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Abstract: Breast cancer is one of the most common cancers in the world, especially among women.
Breast tumor segmentation is a key step in the identification and localization of the breast tumor
region, which has important clinical significance. Inspired by the swin-transformer model with
powerful global modeling ability, we propose a semantic segmentation framework named Swin-Net
for breast ultrasound images, which combines Transformer and Convolutional Neural Networks
(CNNs) to effectively improve the accuracy of breast ultrasound segmentation. Firstly, our model
utilizes a swin-transformer encoder with stronger learning ability, which can extract features of
images more precisely. In addition, two new modules are introduced in our method, including
the feature refinement and enhancement module (RLM) and the hierarchical multi-scale feature
fusion module (HFM), given that the influence of ultrasonic image acquisition methods and the
characteristics of tumor lesions is difficult to capture. Among them, the RLM module is used to
further refine and enhance the feature map learned by the transformer encoder. The HFM module
is used to process multi-scale high-level semantic features and low-level details, so as to achieve
effective cross-layer feature fusion, suppress noise, and improve model segmentation performance.
Experimental results show that Swin-Net performs significantly better than the most advanced
methods on the two public benchmark datasets. In particular, it achieves an absolute improvement
of 1.4–1.8% on Dice. Additionally, we provide a new dataset of breast ultrasound images on which
we test the effect of our model, further demonstrating the validity of our method. In summary,
the proposed Swin-Net framework makes significant advancements in breast ultrasound image
segmentation, providing valuable exploration for research and applications in this domain.

Keywords: swin-transformer; medical image segmentation; breast tumor; ultrasonic image
segmentation

1. Introduction

Breast cancer is the phenomenon that mammary epithelial cells proliferate out of
control under the action of a variety of carcinogenic factors, and its incidence ranks first
among female malignant tumors [1]. Clinical experience has shown that although the
causes of breast cancer are not fully understood, early diagnosis is particularly important
for treatment. At the clinical stage, the diagnostic methods of breast cancer are mainly
divided into invasive diagnosis and non-invasive diagnosis [2]. The invasive diagnostic
is also called biopsy. It is the ultimate basis for the diagnosis of breast cancer, but brings
certain physiological trauma to patients. So, it is not necessary in most cases except
malignancies [3]. Non-invasive diagnosis is the use of ultrasound imaging, X-ray imaging,
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nuclear magnetic resonance imaging, and other methods to carry out medical imaging
examination of breast lesions. Compared with ultrasound imaging, the ionizing radiation
produced by X-rays is harmful to patients and doctors. Although MRI imaging quality is
better, the cost is higher. Ultrasound imaging is noninvasive and low cost, so it is the first
choice for breast cancer diagnosis.

Ultrasound screening mainly relies on doctors’ observation of ultrasound images in
the early diagnosis of breast cancer. However, the accuracy of diagnosis is affected by
many uncontrollable realistic interference factors, which makes the diagnosis result prone
to errors. Therefore, the clinical experience requirements for doctors are very high. To solve
this problem, researchers introduced Computer Aided Diagnosis (CAD) to the diagnostic
task of breast ultrasound images. In the assisted diagnosis of breast ultrasound images,
the general workflow of CAD system is as follows: firstly, accurate segmentation of breast
tumor region is carried out; then, feature extraction is carried out on the segmentation
results; and finally, based on the extracted features, the classification of breast tumors is
carried out using classifiers to judge the benign and malignant tumors [4]. The feature
extraction should be carried out based on the image segmentation results, and the extracted
features will directly affect the diagnostic results. Therefore, ultrasonic breast segmentation
is a very key step in the CAD system and has important clinical significance.

Traditional image segmentation methods mainly rely on low-level features such as
texture and geometric features [5]. Their segmentation quality is usually low, and their
generalization is poor. With the development of deep learning technology, its role in the
medical field is gradually emerging. In view of the defects of traditional algorithms, many
scholars have begun to study the use of deep learning methods to further improve the
accuracy of computer-aided systems for ultrasound breast tumor segmentation. Later, the
U-Net [6] network framework was proposed. Many variant models based on U-net have
been widely used in breast tumor segmentation due to its ability to utilize multi-level
feature reconstruction to obtain high-resolution prediction results. Although the accuracy
and generalization ability of these methods have been greatly improved compared with
traditional methods, the accurate localization of tumor lesions still has certain limitations.
Firstly, due to the inherent locality of the accepting domain in the convolution operation,
various models based on this method cannot model the remote dependency explicitly. This
often results in the inability to achieve optimal segmentation when capturing rich anatomi-
cal features of different shapes and scales (e.g., tumor regions with different structures and
sizes). Moreover, due to the acquisition and imaging method of ultrasonic data and the pos-
sible improper operation in the acquisition process, ultrasonic imaging is characterized by
large speckle noise, blurred region, weak boundary, low contrast, and difficulty in locating
ROI, as shown in Figure 1, which greatly increases the difficulty of tumor detection.

To address the above issues, our contribution in this paper is threefold:

1. We propose a new framework for breast ultrasound segmentation, named Swin-Net.
Unlike the existing CNN-based method, we use the swin-transformer with better
encoding performance as our encoder.

2. To support the framework presented in this article, we use two simple modules to
improve segmentation capabilities. Firstly, a feature refinement and enhancement
module (RLM) is designed to further refine and enhance the feature map learned by
the transformer encoder. Thus, the model can capture global information over long
distances and learn more detailed information at the same time. Then, we developed
an HFM module, which classifies the tumor region features with high-level seman-
tic location information and pixel information with more underlying segmentation
details, respectively, so as to achieve the effective fusion of cross-layer features in a
specific way, thus effectively suppressing noise and improving segmentation accuracy.

3. Finally, we conducted extensive experiments on two challenging benchmark datasets
BUSIS [7] and BUS-B [8], as well as BUS-O, the dataset we provided, to evaluate the
performance of the proposed Swin-Net. On BUSIS, the Dice of our method reaches
0.818, 1.4% higher than that of the existing most advanced method, NU-Net [9]. On
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the BUS-B dataset, the Dice of our model is 0.837, 1.8% higher than that of NU-Net.
On BUS-O, our method reaches 0.840 of Dice, 1.5% higher than NU-Net.

Lesion boundary area

Lesion boundary area Area of lesion

Area of lesion

(a) (b) (c)

benign

malignant

Figure 1. Some examples of breast ultrasound image: (a) original images of benign and malignant
lesions; (b) images with the boundary of the lesion area; and (c) images with the specific lesion area.

2. Related Works
2.1. Traditional Methods of Breast Tumor Segmentation

Traditional methods for medical ultrasound image segmentation are mainly based on
a clustering algorithm, which involves unsupervised learning, that is, no manual labeling
of the training set; it includes methods based on threshold, based on region growing, and
based on active contour model [10].

Although these methods can simply segment the breast tumor region, they usually rely
on the superficial morphological features of breast ultrasound images. So, they have limited
segmentation capabilities and require human intervention. For example, the method based
on threshold segmentation needs to manually select the threshold according to the gray
value distribution. The method based on region growing needs to set the seed points
manually. The method based on active contour then needs to give the initial contour
artificially. Some methods improved on the traditional methods even without manual
intervention to achieve automatic tumor segmentation but also need to carry out very
complex pre-processing of the image. They are mostly composed of a variety of specific
algorithms, which leads to the results being dependent on the specific data set, and the
generalization of the algorithm is poor.

2.2. Breast Tumor Segmentation Methods Based on CNNs

In view of the shortcomings of traditional algorithms, many scholars have begun to
study the use of deep learning methods for breast tumor segmentation. Yap et al. [11]
propose an ultrasound breast tumor segmentation model using a convolutional neural
network based on LeNet, and its segmentation results are significantly better than the
traditional solutions, which proves the effectiveness of deep learning methods. FCN [12]
pioneers the end-to-end fully convolutional neural network for semantic segmentation,
and Yap et al. [13] adopt a method based on this framework to realize the segmentation
of breast tumors. However, this method cannot solve the problem of tumor size and
shape variability, resulting in unsatisfactory results. Since then, PSPNet [14], SegNet [15],
U-Net [6], ResU-Net [16], Deeplab Series [17–20], U-net ++ [21], ResUNet++ [22], and other
semantic segmentation networks have emerged one after another. Because the training of
the above model requires more data, and the current public breast tumor segmentation
datasets of ultrasound images are very limited, the network structure based on U-Net
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usually performs well when the amount of data is limited, so it is widely used in medical
image segmentation tasks including breast tumor segmentation.

Zhuang et al. [23] propose an improved U-Net segmentation network RDAU-net for
breast tumor segmentation in ultrasound images. Based on the traditional U-Net structure,
the residual unit [16] is used to replace the ordinary neural unit. At the same time, atrous
convolution is introduced in the encoder stage of U-Net, and the attention gate module [24]
is used to replace the original clipping and copying operations in order to increase the
network receptive field, suppress background information, and enhance the learning ability
of the model. Punn and Agarwal [25] introduce a lightweight RCA-IUnet model guided
by residual cross-spatial attention, which also follows the U-Net topology. The depthwise
separable convolution [26], cross-spatial attention filter, and a hybrid pooling method are
used to further improve the performance of tumor segmentation of different sizes in breast
ultrasound images, on the basis of guaranteeing the segmentation ability. Lou et al. [27]
develop a new multi-level context refinement network model (MCRNet) to achieve fully
automatic semantic segmentation in ultrasound imaging. The feature fusion scheme of the
U-net network is improved by adaptively reducing the semantic gap and enhancing the
context relationship between the encoder and decoder features. Chen et al. [9] propose a
nested U-net structure (NU-net) for the accurate segmentation of breast tumors. U-Net
with different depths and shared weights is utilized to achieve a robust representation of
breast tumors. Lyu et al. [28] proposed a breast ultrasound image segmentation model
named AMS-PAN. The encoder part uses depthwise separable convolution to obtain multi-
scale breast feature maps and combines the attention mechanism to achieve the effective
segmentation of lesion regions. Iqbal and Sharif [29] propose an improved semi-supervised
learning method (PDF-UNet) based on UNet, combining a data expansion network (DEN),
a probability map generator network (PMG), and a U- shaped pyramid-dilated fusion
network for breast tumor segmentation. Firstly, the DEN network is used to generate
synthetic images for the data expansion task. Secondly, the PMG network is used to
generate the corresponding probability map image for the synthesized unannotated image.
Finally, they use the PDF-UNet network to segment breast tumor images.

2.3. Transformer Methods in Semantic Segmentation Tasks

Convolutional Neural Networks (CNNs) have become the de facto standard for
medical image analysis tasks. However, with the continuous development of Transformer,
especially its research and application in CV field, using Transformer has proved to be more
promising in utilizing remote dependency in computer vision than other traditional CNN-
based approaches [30]. At the same time, Transformer, with its strong global relationship
modeling capabilities, has become the new standard starting point for a wide range of
downstream training.

Transformer was first proposed by Vaswani et al. [31] for machine translation tasks
and has since had a wide impact in the field of natural language processing. Different from
CNNs, Transformer uses the multi-head self-attention layer (MHSA) to model long-term
dependencies. The MHSA layer has dynamic weights and global receptive field, as shown
in the Figure 2, which makes the Transformer model more flexible and effective. To apply
transformers to computer vision tasks, Dosovitskiy et al. [32] proposed a vision transformer
(Vit), the first pure transformer architecture for image classification. The Vit model splits an
image into multiple patches, encodes them, and sends them sequentially to the transformer
encoder, which then uses MLP for image classification. However, the scale of images varies
greatly and is not standard fixed, so the performance of Vit may not be good in different
scenarios, and it is difficult to transplant Vit to various dense prediction tasks. At the same
time, compared with text information, these pictures have larger pixel resolution. Due to
the multi-head self-attention mechanism of Transformer, its computational complexity is
the square of the number of tokens. Therefore, Liu et al. [33] proposed a hierarchical vision
transformer using shifting windows (swin-transformer), which processes images through a
hierarchical structure similar to CNNs, so that the model can flexibly process images of
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different scales. And window self-attention is used to reduce the computational complexity
and process images of different scales. This shows that the swin-transformer architecture
can easily replace the backbone network in existing methods for various vision tasks. In
this work, we design a novel swin-transformer-based segmentation framework to achieve
more accurate localization of breast tumor lesions in ultrasound images with typical noise
interference.

receptive field of ConvH

W

 size of filter

receptive field of 
Transformer block

H

W

Q
K

V

Figure 2. The rough illustration of the receptive field of CNN and the receptive field of Transformer.

In general, the current methods exhibit significant limitations, including:

• Inadequate adaptability for capturing both global and detailed information: Tra-
ditional methods face constraints due to their limited analysis of shallow features.
CNN-based approaches struggle to effectively capture remote dependencies, while
Transformer technology falls short in capturing detailed information.

• Limitations associated with the available training data: Deep learning models often
demand extensive data for training. However, the availability of breast ultrasound
datasets is limited.

• Insufficient segmentation performance: Breast ultrasound images pose challenges such
as speckle noise, blurry boundaries, and low contrast, making tumor segmentation
more challenging.

3. Methods
3.1. Overall Architecture

As shown in Figure 3, the proposed Swin-Net consists of three key modules: the swin-
transformer encoder (Swin-T), the feature refinement enhancement module (RLM), the and
hierarchical multi-scale feature fusion module (HFM). Specifically, the swin-transformer
encoder is used to extract multi-scale long-range dependent features from the input image.
The RLM algorithm is used to remove the influence of noise and to refine and enhance
the feature representation information of breast nodules, including texture and edge.
For feature maps of different scales, the low-level features contain more high-resolution
detailed information, while the high-level feature maps contain more general semantic
information. Therefore, HFM is designed to hierarchically fuse the different level feature
maps processed by the RLM module, which can collect semantic clues and locate the lesion
area by gradually aggregating the high-level features. Finally, the pixel-level information
is effectively transmitted to the whole lesion area. Given an image of size H × W × 3,
we first divide it into small pieces of size 4 × 4. The transformer encoder learns multi-
level image features {X1, X2, X3, X4} with multi-scale and different resolution granularity
through Swin-T from the input original image. These dimensions of these features are
{1/4, 1/8, 1/16, 1/32} of the original image resolution, respectively.

We then pass the features {X2, X3, X4} of the last three levels to the RLM module for
further refinement enhancement learning of each feature map. We can obtain a hardened
multi-level feature map {F2, F3, F4}, which is fused by the HFM module to obtain a fusion-
decoded feature map O ∈ RH/4×W/4×16. Finally, O is fed to the final segmentation header,
mainly a convolutional layer of 1 × 1, to predict the segmentation mask at h × w × Ncls
resolution. Ncls is a class number of 2, and the final prediction mask is constrained by the
segmentation loss. In the rest of this section, we will detail the design of each proposed
module and summarize the main differences between our approach and others.
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Figure 3. The illustration of Swin-Net, composed of swin-transformer encoder (Swin-T), feature re-
finement and enhancement module (RLM), and hierarchical multi-scale feature fusion module (HFM).

3.2. Swin-Transformer Encoder

Due to hardware limitations and uncontrollable factors in the imaging process, breast
ultrasound images often contain severe speckle noise. Several recent studies have found
that vision transformers exhibit superior performance and better robustness to perturba-
tions than CNNs. Inspired by this, we use a visual transformer as our backbone network
to extract more robust and powerful features for breast ultrasound segmentation. Unlike
Vit, which uses a fixed token size and a fixed columnar structure, Swin-T is able to build
hierarchical feature maps, and its computational complexity scales linearly with image size.
Multi-scale features captured in different Windows can provide information at different
perceptual scales, which conforms to the characteristics of pixel-level dense prediction
in visual tasks of semantic segmentation. At the same time, this can reduce resource
consumption because the self-attention calculation is performed only within the window.
Specifically, we adopt the Swin-TS [33], a lightweight version of Swin-T, which is more
resource-efficient while having powerful feature extraction capabilities. In order to adapt
Swin-T to the breast cancer ultrasound segmentation task, as shown in Figure 4, we remove
the last classification layer to generate four multi-scale feature maps {X1, X2, X3, X4} at
different stages. Among them, {X2} provides detailed appearance detail information of
breast cancer lesions, and {X3, X4} provide high-level semantic features. Moreover, we
design an ultrasound segmentation head on the feature maps of the last three levels.

patch 
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patch merging
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patch merging
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Figure 4. The illustration of Swin-T.

3.3. Feature Refinement and Enhancement Module (RLM)

Transformer encoders have advantages in directly modeling global semantic interac-
tions and contextual information, while CNNs have advantages in terms of spatial location
representation and the learning of local spatial correlations. Therefore, for the multi-level
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feature map obtained in the encoder part, we refine the enhancement learning through the
CNN-based RLM, which can further extract the fine-grained features to form the enhanced
features and reduce the noise influence. Unlike common decoders that aggregate the
features from stages 1 to 4, our decoder only receives features from the last three stages.
This is due to the rendering characteristics of ultrasound images: the feature map of stage 1
often contains too much noise interference, which can impair performance. In addition, op-
erations on X1 introduce significant computational overhead. Therefore, we only perform
RLM enhancement for the features of the latter three stages. The implementation method
can be expressed as Equation (1)

Fi = proj( fi(Xi)) (1)

proj(xi) = ReLU(Conv(ReLU(Conv(xi)))) (2)

where FI is the enhanced feature after refinement, and Xi is initial feature maps of the last
three stages learned by the encoder, (i = 2, 3, 4). fi(·) represents the upsampling function
of the corresponding dimension of each stage feature map, and the bilinear interpolation
algorithm is adopted. proj(·) is a refinement enhancement function consisting of two 1 × 1
convolutional layers and a ReLU activation function.

3.4. Hierarchical Multi-Scale Feature Fusion Module (HFM)

To make full use of features from different semantic levels, including original multi-
scale features and enhanced multi-scale features, we design a hierarchical multiscale feature
fusion module (HFM). As shown in Figure 3, we adopt different cascading processing
mechanisms for different levels of high-level semantics and low-level details. The HFM
gradually guides high-resolution low-level feature maps with low-resolution high-level
semantic feature maps to achieve effective multi-scale feature fusion and improve the final
segmentation performance.

We first fuse the highest-level feature map F4 with the original feature map X3 and
use L3(·) to smoothly connect the fused features to obtain the fusion feature map T34 ∈
RH/16×W/16×32. Here, T represents the fusion feature, and the subscript index is composed
of the network layer numbers from which the features originated before fusion. For
example, T34 denotes the high-level fusion feature map obtained by fusing primary and
refined features from the 4th and 3rd layers of the network. The process can be summarized
as Equation (3).

T34 = L3(cat(F4 ∗ X3), F4) (3)

where ∗ represents the Hadamard product; cat(·) is a splicing operation along the channel
dimension; and Li(·) is composed of a 1 × 1 convolutional layer, a BN layer, and an
activation layer for smoothing and dimensionality reduction.

Then, we use a similar process to fuse the refinement features F3, F4; the initial encoding
feature X2; and the fusion feature T34. First, we upsample F4 and T34 to the same size as X2
and perform feature smoothing. We then multiply the smoothed F4 and F3 with X2 and
stack the resulting feature map with the smoothed T34. Finally, we input the stacked feature
map into the fusion function L2(·) to obtain T234 ∈ RH/8×W/8×32. Here, T234 represents the
fusion feature map obtained by fusing the features from layers 2, 3, and 4 of the network.
The process is shown in Equation (4).

T234 = L2(concat(Gi(F4) ∗ F3 ∗ X2, Gi(T34))) (4)

Gi(x) = ReLU(BN(Conv( fi(x)))) (5)

where fi(·) represents the bilinear interpolation algorithm, and Gi(·) is mainly composed
of an interpolation function and a 3 × 3 convolutional layer, which is used to adjust the size
of the feature map and smooth it.
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Since the deep convolutional neural network usually loses some potential detailed
features, we fuse the aggregated feature T234 with the refined low-level feature F2. Finally,
we obtain the output O ∈ RH/4×W/4×16 of the HFM:

O = L1(concat(Gi(T234), F2)) (6)

3.5. Loss

The data of medical images is very rare, and the positive and negative samples are
unbalanced. Considering these issues, we design a more effective loss function to achieve a
better segmentation effect, which combines cross-entropy loss, Dice loss, and intersecting
and union loss as the overall segmentation loss. Therefore, the loss function of Swin-Net
can be expressed as:

Lall = λLce + Ldice + Liou (7)

where λ is the empirical coefficient; in this paper, we set λ = 2. This makes the model
pay more attention to mining the foreground area in the training process and ensures the
stability of the model loss convergence while improving the ability of the model to deal
with the severe imbalance of positive and negative samples.

4. Results and Discussion
4.1. Experiment Materials

In this paper, two widely used public breast ultrasound datasets and a private dataset
provided by ourselves are used to evaluate the performance of the segmentation network.

BUSIS: The first breast ultrasound dataset is BUSIS, proposed by Al-Dhabyani et al. [7].
It contains 780 images of 600 female patients, including 210 malignant cases, 437 benign
cases, and 133 normal cases.

BUS-B: The second breast ultrasound DataSet used in this paper is BUS-B, collected
by Yap et al. [11]. Dataset B contains a total of 163 images, including 110 benign and
53 malignant cases.

BUS-O: The third breast ultrasound dataset used is BUS-O, collected by ourselves
from Hunnan Cancer Hospital. In this study, we collect a dataset of 267 ultrasound images
of breast lesions from 170 different women, of which 109 were malignant and 161 benign
lesions. Each image comes with its corresponding segmentation ground truth, annotated
by two professional medical experts. It is crucial to emphasize that our data have received
ethical approval and undergone rigorous ethical processing to ensure compliance with
research integrity and ethical standards.

4.2. Experiment Configuration

The model proposed in this paper is built, trained, and tested based on the PyTorch
(1.7.0) deep learning framework. We split the training set and validation set at 7:3, and all
images are reshaped to 448 × 448 before entering the network.

Additionally, we preprocess the data with five-fold augmentation, such as random hor-
izontal flipping, random rotation, random blurring, and random noise addition. Random
horizontal flipping and random rotation change the perspective of the images, enhancing
the adaptability of the model to different angles. Random blurring simulates the slight blur-
riness present in actual ultrasound images, making the model more robust. The random
noise helps the model better handle image disturbances typical in real-world scenarios.
These preprocessing steps introduce diversity and complexity to the data, contributing to
improving the generalization ability of the model.

We use the AdamW optimizer [34] in all our experiments. To train our Swin-Net, the
initial learning rate is set to 1 × 10−4. Each model is trained for 200 epochs for all datasets.
The bath size is set to 8.
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4.3. Evaluation Metrics

In order to quantify and compare the performance of the proposed model and the
contrast models in breast ultrasound image segmentation, we select five classic quantita-
tive evaluation metrics as follows: Global Accuracy (Acc), Intersection over Union (Iou),
DiceSimilarity Coefficient (Dice), precision, and recall. The higher the value of these five
metrics, the better the segmentation effect of the network.

4.4. Comparison of Results

In this section, our model is compared with several open-source methods, including
U-Net [6], Seg-Net [15], Unet++ [21], Att-Unet [24], Res-Unet++ [22], CE-Net [35], SK-
UNet [36], CPF-Net [37], and Nu-Net [9]. Among them, U-net and Seg-net are classical
models in the field of image segmentation, and Unet++, Att-U-net, and Res-Unet are effec-
tive improved variants of U-Net. CE-net, SK-Unet, and CPF-Net are advanced networks
suitable for medical image segmentation tasks, and Nu-Net is the most advanced method
for the ultrasound image segmentation of breast tumor. The results demonstrate the ef-
fectiveness of different components of Swin-Net. Finally, we comprehensively evaluate
the robustness of our approach. For fair comparison, we use their open source code for
evaluation on the same training and test sets.

4.4.1. Comparison with the Most Advanced Methods

We compare the proposed method with nine advanced deep learning medical image
segmentation methods. Table 1 shows the quantitative evaluation results of BUSIS via
different methods, Table 2 shows the results of BUS-B, and Table 3 shows the results of
BUS-O. The experimental results show that our method achieves the best segmentation
performance on each dataset, especially achieving significant improvements of 1.4%, 1.8%,
and 1.5% on the Dice index, respectively. In order to compare the segmentation performance
more intuitively, we selected some representative examples from the test set of each dataset.
As shown in Figure 5, the proposed Swin-Net can suppress irrelevant information more
effectively, with clearer and smoother boundaries. Even when dealing with cases such as
blurred boundaries and low contrast, our method can capture more precise quality regions,
and the results can be closer to the annotations of experts.

Table 1. Comparison of segmentation results of benign and malignant breast lesions on dataset BUSIS
by different methods. (Bold text indicates the best result).

Train Test

Methods Acc Acc Iou Dice Precision Recall

U-Net [6] 0.979 0.915 0.569 0.629 0.642 0.681
Seg-Net [15] 0.988 0.922 0.621 0.703 0.708 0.723
Unet++ [21] 0.982 0.930 0.625 0.714 0.741 0.720

Att-Unet [24] 0.975 0.931 0.657 0.718 0.757 0.732
Res-Unet++ [22] 0.984 0.930 0.654 0.721 0.749 0.740

CE-Net [35] 0.992 0.943 0.671 0.723 0.785 0.765
SK-UNet [36] 0.986 0.945 0.682 0.753 0.799 0.762
CPF-Net [37] 0.979 0.952 0.691 0.776 0.824 0.796
Nu-Net [9] 0.988 0.955 0.725 0.804 0.818 0.838
Swin-Net 0.994 0.959 0.738 0.818 0.834 0.844

Table 2. Comparison of segmentation results of benign and malignant breast lesions on dataset BUS-B
by different methods. (Bold text indicates the best result).

Train Test

Methods Acc Acc Iou Dice Precision Recall

U-Net [6] 0.975 0.918 0.615 0.655 0.683 0.733
Seg-Net [15] 0.984 0.921 0.641 0.708 0.725 0.724
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Table 2. Cont.

Train Test

Methods Acc Acc Iou Dice Precision Recall

Unet++ [21] 0.978 0.926 0.622 0.726 0.742 0.781
Att-Unet [24] 0.984 0.927 0.653 0.753 0.759 0.762

Res-Unet++ [22] 0.987 0.939 0.671 0.759 0.756 0.774
CE-Net [35] 0.991 0.947 0.696 0.783 0.787 0.798

SK-UNet [36] 0.993 0.956 0.698 0.785 0.817 0.808
CPF-Net [37] 0.985 0.961 0.704 0.796 0.824 0.839
Nu-Net [9] 0.994 0.967 0.738 0.819 0.837 0.854
Swin-Net 0.997 0.971 0.745 0.837 0.856 0.863

Table 3. Comparison of segmentation results of benign and malignant breast lesions on dataset
BUS-O by different methods. (Bold text indicates the best result).

Train Test

Methods Acc Acc Iou Dice Precision Recall

U-Net [6] 0.971 0.919 0.638 0.704 0.710 0.691
Seg-Net [15] 0.982 0.920 0.657 0.714 0.709 0.729
U-Net++ [21] 0.987 0.922 0.696 0.726 0.717 0.743
Att-Unet [24] 0.973 0.931 0.716 0.753 0.756 0.770

Res-Unet++ [22] 0.996 0.935 0.704 0.767 0.759 0.794
CE-Net [35] 0.985 0.938 0.728 0.782 0.778 0.817

SK-UNet [36] 0.991 0.945 0.713 0.799 0.780 0.823
CPF-Net [37] 0.988 0.943 0.744 0.816 0.828 0.830
Nu-Net [9] 0.998 0.954 0.749 0.825 0.835 0.853
Swin-Net 0.999 0.963 0.754 0.840 0.855 0.850

Figure 5. Qualitative comparison of various methods on different datasets. The first column is the
original image; the last column is the ground truth; the penultimate column is our proposed Swin-Net
segmentation prediction example; and the middle is the prediction result of the U-Net, Seg-Net,
Att-Unet, Unet++, Res-Unet++, CE-Net, SK-Unet, CPF-Net, and Nu-Net models, respectively. Among
them, the first three rows of images are from BUSIS, the middle three rows belong to BUS-B, and the
last three rows are from BUS-O.
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4.4.2. Ablation Study

To verify the effectiveness of the main components of Swin-Net: the Feature Refine-
ment Enhancement Module (RLM) and the Hierarchical Multiscale Feature Fusion Mod-
ule (HFM), we use the swin-transformer encoder as the baseline, comparing its variants
with the standard version by removing or replacing components from the full Swin-Net.
“Swin-Net(Swin-T+RLM+HFM)” represents the proposed version, and “RLM” and “HFM”
indicate the usage of RLM and HFM, respectively. We perform ablation experiments on
three datasets: BUSIS, BUS-B, and BUS-O. The effectiveness of our proposed methods can
be seen from Tables 4–6.

Table 4. Ablation study on BUSIS. (Bold text indicates the best result).

Train Test

Methods Acc Acc Iou Dice Precision Recall

swin-t(w/o RLM) 0.991 0.947 0.708 0.795 0.817 0.821
swin-t(w/o HFM) 0.990 0.955 0.716 0.793 0.809 0.832

swin-t(w/o X1) 0.989 0.946 0.724 0.805 0.818 0.838
Swin-Net(Swin-T+RLM+HFM) 0.994 0.959 0.738 0.818 0.834 0.844

Table 5. Ablation study on BUS-B. (Bold text indicates the best result).

Train Test

Methods Acc Acc Iou Dice Precision Recall

swin-t(w/o RLM) 0.991 0.964 0.726 0.823 0.845 0.840
swin-t(w/o HFM) 0.997 0.965 0.732 0.827 0.855 0.845

swin-t(w/o X1) 0.987 0.961 0.724 0.820 0.832 0.856
Swin-Net(Swin-T+RLM+HFM) 0.997 0.971 0.745 0.837 0.856 0.863

Table 6. Ablation study on BUS-O. (Bold text indicates the best result).

Train Test

Methods Acc Acc Iou Dice Precision Recall

swin-t(w/o RLM) 0.995 0.954 0.740 0.813 0.824 0.818
swin-t(w/o HFM) 0.999 0.955 0.733 0.818 0.844 0.816

swin-t(w/o X1) 0.998 0.953 0.746 0.826 0.866 0.835
Swin-Net(Swin-T+RLM+HFM) 0.999 0.963 0.754 0.840 0.855 0.850

Effectiveness of RLM: To analyze the effectiveness of RLM, we train a “swin-t(w/o
RLM)” version by removing the RLM module from the entire Swin-Net. All evaluation
metrics of the model without RLM have significant decreases on all three datasets compared
to standard swin-PVT. In particular, Table 5 showes that Dice decreases from 0.840 to 0.813
on BUS-O.

Effectiveness of HFM: Similarly, we remove the HEM module from Swin-Net and
replace it with a classic All-MLP Decoder (called “swin-t(w/o HFM)” to test its effectiveness.
As shown in Table 4, Dice and Iou of full Swin-Net improve by 2.5% and 2.2% on BUSIS,
respectively.

The validity of feature map selection: To verify the effectiveness of our method in
feature map selection, we train the “swin-t(w/o X1)” version, which indicates that the
output of stage 1 is also sent to the decoder. As shown in Tables 4–6, compared with
Swin-Net, all evaluation metrics decrease on the three datasets. The results prove that the
feature map of stage 1 is more disturbed by noise, which will affect the performance of
the network.
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5. Conclusions

In this paper, we introduce Swin-Net, an effective segmentation framework combin-
ing CNNs and Transformer for 2D breast tumor ultrasound image segmentation. Its key
insight is to use swin-transformer as an encoder to obtain multi-level pyramid structure
feature maps, which contain rich global spatial information and local multi-scale context
information. In addition, Swin-Net also benefits from the feature refinement and enhance-
ment module (RLM) proposed by us according to the characteristics of ultrasonic image.
Combined with the advantages of CNNs, it can further refine the initial encoded feature
map to achieve feature enhancement. Finally, a hierarchical multi-scale feature fusion mod-
ule (HFM) is designed to realize the effective fusion of feature maps containing different
semantic levels in stages and improve the segmentation performance. The experimental
results indicate that Swin-Net performs competitively on two widely used breast ultra-
sound datasets and our proprietary dataset. Quantitatively, our Swin-Net outperforms
the state-of-the-art Nu-Net on key metrics across multiple datasets. On the BUSIS dataset,
we achieve higher values in Acc, IoU, Dice, precision, and recall. Similar superior perfor-
mance is observed on the BUS-B and BUS-O datasets. Specifically, on BUSIS, Swin-Net
achieves Acc of 0.959, IoU of 0.738, Dice of 0.818, precision of 0.834, and recall of 0.844,
surpassing Nu-Net by approximately 0.42% 1.38%, 1.74%, 1.92%, and 0.72%, respectively.
In addition to the experimental results, we have conducted a comprehensive analysis to
assess the robustness of our approach. However, our study is still constrained by data
limitations, and a more diverse and comprehensive dataset could contribute to improving
the generalization ability of the model. Accurate ultrasound segmentation of breast tumors
remains a challenge, and the segmentation performance may be affected in more complex
pathological cases, necessitating further research. We believe that exploring effective data
augmentation and preprocessing methods could enhance the robustness of the model
to ultrasound image characteristics, particularly in addressing issues such as combating
speckle noise. Additionally, considering the integration of information from other modali-
ties of medical imaging, such as MRI or CT, may enhance accuracy in segmenting different
types of lesions. In conclusion, we hope that our study will inspire new ideas to solve the
problem of ultrasonic segmentation of breast tumors and contribute to the ambitious goal
of building safer and more trustworthy clinical AI.
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