrovascular or microvascular cerebral disease,
or a combination of both, while hemorrhagic VaD is often associated with hypertension,
cerebral amyloid angiopathy, and intralobar hemorrhages. On the other hand, AD involves
neurofibrillary tangles, amyloid plaques, and neuronal death, classifying it as a neurode-
generative disease. This typically manifests as memory loss and cognitive decline, with the
condition progressively worsening over time.

Several studies have indicated that the co-occurrence of AD and cerebrovascular
pathologies is referred to as mixed dementia [5]. Each pathology contributes to different
degrees of impact, leading to various stages of the disease in patients, with pure AD
and pure VaD representing the opposite ends of the spectrum [6,7]. In addition to the
possible common vascular etiopathogeny in AD and VaD, the Nun study demonstrated
that amyloid/tau proteins and vascular burden are neuropathologically related in the
autopsied brains of most patients with dementia [8]. Because these neuropathological and
epidemiological studies indicate that the pathologies of AD and VaD are so associated,
mixed dementia is considered the most prevalent subtype.

Some studies have used MRI imaging to differentiate between AD and VaD. Typically,
cortical atrophy in AD primarily affects the temporal and parietal lobes, with mesial
temporal regions and the precuneus/posterior cingulate cortex being especially impacted.
In the early stages of the disease, there is a degeneration of white matter (WM) bundles [9].
On the other hand, the regional pattern of cerebrovascular lesions in VaD varies across its
subtypes [10,11]. Most commonly in small vessel disease, which leads to subcortical VaD,
multifocal lesions are observed on qualitative MRI. These are predominantly located in the
deep gray matter and primarily in the frontal periventricular and subcortical WM [12,13].
Efforts to distinguish AD from VaD using diffusion MRI [14,15] have yielded inconsistent
findings. Additionally, Arterial Spin Labeling Magnetic Resonance Imaging (ASL-MRI)
employs arterial blood as an endogenous contrast for detecting regional cerebral blood
flow (CBF) perfusion in patients. In comparing AD and VaD, one study has demonstrated
differential patterns of CBF reduction in the frontal and parietal cortices [16], while another
study has indicated reductions in the frontal and temporal regions [17]. Furthermore,
recent years have seen a growing number of studies leveraging biological data, such as
biomarkers and marker genes, to delve into the distinctions between AD and VaD [18–20].
This approach aids in enhancing our comprehension of disease pathways and mechanisms,
and serves to validate prevailing hypotheses.

In the clinical diagnosis of AD and VaD in Taiwan, in addition to the demographic data
and physiological data obtained from clinical inquiries and laboratory tests, the Tc-99m-
ECD SPECT imaging examination is included in the dementia imaging examination items
covered by Taiwan’s national health insurance. Brain perfusion SPECT images should be
helpful for the diagnosis of AD and VaD, but relevant studies that used nuclear medicine
images to distinguish AD and VaD could not be found. If the information from the clinical
routine examination can be used by machine learning and deep learning technologies that
are widely used at present, and high-dimensional analysis and calculation of features can
be introduced to increase their ability to distinguish types of dementia, it will be of direct
benefit to clinical practice. In view of this, the focus of this study is to investigate the use
of demographic and physiological data or Tc-99m-ECD SPECT images to distinguish AD
from VaD.
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2. Materials and Methods

This study primarily investigated whether the use of physiological data and Tc-99m-
ECD SPECT images can potentially distinguish between AD and VaD when trained using
AI models. The physiological data is categorized as structured data, for which we employed
the SVM (support vector machine) method to achieve our classification objectives. For the
Tc-99m-ECD SPECT images, we utilized the CNN model for differentiation between AD
and VaD. The entire data training process is shown in Figure 1.
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2.1. Subjects

Data for this study were sourced from the Taiwanese Nuclear Medicine Brain Image
Database, established by the Institute of Nuclear Energy Research (now renamed as the
National Atomic Research Institute). This database, backed by government support, is a
prospective multi-center clinical study led by M.-C.P that compiles local data from four
medical centers. It holds significant representative value for dementia research within the
Taiwanese population. This study utilized data from 112 AD patients and 85 VaD patients
within the database. These data include 13 basic information items, 17 laboratory examina-
tions, 3 scale examinations, Tc-99m-ECD SPECT imaging, and diagnostic results. All the
aforementioned subjects underwent evaluations by neurologists and clinical psychologists,
completed medical history inquiries (including crucial systemic and brain disease histories,
and clinical dementia assessment scales), and were diagnosed by clinical neurologists.
Their imaging data were interpreted by nuclear medicine physicians. The complete process
of clinical data collection and its utilization received approval from the Institutional Review
Board (IRB).

2.2. Statistical Analysis and Normalization of Physiological Data

Statistical analysis was performed on 33 sets of physiological data to understand the
data distribution and differences between the AD and the VaD groups. For continuous
variables, normality was tested using the Kolmogorov–Smirnov test. If the data followed
a normal distribution, the One-way ANOVA was used to detect differences between
populations. If the distribution was not normal, the Kruskal-Wallis test was used to
determine differences. For categorical variables, the chi-squared test was used to assess
differences between the groups. All of the above were implemented using the Scipy library
in Python.

During the analysis process, we observed an imbalance in the number of males to
females within the VaD population (57:28). Additionally, some characteristics exhibited
varying numerical ranges due to gender, thereby affecting the analysis results. In order to
solve the above problems, we segregated the continuous variable items based on gender
into two groups: male and female. We then applied z-score normalization to each group,
adjusted the distribution of male and female, and subsequently re-established the distribu-
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tion of the AD and VaD groups. All subsequent analyses and disease classification training
utilized the normalized feature values. Statistical analyses of the characteristic items with
significant differences between the two disease groups are marked in bold. In addition,
the box plot results of the six items that still had significant differences after normalization
were compared before and after normalization.

2.3. Machine Learning for Physiological Data

We consider that the SVM method is quite stable among machine learning techniques
and often achieves excellent accuracy in classification tasks. Therefore, we used this
method to train our data, seeking to understand the contributions or influences of various
physiological data in differentiating between the AD and VaD groups. We utilized the
scikit-learn library in Python, employing a linear kernel and setting the regularization
parameter to 1.0. Although the model was trained using the most basic parameter settings,
the absence of highly nonlinear mapping means that it is easier to intuitively explain model
training results using feature weights. In addition, due to the limited data available in
this study, recursive feature elimination (RFE) combined with 5-fold cross-validation was
also applied to select the most relevant features. By reducing the number of feature items
used for training, we expected to improve the discriminative accuracy between the AD and
VaD groups.

2.4. Image Acquisition and Processing

The Tc-99m-ECD SPECT images used in this study were sourced from four medical
centers and obtained using E-CAM, Symbia T16, and Symbia T2 SPECT instruments
(Siemens Medical Solutions, Malvern, PA, USA) with LEHR (low energy high resolution)
and fan beam collimators. Although different imaging equipment was utilized, the image
acquisition procedures are similar, and through spatial normalization and registration to the
SPECT perfusion template, all images were pre-processed and resampled to 95 × 95 × 68
with the voxel size 2 × 2 × 2 mm3. We retained only slices located within the brain
parenchyma, and these 3D images were organized into three groups of 2D images, each
consisting of 4 × 4 slices. The size of each 2D image was 580 × 580. For detailed processing
methods and schematic diagrams, please refer to Chapter 2.2 of the literature [21].

2.5. Deep Learning for ECD Image

The Inception V3 model was chosen to perform the classification task of distinguishing
between the AD and VaD groups using Tc-99m-ECD SPECT images. A fully connected
layer (FC) with a length of 128 was attached to the top layer of the Inception V3 model.
Subsequently, a batch normalization (BN) layer and a dropout layer were added, with
the dropout rate set at 0.5. For the detailed model architecture, please refer to Figure 1
of literature [22]. The categorical cross-entropy was utilized as the loss function, while
the Adaptive Moment Estimation (Adam) [23] served as the optimization algorithm. The
learning rate and batch size were set at 0.00001 and 32, respectively, for model training. An
early stopping mechanism was employed to determine the appropriate stopping point and
to select the optimal epoch. Twenty Tc-99m-ECD SPECT images (AD = 9; VaD = 11) were
randomly chosen as an independent test set. Out of the remaining 177 images (AD = 103;
VaD = 74), 80% were allocated for training and 20% for validation. For data augmentation,
the ranges for random width and height shifts were set between ± 10%, and the zoom
range was adjusted between ±8%. The development environment was set up using Python
3.7, with Keras 2.4 to build neural networks and import pre-trained models. The backend
operated on TensorFlow 1.15.2 (Google, Mountain View, CA, USA).

2.6. Model Training and Evaluation

Whether using physiological data or Tc-99m-ECD SPECT images, the performance
evaluation indicators for distinguishing AD and VaD through model training are the same.
The accuracy of the model was evaluated using the receiver operating characteristic (ROC)
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curves and the area under the curve (AUC). The ROC curve, with 95% confidence intervals
(CI), was plotted using MATLAB (MATLAB R2020a, MathWorks, Natick, MA, USA) and
was derived from 1000 bootstrap iterations. Furthermore, statistical analysis was conducted
on the classification prediction results. This analysis included the calculation of sensitivity,
specificity, precision, accuracy, and the F1 score. For the above evaluations, VaD was
defined as positive.

2.7. Interpreting Models with Grad-CAM

By employing Grad-CAM with Inception V3 model, the gradients are being prop-
agated to the last convolutional layer, and to weight the forward activation maps. The
class-discriminative localization map, obtained through weighted combinations, localizes
relevant image regions and reveals the influences on the class of interest as a heatmap.
Since the input data is pre-processed with the grid method, it is necessary to apply an
inverse-preprocessing step to restore the heatmaps to their original dimensions. Subse-
quently, registration with a brain atlas was carried out, and voxel values exceeding the
90% maximum threshold were counted with respect to various brain regions and two
different groups. Finally, we compared and attempted to establish connections between
these explanatory results and insights from neurologists.

Additionally, we also analyzed the Tc-99m-ECD SPECT images of both AD and VaD
groups using the SPM12 (Statistical Parametric Mapping) tool. A two-sample t-test statis-
tical method was utilized to compare the significantly different regions between the two
groups. We set the p-value at 0.01 (p < 0.01), and the cluster size at 400 (cluster size > 400),
and considered the effects caused by age as covariates, subsequently excluding them.
The analysis ultimately highlighted brain regions where each group significantly differed
from the other. These findings serve as a reference when compared with the results from
deep learning.

3. Results
3.1. Characteristics of Demographic Data and Physiological Data

Statistical analysis was performed on 33 demographic and physiological data items
for AD and VaD patients from the Taiwanese Nuclear Medicine Brain Image Database. The
results are presented in Table 1. In the original data, values indicating significant differences
between the AD and VaD groups (p < 0.05) are marked in bold. In addition, in response
to the unbalanced ratio of male to female in the VaD population (57:28) and the fact that
some features have different numerical ranges due to gender, the features of continuous
variables were normalized to improve the above-mentioned effects. Post-normalization,
values indicating significant differences (p < 0.05) between the AD and VaD groups are also
marked in bold.

The data in the feature columns maintained significant differences between the
AD/VaD groups both before and after normalization, including age, height, body weight,
WBC (white blood cell), HDL (high-density lipoprotein), creatinine, and folic acid. Two
features, height and body weight, revealed obvious differences between the AD/VaD
groups, largely due to the differing male-to-female ratios in each group. After z-score
normalization based on the gender distribution, these features still presented significant
differences. However, the magnitude of the disparity between the two groups for these
features was substantially reduced. Figure 2 presents six significantly different features
among the continuous variables and provides a comparison of their distributions before
and after normalization using a boxplot.
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Table 1. The characteristics of demographic and physiological data.

AD
(n = 112)

VaD
(n = 85) p-Value (Ori) p-Value (Norm)

Basic information
Age (y), mean (SD) 74.5 (6.9) 69.7 (7.0) 0.000 *** 0.000 ***
Gender (Male), n (%) 53 (47.3) 57 (67.1) 0.008 -
Education (y), mean (SD) 8 (4.3) 8.7 (5.2) 0.012 -
FM with dementia, n (%) 27 (24.1) 5 (5.9) 0.000 *** -
FM with PD, n (%) 1 (0.9) 2 (2.4) 0.407 -
FM with stroke, n (%) 3 (2.7) 6 (7.1) 0.145 -
Exercise habits, n (%) 15 (13.4) 15 (17.6) 0.012 -
Sleep disorder, n (%) 27 (24.1) 10 (11.8) 0.028 -
Height (cm), mean (SD) 158.7 (7.5) 163 (8) 0.000 *** 0.041
Body weight (kg), mean (SD) 59.2 (10.3) 63.8 (9.5) 0.001 0.022
Blood pressure (mmHg)

Systolic, mean (SD) 130 (15.3) 133 (16) 0.184 0.152
Diastolic, mean (SD) 75.6 (9.9) 74.2 (9.6) 0.345 0.312

Heartbeat (bpm), mean (SD) 75.4 (11.7) 79.6 (12.2) 0.016 0.053
Assessment scales
CDR (>0.5), n (%) 50 (44.6) 33 (38.8) 0.186 -
MMSE, mean (SD) 19.3 (5.2) 20 (6.6) 0.104 0.135
CASI, mean (SD) 64.7 (17.1) 67.8 (21.2) 0.047 0.075
Laboratory examinations
Blood count (k/µL)

Hb, mean (SD) 13.2 (1.5) 13.4 (1.8) 0.016 0.845
WBC, mean (SD) 6.1 (1.4) 6.9 (1.8) 0.000 *** 0.003

Plt, mean (SD) 220.3 (71.1) 223.2 (61.1) 0.361 0.085
Glucose AC (mg/dL), mean (SD) 112.7 (31.2) 119.6 (37.8) 0.354 0.581
HbA1c (%), mean (SD) 6.2 (0.8) 6.4 (1.2) 0.967 0.872
Triglyceride (mg/dL), mean (SD) 121.3 (63.1) 140.7 (74.5) 0.074 0.057
Cholesterol (mg/dL)
Total cholesterol, mean (SD) 184.4 (27.8) 179.2 (39.6) 0.151 0.471

HDL, mean (SD) 57.3 (15.1) 50.2 (11.5) 0.000 *** 0.007
LDL, mean (SD) 114.3 (28.8) 106.2 (33) 0.148 0.287
Liver fuction index (U/L)
GOT, mean (SD) 27.3 (10.4) 26.6 (18.3) 0.133 0.106
GPT, mean (SD) 24 (14.7) 24.5 (13.9) 0.693 0.929
BUN (mg/dL), mean (SD) 18.7 (9.7) 19.2 (12.5) 0.966 0.749
Creatinine (mg/dL), mean (SD) 1.1 (1.5) 1.2 (1.2) 0.007 0.027
TSH (mU/L), mean (SD) 3.1 (6.2) 2.5 (4.1) 0.276 0.709
Free T4 (ng/dL), mean (SD) 1.5 (1.3) 1.6 (1.6) 0.065 0.036
VitB12 (pg/mL), mean (SD) 959.8 (873.6) 742.5 (481.9) 0.500 0.861
Folic acid (ng/mL), mean (SD) 14.2 (8.5) 11.1 (7.1) 0.002 0.014

AD, Alzheimer’s Disease; VaD, vascular dementia; ori, original; norm, normalization; FM, family history; PD,
Parkinson’s Disease; CDR, Clinical Dementia Rating; MMSE, Mini-Mental State Examination; CASI, Cognitive
Abilities Screening Instrument; Hb, Hemoglobin; WBC, White Blood Cell; Plt, Platelet count; HbA1c, Hemoglobin
A1c; HDL, High-Density Lipoprotein; LDL, Low-Density Lipoprotein; GOT, Glutamic Oxaloacetic Transaminase;
GPT, Glutamic Pyruvic Transaminase; BUN, Blood Urea Nitrogen; TSH, Thyroid-Stimulating Hormone; VitB12,
Vitamin B12. In the table, “***” indicates that the p-value is too small to display. Table cells with a background
color and bold values denote columns and values where the p-value is significantly different.
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Figure 2. The boxplots compare six features before and after normalization. (A,B) are distributions
of Age; (C,D) are distributions of WBC; (E,F) are distributions of HDL; (G,H) are distributions of
creatinine; (I,J) are distributions of free T4; (K,L) are distributions of folic acid. Outliers are indicated
by a “+” symbol.

3.2. Using Machine Learning to Classify AD/VaD Using Physiological Data

We used the SVM method to train the possibility of distinguishing AD and VaD
through physiological data. In addition, RFE combined with 5-fold cross-validation was
also used to select the optimal number of features. Using accuracy as the metric for correct
classification, the highest accuracy rate of 76.2% was achieved when the top 19 most
correlated features were considered. Table 2 lists the training results of both the SVM model
with all 33 features and the SVM model with the 19 most relevant features, including the
results of 5-fold and its average training performance indicators. Figure 3 shows the results
of the ROC curves and the AUC.
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Table 2. Comparison of the training performance using 33 and 19 features of physiological data for
distinguishing between AD and VaD.

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

AUC for AD/VaD
(95% CI)

Physiological
Data

SVM using
33 features

fold1 47.06
(8/17)

82.61
(19/23)

66.67
(8/12)

67.50
(27/40) 55.17 0.65 (0.47~0.81)

fold2 29.41
(5/17)

82.61
(19/23)

55.56
(5/9)

60.00
(24/40) 38.46 0.65 (0.44~0.80)

fold3 70.59
(12/17)

95.45
(21/22)

92.31
(12/13)

84.62
(33/39) 80.00 0.85 (0.62~0.95)

fold4 58.82
(10/17)

68.18
(15/22)

58.82
(10/17)

64.10
(25/39) 58.82 0.71 (0.49~0.85)

fold5 47.06
(8/17)

90.91
(20/22)

80.00
(8/10)

71.79
(28/39) 59.26 0.89 (0.76~0.97)

Averaged 50.59 83.93 70.49 69.54 58.90 0.75

SVM using
19 features

fold1 64.71
(11/17)

86.96
(20/23)

78.57
(11/14)

77.50
(31/40) 70.97 0.79 (0.59~0.92)

fold2 64.71
(11/17)

86.96
(20/23)

78.57
(11/14)

77.50
(31/40) 70.97 0.81 (0.61~0.92)

fold3 76.47
(13/17)

90.91
(20/22)

86.67
(13/15)

84.62
(33/39) 81.25 0.92 (0.80~0.97)

fold4 76.47
(13/17)

81.82
(18/22)

76.47
(13/17)

79.49
(31/39) 76.47 0.76 (0.55~0.92)

fold5 76.47
(13/17)

95.45
(21/22)

92.86
(13/14)

87.18
(34/39) 83.87 0.90 (0.69~0.97)

Averaged 71.76 88.39 82.43 81.22 76.73 0.836

The 33 features are the items in Table 1. The 19 features are FM with dementia, FM with stroke, CDR, age, CASI,
HDL, diastolic, total cholesterol, height, LDL, education, folic acid, VitB12, systolic, exercise habits, MMSE, WBC,
heartbeat and creatinine. The average results of 5-fold are indicated in bold.

3.3. Using Deep Learning to Classify AD/VaD Using Tc-99m-ECD SPECT Images

Besides using physiological data to train the model to distinguish between AD and
VaD, we also used Tc-99m-ECD SPECT images to train the deep learning model Inception
V3 to distinguish AD and VaD. We evaluated the performance of model training on a
randomly selected independent test set (20 images) and presented the results of 5-fold and
average training performance indicators in Table 3. In the results of ensemble learning
using the averaging approach, the sensitivity, specificity, precision, accuracy, and F1 score
were 81.82%, 88.89%, 90%, 85%, and 85.71%, respectively. The ROC curves of the above
training results are presented in Figure 4, the average AUC value reaches 0.95.

Table 3. Comparison of the training performance of ECD data sets in 5-fold for distinguishing
between AD and VaD.

Method Sensitivity
(%)

Specificity
(%)

Precision
(%)

Accuracy
(%)

F1 Score
(%)

AUC for AD/VaD
(95% CI)

ECD Image InceptionV3

fold1 63.64
(7/11)

88.89
(8/9)

87.50
(7/8)

75.00
(15/20) 73.68 0.95 (0.69~1.00)

fold2 90.91
(10/11)

77.78
(7/9)

83.33
(10/12)

85.00
(17/20) 86.96 0.95 (0.77~1.00)

fold3 100.00
(11/11)

88.89
(8/9)

91.67
(11/12)

95.00
(19/20) 95.65 0.96 (0.77~1.00)

fold4 90.91
(10/11)

66.67
(6/9)

76.92
(10/13)

80.00
(16/20) 83.33 0.91 (0.69~0.98)

fold5 72.73
(8/11)

88.89
(8/9)

88.89
(8/9)

80.00
(16/20) 80.00 0.93 (0.69~1.00)

Averaged 81.82 88.89 90.00 85.00 85.71 0.95 (0.73~1.00)
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3.4. Correlation between Model Interpretation and Brain Regions

The Inception V3 model’s differentiation between AD and VaD was visually inspected
using the Grad-CAM map to identify regions deemed critical by the model for classification
decisions. For all test data, a Grad-CAM map was calculated for each patient. However, to
provide a comprehensive overview of the regional differences in the class-feature heatmap
between AD and VaD groups, the averaged results were used to present the Grad-CAM
map for the two diseases (as shown in Figure 5). From the results, it is evident that the AD
group focuses more on the lower slices of the brain, while the VaD group tends towards the
upper slices. In terms of brain lobes, it can be generally observed that AD leans towards
the occipital lobe region, while VaD favors the temporal lobe region. Figure 6 displays
detailed pixel count statistics mapped to 91 brain regions. In Table 4, we have listed the top
10 brain regions from the aforementioned results and compared them with the top 10 brain
regions analyzed using the SPM statistical method. For the AD group, both the trained
model’s Grad-CAM map and the traditional analytical method highlighted the precuneus
and cuneus regions. In contrast, for the VaD group, there was no clear corresponding
brain region.
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Figure 6. The histogram of pixel number in each brain region calculated from ‘lit-up’ areas from
the Grad-CAM heatmap for AD and VaD groups. L, Left; R, Right; Sup, superior; Mid, middle;
Inf, inferior; Med, medial; Ant, anterior; Post, posterior; Orb, orbital; Oper, operculum; Supp,
supplementary; Tri, triangularis. The top ten are marked with square boxes, blue for the AD group
and red for the VaD group. The square boxes with white background indicates greater than two-thirds
of the maximum value; light gray represents greater than one-third of the maximum value; and dark
gray represents less than one-third of the maximum value.
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Table 4. The top ten brain regions from Grad-CAM heatmap and SPM analysis from AD and
VaD groups.

Grad-CAM Map
of Inception V3 Model Image Analysis by SPM

Brain Region Importance
Ranking AD VaD AD VaD

1 Cuneus_L Temporal_Mid_L Thalamus_L Paracentral_Lobule_L
2 Occipital_Sup_L Lingual_L Thalamus_R Postcentral_R
3 Cuneus_R Whole cerebellum Lingual_R Precentral_L
4 Occipital_Mid_L Temporal_Sup_L Calcarine_R Supp_Motor_Area_R
5 Occipital_Sup_R Occipital_Inf_L Hippocampus_R Precentral_R
6 Temporal_Mid_L Lingual_R Precuneus_R Frontal_Sup_R
7 Occipital_Mid_R Occipital_Inf_R ParaHippocampal_L Supp_Motor_Area_L
8 Precuneus_L Putamen_L ParaHippocampal_R Parietal_Sup_R
9 Precuneus_R Temporal_Inf_L Hippocampus_L Paracentral_Lobule_R
10 Parietal_Inf_L Temporal_Inf_R Cuneus_R Frontal_Sup_L

L, Left; R, Right; Sup, superior; Mid, middle; Inf, inferior. The bolded text indicates repeated items in the brain
regions. The color coding is a ranking of the number of pixels in each brain region calculated from ‘lit-up’ areas
from the Grad-CAM heatmap for AD and VaD groups: a white background indicates greater than two-thirds of
the maximum value; light gray represents greater than one-third of the maximum value; and dark gray represents
less than one-third of the maximum value.

4. Discussion

In this study, we initially utilized demographic data and physiological data to distin-
guish between the AD and VaD groups. We began with statistical methods for analysis and
then adopted machine learning techniques to further investigate its capability in disease
classification. Given that demographic and physiological data are the most accessible
information for patients, if promising features that differentiate these two diseases can be
identified from this data, then when clinicians face ambiguous or uncertain scenarios dur-
ing the diagnostic process, they can refer to these features, thereby making their diagnoses
with greater confidence.

In Figure 2, we present boxplots comparing six features before and after normalization.
Regardless of whether it was before or after normalization, five of these features exhibited
significant differences between the AD and VaD groups. Notably, the feature free T4
showed no distinct differentiation between the AD and VaD groups before normalization
(p = 0.065); however, after normalization, the difference became significant (p = 0.036).
We also display the boxplots of this feature before and after normalization. Examining
these six features more closely, the age feature, whether before or after normalization,
revealed a pronounced median age difference exceeding five years between the AD and
VaD groups. Even though the data range and dispersion for both groups were very similar,
the data distribution for the AD group leaned towards higher values. This can be attributed
to the fact that AD, being a neurodegenerative disease, is more commonly observed in
an older age group [24]. On the other hand, VaD is associated with external factors like
occlusions or bleeding in the cerebral vessels, which might explain the slightly younger
average age of its patients. For the WBC feature, there is a noticeable difference in the
medians of the AD and VaD groups, both before and after normalization, even though their
data distribution ranges are similar. Previous research indicates a correlation between the
WBC count and cardiovascular diseases [25,26]. However, we need more information and
in-depth analysis to understand the reasons for this result. Regarding the HDL feature,
before and after normalization, it is observed that the median and distribution for the
VaD group are both lower than those for the AD group. It is widely recognized that
lower levels of HDL can increase the risk of atherosclerosis, which significantly impacts
cardiovascular health [27]. This observation aligns with the slightly lower data noted for
the VaD group. However, in this database, the distribution of HDL values for the AD group
is broader. Further examination and investigation of individual cases are needed to gain a
deeper understanding. For the creatinine feature, before and after processing, we observed
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that the median and distribution for the VaD group were higher than those of the AD
group. Previous studies have indicated that patients with higher levels of creatinine face
an increased risk of heart disease and stroke [27]. This observation reasonably explains the
slightly higher data in the VaD group. Since the normal reference range for creatinine testing
varies between males and females, our study considered the different gender ratios between
the AD and VaD groups and applied normalization to mitigate this influence. In the case of
the free T4 feature, the AD group’s median value was higher, with a more concentrated
data distribution. Some previous studies have mentioned that elevated free T4 levels, even
within the normal range, might be associated with an increased risk of heart disease, and
also potentially cognitive decline [28]. However, in this study, given the absence of more
detailed pertinent information for reference, we can only depict these differences based
on the available data. Lastly, regarding folic acid, we observed that both the median and
the overall distribution were slightly higher in the AD group compared to the VaD group.
Past research has shown that folic acid can aid in reducing homocysteine in the blood [29].
Higher homocysteine levels, considered a risk factor for cardiovascular disease, are also
associated with cognitive impairment [30]. Therefore, we cannot definitively account for
the observed differences in folic acid levels between the AD and VaD groups, and we
present our findings based on the data at hand.

Further to statistically exploring the features in the demographic data and physio-
logical data that significantly differ between the AD and VaD groups, these features were
further processed using machine learning for classification and prediction. Initially, we
trained using the complete set of 33 features and utilized 5-fold cross-validation to evaluate
the model’s stability and reliability. The results in Table 2 indicate that the average sensi-
tivity, specificity, precision, accuracy, and F1 score were 50.59%, 83.93%, 70.49%, 69.54%,
and 58.90%, respectively. This trial’s performance was suboptimal, especially in terms of
sensitivity, pointing to its limited accuracy in detecting VaD. However, its capacity to iden-
tify AD was commendable. Given the limited data size in this study, we aimed to enhance
prediction accuracy by selecting the optimal feature number using RFE. Subsequently,
the most important 19 features were employed for SVM model training and validation.
The 5-fold cross-validation average results for sensitivity, specificity, precision, accuracy,
and F1 score were 71.76%, 88.39%, 82.43%, 81.22%, and 76.73%, respectively. Figure 3A,B
illustrates the ROC curve and AUC values of 5-fold cross-validation for the SVM model,
comparing the complete 33 features against the selected 19. The average AUC for the
complete 33 features was 0.75 with a standard deviation of 0.1, while the 19 features had
an average AUC of 0.836 with a standard deviation of 0.06. The results suggest that feature
selection considerably enhanced the efficiency and stability of distinguishing between AD
and VaD.

Another aspect of this study employs deep learning techniques to differentiate be-
tween AD and VaD using Tc-99m-ECD SPECT images. The ability to distinguish between
these diseases using images is notably superior to relying solely on demographic and physi-
ological information. This superiority is evident in various performance evaluation metrics,
especially the AUC value. Specifically, the AUC result when using images for classification
prediction stands at 0.95, compared to 0.836 when using only physiological information.

While the results obtained using the Tc-99m-ECD SPECT images to train the Inception
V3 model to distinguish AD from VaD are impressive, neurologists are keen to understand
which brain features influence the model’s decisions and whether these align with expert
opinions or current knowledge. In this regard, we employed the Grad-CAM heatmap to
visualize the pixels that heavily influence the model’s decision-making process. As depicted
in Figure 5, the heatmaps for the AD and VaD groups differ significantly. Unnatural square
edges are visible at the boundaries between different slices in the image. This appearance is
due to the representation of 48 slice images simultaneously, achieved by merging three sets
of equally spaced 2D images. Given our focus on analyzing pixels within the brain, this
peripheral information can be disregarded. To gain a deeper insight into the brain regions
highlighted by the Grad-CAM heatmap, we registered the image with the standard AAL
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brain template and tallied the number of pixels that lit up in its 91 brain regions. We defined
‘lit-up’ areas as those pixels with values exceeding 90% of the maximum. It is worth noting
that, in general, the Grad-CAM heatmap provides a broad representation of locations
and might not be highly precise. Nevertheless, we endeavored to analyze and count the
highlighted pixels within each brain region to discern any potentially meaningful insights.

Figure 6 and Table 4 display the histogram representing the count of lit-up areas,
along with the top ten rankings of the average Grad-CAM heatmap in each brain region
for both AD and VaD groups. The color coding in Table 4 is based on proportion: a white
background indicates greater than two-thirds of the maximum value; light gray represents
greater than one-third of the maximum value; and dark gray represents less than one-third
of the maximum value. On the Grad-CAM heatmap, the occipital region of the AD group
had the largest representation, followed by the cuneus and precuneus. In contrast, the
temporal region of the VaD group had the most significant presence, followed by the
lingual, cerebellum, and putamen.

Original Tc-99m-ECD SPECT images, when analyzed using SPM, reveal pixels with
significant differences between AD and VaD in specific brain regions. The majority of
the areas where AD > VaD are in the thalamus, adjacent to the hippocampus, as well as
the cuneus and precuneus. Many regions where VaD > AD are found in the pre-central,
accompanied by the nearby post-central gyrus, as well as the frontal region. The cerebral
blood flow imaging pattern in VaD patients shows asymmetrical and variable hypoperfu-
sion, while AD exhibits more standardized patterns, such as hypoperfusion in bilateral
temporal and parietal regions. Previous research indicated that bilateral hypoperfusion
was detected in the temporal and/or parietal regions in 33% of VaD patients and 70% of
AD patients when using Tc-99m-HMPAO SPECT for both AD and VaD groups [31]. An
analysis of autopsied human brain tissue from literature examining the differences between
AD and VaD also mentioned employing the ratio of myelin-associated glycoprotein to
proteolipid protein-1 (MAG:PLP1) and the vascular endothelial growth factor-A (VEGF)
index to observe cerebral hypoperfusion patterns. In this analysis, the MAG:PLP1 ratio in
the frontal and parietal cortex of the VaD group was the lowest (indicative of antemortem
hypoperfusion), and the VEGF level in the frontal cortex of the AD group was slightly
elevated (indicating tissue hypoxia) [32].

Given the limited literature directly comparing the brain perfusion images of AD and
VaD, we have combined insights from multiple sources. Although drawing a uniformly
consistent conclusion is challenging, it is indeed possible to distinguish between the two
disease groups based on specific data features. Recent research tends to view AD, VaD,
and mixed dementia as different points on the same disease spectrum, suggesting that
these conditions exhibit interconnected features. There remains a vast scope for deeper
exploration in the future. Our study leverages both machine learning and deep learning
techniques to distinguish between AD and VaD more sensitively using high-dimensional
features, underscoring its feasibility. In the future, the goal is to predict and differenti-
ate between various types of dementia with greater precision through combinations of
these features.

5. Conclusions

This study proposed a method that can quickly use machine learning and deep
learning models to automatically extract features based on a small amount of general
clinical data and images to objectively distinguish AD and VaD. After filtering through
SVM RFE with a 5-fold feature selection, the physiological data achieved an average
accuracy of 81.22% in differentiating AD from VaD, with an AUC of 0.836. The image-based
model, trained using the Inception V3 architecture, yielded an average accuracy of 85%
and an AUC of 0.95. Additionally, Grad-CAM heatmaps were used to interpret the model’s
decision-making, revealing significant differences between AD and VaD. Compared with
the traditional analytical method, in the case of the AD group, both methods highlighted
the precuneus and cuneus regions. In contrast, for the VaD group, there was no clear
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corresponding brain region. This approach underscores the potential of advanced analytical
techniques in sensitively distinguishing between dementia types. In future work, we aim
to combine these high-dimensional features to predict and differentiate various dementia
subtypes more accurately, contributing to improved diagnostic precision in dementia care.
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