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Abstract: Background: Quantitative pupillometry has been proposed as an objective means to
diagnose acute sports-related concussion (SRC). Objective: To assess the diagnostic accuracy of a
smartphone-based quantitative pupillometer in the acute diagnosis of SRC. Methods: Division I
college football players had baseline pupillometry including pupillary light reflex (PLR) parameters
of maximum resting diameter, minimum diameter after light stimulus, percent change in pupil
diameter, latency of pupil constriction onset, mean constriction velocity, maximum constriction
velocity, and mean dilation velocity using a smartphone-based app. When an SRC occurred, athletes
had the smartphone pupillometry repeated as part of their concussion testing. All combinations of
the seven PLR parameters were tested in machine learning binary classification models to determine
the optimal combination for differentiating between non-concussed and concussed athletes. Results:
93 football athletes underwent baseline pupillometry testing. Among these athletes, 11 suffered future
SRC and had pupillometry recordings repeated at the time of diagnosis. In the machine learning
pupillometry analysis that used the synthetic minority oversampling technique to account for the
significant class imbalance in our dataset, the best-performing model was a random forest algorithm
with the combination of latency, maximum diameter, minimum diameter, mean constriction velocity,
and maximum constriction velocity PLR parameters as feature inputs. This model produced 91%
overall accuracy, 98% sensitivity, 84.2% specificity, area under the curve (AUC) of 0.91, and an F1
score of 91.6% in differentiating between baseline and SRC recordings. In the machine learning
analysis prior to oversampling of our imbalanced dataset, the best-performing model was k-nearest
neighbors using latency, maximum diameter, maximum constriction velocity, and mean dilation
velocity to produce 82% accuracy, 40% sensitivity, 87% specificity, AUC of 0.64, and F1 score of 24%.
Conclusions: Smartphone pupillometry in combination with machine learning may provide fast and
objective SRC diagnosis in football athletes.

Keywords: smartphone pupillometry; sports-related concussion; diagnostics; biomarkers; pupillary
light reflex; digital health

1. Introduction

Sports-related concussions (SRCs) are common, with an estimated 1.0-1.8 million per
year in the 0-18 years age range [1] and 6.2% of college football players sustaining a SRC
annually [2]. The diagnosis of SRC can be difficult [3]. The most sensitive and specific
measure for diagnosis of concussion is symptoms; however, this requires the athlete to
report symptoms [4]. An athlete may not report symptoms because of internal or external
pressures, unrecognized symptoms, or a delay in the development of symptoms [5]. The
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Sport Concussion Assessment Tool (SCAT) is recommended for the diagnosis of concussion
and contains both subjective and objective portions. The subjective portion includes a
symptom scale where users rate each of 22 symptoms associated with concussion on a
Likert scale from 0 to 6. The Symptom Score represents the number of symptoms present
(from 0-22) and a Symptom Severity Score is the sum of the symptoms endorsed on the
Likert scale (0-132). Symptom score and symptom severity score are the most predictive
of concussion with an AUC of 0.93-0.94; however, symptoms are subjective and rely on
accurate reporting by the athlete [4]. An athlete may under-report symptoms due to a
desire to return to play, concern about letting down teammates, pressure from coaches, an
inability to recognize symptoms, or a delay in the development of symptoms. The SCAT-6
also has a cognitive evaluation, (the Standardized Assessment of Concussion (SAC)), and
a balance evaluation (the modified Balance Error Scoring System (m-BESS)) [6], but the
sensitivity and specificity of both these tests are poor [4,7,8]. Other tests which have been
used include the King-Devick and computer-vision eye-tracking devices [9,10] and blood
biomarkers but all have challenges related to their accuracy, practicality, and usability [11].
Currently the diagnosis of concussion relies heavily on self-report of symptoms. There is a
need for a quick, accurate, easy-to-use objective biomarker of concussion.

Pupillometry has been explored as one such biomarker. Our pupils change in size
continuously in response to the ambient light levels in a complex reflex known as the pupil-
lary light reflex (PLR). The PLR is modulated by both sympathetic and parasympathetic
input and not under conscious control. The PLR is affected by age, sex, attentional state,
ambient light, and other factors [12]. The PLR was first reported as an indicator of health in
the ninth century and qualitative pupillometry is a core component of the Glascow Coma
Scale [12]. Quantitative pupillometry has more recently been used in intensive care units
and emergency rooms as a more accurate assessment of pupil metrics. Studies of the PLR in
the military in those with blast injury or chronic mild traumatic brain injury (mTBI) showed
decreases in PLR and pupil size compared to uninjured controls 15 days to greater than a
year after injury [13-15] and more acutely at <72 h after injury [16]. In a study of 92 youths
with a diagnosis of post-concussion syndrome, the velocity of the PLR was increased
compared to uninjured controls at a median of 51 days post injury [17]. Another study of
adolescents aged 12-18 at a median of 12 days after SRC showed group level increases
in PLR metrics [18]. These studies all used a NeurOptics pupillometer, a quantitative
pupillometer often used in intensive care units [19]. The direction and magnitude of PLR
changes in these studies was not consistent; however, interest in quantitative pupillometry
as an objective biomarker of concussion has been piqued by these initial studies. Addi-
tionally, although the pathophysiologic mechanism behind pupil changes in the setting of
SRC and mTBI is unknown, it is thought to result from functional rather than structural
abnormalities in neuronal homeostasis that are the basis of mTBI pathophysiology [20].

There has also been interest in utilizing the capabilities of smartphones to quantitively
measure the PLR [20-22]. Smartphones are ubiquitous and easy to use. A smartphone-
based app with the ability to differentiate concussed from non-concussed athletes objec-
tively would present a significant advancement in the diagnosis of concussion. A recent
pilot study in mTBI patients presenting to the emergency room with either loss of con-
sciousness or memory loss showed that a machine learning algorithm combined with
smartphone pupillometry was able to differentiate between those with mTBI and healthy
controls [23]. SRCs are a subset of mTBI on the milder end of the spectrum [3] with loss
of consciousness or memory loss occurring in only 5% and 10%, respectively, in college
athletes [24]. We studied the utility of a smartphone pupillometry application with machine
learning (PupilScreen, Apertur Inc., Seattle, WA, USA) for the detection of acute SRC in
college football athletes.
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2. Methods
2.1. Data Collection

Participants included Division I collegiate football players from a single institution
between 6 August 2023 and 8 January 2024. Every player on the football team was eligible
to participate in the study. All participants underwent screening for baseline anisocoria
by the senior author prior to baseline smartphone-based quantitative pupillometry testing
during pre-season training camp. Individuals diagnosed with SRC underwent the same
pupillometry testing within 24 h of when the SRC occurred. The diagnosis of SRC was
made by a team physician using the definition from the Amsterdam International Con-
sensus Conference [25]. Each athlete completed the Sport Concussion Assessment Tool 6
(SCAT-6) both at the time of their baseline pupillometry recording and their concussion
pupillometry recording. Both symptom score and symptom severity score at baseline and
post-concussion were reported for concussion and controls. Eye color and any concus-
sion co-morbidities were also recorded at the time of enrollment. All athletes completed
electronic informed consent. This study was approved by the University of Washington
Human Subjects Division.

The PupilScreen smartphone-based quantitative pupillometry application (Figure 1)
records a PLR curve along with seven PLR parameters representing the curve morphology
(Table 1) using a computer vision algorithm trained on thousands of pupils to detect the
pupil diameter throughout the recording. Each recording is binocular and eight seconds in
duration, with a three-second flash of light from the smartphone camera in the middle of
the recording to stimulate the PLR [26-29]. During this study, a 3D-printed box apparatus
was attached to the smartphone for each recording to eliminate the effect of ambient light
on the pupillometry results, and there is no illumination source in the 3D-printed box prior
to the light stimulus (the baseline maximum pupil diameter before the light stimulus is
recorded in the latency period between the onset of light stimulus and the beginning of the
pupil constriction—see Limitations Section for further discussion) [23]. The PupilScreen
emits light intensity equivalent to 1.1 candela at the plane of the cornea. The iPhone version
12 was used for all recordings.

Table 1. Definitions of pupillary light reflex parameters.

Pupillary Light Reflex Parameter Description
Latency . . . o . _—
(s) (LAT) Time from onset of light stimulus to initial pupillary constriction
Percent Change (%) . . . . ..
(CHANGE) Percent change in pupillary diameter from maximum to minimum
Minimum Pupillary Diameter . . . .
(mm) (MIN) Minimum diameter after light stimulus
Maximum Pupillary Diameter . . . . .
(mm) (MAX) Average resting diameter prior to light stimulus
Mean Constriction Velocity The average speed at which the pupil constricts after the light stimulus
(mm/s) (MCV) until the minimum diameter is reached

Maximum Constriction Veloci

The maximum speed at which the pupil constricts after the light stimulus

ty (mm/s) (MAXCV) until the minimum diameter is reached

Mean Dilation Velocity The average speed at which the pupil dilates after removal of the
(mm/s) (MDV) light stimulus

mm: millimeters, s: seconds.

2.2. Analysis

Football position played, presence of comorbidities, and eye color were analyzed
using a Fisher’s exact test. Age, year in school, and baseline concussion symptom reporting
were analyzed using a Mann-Whitney U/Wilcoxon Rank Sum Test. History of concussion
was analyzed using a logistic regression. For all statistical analyses, a p-value of 0.05 was
considered as the threshold to determine statistical significance.
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Descriptive demographic and pupillometric data were produced, including effect sizes
for each of the PLR parameters in isolation and single-variable area under the curve (AUC)
calculations for each PLR parameter in isolation. All combinations of the seven PLR param-
eters (Table 1) were tested in machine learning binary classification models to determine
the optimal combination for differentiating between athlete baseline recordings and athlete
recordings taken immediately after concussion. To conduct this method of analysis, all pos-
sible combinations of the seven PLR parameters (Table 1) were generated in a non-repeating
fashion (i.e., the combination ‘latency, maximum diameter, mean constriction velocity” is
not repeated if the combination ‘maximum diameter, mean constriction velocity, latency’
is already present). These unique combinations were then tested sequentially as feature
inputs in the machine learning classification model architectures that are subsequently
listed in this text.

Four machine learning model architectures were tested: logistic regression, k-nearest
neighbors, support vector machine, and random forest [30]. Each was tested with and with-
out the synthetic minority oversampling technique (SMOTE) which was employed prior to
training of the machine learning models due to significant class imbalance in the dataset
which can otherwise make the results of machine learning classification performance un-
reliable and impractical [31]. This technique oversamples the minority class (in this case,
recordings from athletes immediately after concussion) within its statistical distribution to
produce a new sample that is equal in size to the majority class. In the present study, this
simulates the effect of collecting recordings on concussed athletes for approximately nine
seasons at the rate collected within this study of 11 concussed athletes per football season.
SMOTE thus generates a dataset on which the machine learning architectures can be tested
to see what model performance would look like if a balanced dataset was collected (i.e., a
dataset with equal numbers of concussed and non-concussed athletes) which is otherwise
not feasible to collect due to time constraints (it would take nine seasons to collect enough
concussion data on our study population, see above).

Ten-fold cross-validation stratified by cohort was used to produce the following model
performance metrics when SMOTE was used: overall accuracy, sensitivity, specificity, area
under the curve (AUC), and F1 score. The 10-fold cross-validation technique splits the
dataset into 10 equal subsets and trains the model on nine out of 10 subsets with the
10th subset held out as a testing set. The performance is then recorded, that model is
discarded, and the process is repeated nine more times and the model performance metrics
are averaged across all 10 runs for each possible unique combination of the seven PLR
parameters (Table 1) for each of the four machine learning model architectures to produce
the performance metrics that are reported in this text. By averaging the performance over
10 folds, this approach gives an unbiased and accurate report of the expected model perfor-
mance on an unseen testing dataset when one is not yet available, as is the case in this study.
Five-fold cross-validation stratified by cohort was used to report the same model perfor-
mance metrics in the non-SMOTE dataset due to the large class imbalance that was present.
Due to the class imbalance, the model fitting and results of the non-oversampled dataset
may be unreliable [31]. We report the best-performing feature combinations (i.e., combina-
tions of PLR parameters) for the top two models, based on AUC value, in differentiating
PLR curves of athletes with concussion versus baseline recordings for both the non-SMOTE
and SMOTE model training and testing runs.

3. Results

There were 93 football athletes (100% male) that had baseline pupillometry recordings
taken with the smartphone pupillometry application. Eighteen athletes had a documented
prior diagnosis of at least one concussion an average of 640 (QR: 306, 1029) days prior
to receiving a baseline pupillometry recording. Ten percent of athletes had a diagnosed
mood disorder (including depression and anxiety), 2% had a diagnosis of ADHD, and 1%
had a diagnosed migraine disorder. There was representation across all football positions
on the team. Eye color was not significantly different between concussed and baseline
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cohorts. Demographic and position characteristics are shown in Table 2. At the time
of baseline pupillometry recording, the median SCAT-6 symptom score was 2 (IQR: 6)
and the median SCAT-6 symptom severity score was 2 (IQR: 7). Eleven athletes sustained
subsequent concussions during the study period and received additional concussion testing
and pupillometry recordings immediately after injury. After the initial injury, the median
SCAT-6 number of symptoms reported was 15 (IQR: 11.5) and the median SCAT-6 symptom
severity reported was 25 (IQR: 30).

Table 2. Demographics.

Difference Between

Total n (%) Concussed n (%) Baseline n (%) Groups (p-Value)
n =93 n=11 n =93

Age (mean, range) * 20 (18-24) 21 (18-23) 20 (17-24) 0.60 ¢
Position 0.63°

Defensive backs 16 (17%) 2 (18%) 14 (17%) 1b
Linebackers 16 (17%) 4 (36%) 12 (15%) 0.09b
Defensive Lineman 8 (9%) 0 (0%) 8 (9%) 0.59b
Offensive Lineman 19 (20%) 3 (27%) 16 (20%) 0.69b

Skill positions (running back, wide 22 (24%) 2 (18%) 20 (24%) 1b

receiver, tight end)

Quarterbacks 5 (5%) 0 (0%) 5 (6%) 1b
Specialists (kicker, punter, long snapper) 7 (8%) 0 (0%) 7 (9%) 0.59b
Comorbidities 0.08b
Mood 9 (10%) 3 (27%) 6 (7%) 0.01*P
ADHD 2 (2%) 0(0) 2 (2%) 0.99b
Headache/migraine 1 (1%) 0(0) 1 (1%) 0.99b
Year in School 0.75¢

1 36 (39%) 4 (36%) 32 (39%) 1¢
2 32 (24%) 3 (27%) 29 (35%) 091°¢
3 21 (23%) 3 (27%) 18 (22%) 0.84°¢

4 8 (9%) 1 (1%) 7 (9%) 1¢
Eye Color 0.28°
Blue 16 (17%) 0(0) 16 (20%) 0.20b
Brown 61 (66%) 10 (91%) 51 (62%) 0.09b
Green 10 (11%) 1 (9%) 9 (11%) 0.99b

Hazel 6 (6%) 0(0) 6 (7%) 1b
History of Previous Concussion 0.134d
1 16 (16%) 4 (36%) 12 (15%) 0.994d
2 2 (2%) 2 (18%) 0(0) 0.99 4

Baseline Symptom Reporting

Total Symptoms (median, range) 2 (0-21) 2 (0-19) 2 (0-21) 0.64°¢
Symptom Severity (median, range) 3 (0-65) 2 (0-24) 3 (0-65) 0.71¢

* Significant. * Age at time of test. ¥ Not including concussions sustained during this study period. P Fisher’s
Exact Test. © Mann-Whitney U/Wilcoxon Rank Sum Test. ¢ Logistic Regression.

Descriptive pupillometry data from our cohort prior to oversampling are presented in
Table 3 with comparison to the oversampled data. The MIN PLR parameter had a moderate
effect size when used alone to differentiate between baseline and concussion recordings.
Without oversampling, the MIN, LAT, and MDV PLR parameters each in isolation had
positive predictive ability better than chance based on their AUC values.
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Table 3. Descriptive pupillometry data.

Single-Variable Single-Variable

Baseline Concussed Effect Size for . .
PLR Parameter Mean + SD Mean + SD Baseline to AUC for Bas?lme AUC for Bas?,hne

1 = 93) = 11) Concussion to Concussion to Concussion

Before SMOTE After SMOTE
MAX 43+1.1 41+13 0.2 0.5 0.59
MIN 2.6+05 23+05 0.6 0.53 0.67
CHANGE 36.4 +15.9 38.4 +20.9 0.1 0.44 0.64
LAT 1+08 1.1+1 0.1 0.54 0.62
MCV 1+1.1 0.84+0.2 0.3 0.43 0.6
MAXCV 5.6 +3.5 6.2+28 0.2 0.44 0.67
MDV 0.5+0.7 0.6 £0.5 0.2 0.61 0.75

PLR: pupillary light reflex, SD: standard deviation, AUC: area under the curve using a random forest model,
SMOTE: synthetic minority oversampling technique, MAX: maximum diameter, MIN: minimum diameter,
CHANGE: percent change, LAT: latency, MCV: mean constriction velocity, MAXCV: maximum constriction
velocity, MDV: mean dilation velocity.

For the machine learning pupillometry analysis, the single best-performing models
for each model architecture for both the non-SMOTE and the SMOTE training and testing
runs are listed in Tables 4 and 5, respectively. Overall, the best-performing model was a
random forest algorithm after SMOTE with the combination of LAT, MAX, MIN, MCV, and
MAXCYV PLR parameters as feature inputs. This model produced 91% overall accuracy,
97% sensitivity, 86% specificity, area under the curve of 0.91, and an F1 score of 92% in
differentiating between baseline and SRC recordings in the balanced dataset. In the non-
SMOTE highly imbalanced dataset, the best-performing model was a k-nearest neighbors
approach with the combination of LAT, MAX, MAXCV, and MDV PLR parameters as
feature inputs. This model produced 82% overall accuracy, 40% sensitivity, 87% specificity,
an AUC of 0.64, and an F1 score of 24%. With the use of five-fold cross-validation, in the
non-SMOTE dataset each fold has only one or two concussion recordings in the test set
which explains the poor average sensitivity and F1 score (e.g., if the model incorrectly
classifies the one concussion recording that is present in a given fold, that fold ends up
with 0% sensitivity). Double histograms in Figure 2 and three-dimensional scatter plots
in Figure 3 help visualize the potential areas of separation between the concussed and
baseline recordings in our non-SMOTE dataset using combinations of three out of the four
PLR parameters from the aforementioned k-nearest neighbors model.

Figure 1. Demonstration of use of the box apparatus. The smartphone inserts into the box from the
side (Mariakakis et al. [30]).
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Table 4. Best-performing PLR parameter combinations and models in the

unbalanced dataset

before SMOTE.
Model Parameters Accuracy Sensitivity Specificity AUC F1 Score
KNN LAT, MAX, MAXCV, MDV 82% 40% 87% 0.64 24%
RF MDV 86% 30% 93% 0.61 28%
SVM * - - - - - -
LR* - - - - - -
RF: Random forest, KNN: k-nearest neighbors, SVM: support vector machine, LR: logistic regression, AUC: area
under the curve, SMOTE: synthetic minority oversampling technique, LAT: latency, MAX: maximum diameter,
MAXCV: maximum constriction velocity, MDV: mean dilation velocity. * Unable to generate a best combination
of PLR parameters due to class imbalance—models uniformly produced accuracy of 89%, sensitivity of 0%,
specificity of 100%, AUC of 0.5, and F1 score of 0%.
Table 5. Best-performing PLR parameter combinations and models after SMOTE.
Model Parameters Accuracy Sensitivity ~ Specificity AUC F1 Score
RF LAT, %, MIN, MCV, MAXCV, MDV 91% 97% 86% 091 92%
KNN LAT, MAX, MAXCV, MDV 89 92 86 0.89 89%
SVM LAT, MAX, MAXCV 79 89 68 0.78 81%
LR CHANGE, MCV, MDV 72% 78% 66% 0.72 74%

RF: Random forest, KNN: k-nearest neighbors, SVM: support vector machine, LR: logistic regression, AUC: area
under the curve, LAT: latency, MAX: maximum diameter, MIN: minimum diameter, %: percent change in diameter,
MCV: mean constriction velocity, MAXCV: maximum constriction velocity, MDV: mean dilation velocity.
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Figure 3. Three-D scatter plots comparing raw data from different combinations of three out of
the four PLR parameters in the best-performing model without SMOTE. Views have been adjusted
to give the best appearance of potential areas of differentiation between concussed and baseline
recordings in our dataset.

4. Discussion

The diagnosis of concussion can be challenging with currently recommended objective
tests lacking in sensitivity and specificity [4,7,8]. Although a report of increased symptoms
after a potentially concussive event is highly accurate for the diagnosis of concussion,
athletes may be reluctant to report symptoms or symptoms may develop after the initial
injury [4,8,32,33]. Objective tests do not require self-reporting. Currently recommended
objective tests include a cognitive test, the SAC, and a balance test, the m-BESS [34]. The
sensitivity and specificity of the SAC using a 10-word list for immediate memory and
delayed recall was recently reported as 40% and 86% for a 4-point decline in overall score
with an AUC of 0.70 [4]. Likewise, the m-BESS had a sensitivity of 40% and specificity
of 61% for an increase of three balance errors and an AUC of 0.71 [8]. Other objective
tests have been studied for their accuracy in the diagnosis of concussion including the
King-Devick, a rapid number-naming test which had a sensitivity and specificity of 85%
and 76% with AUC of 0.78 in one study [8], although it has not performed as well in other
populations [35,36]. Computer vision eye movement tracking has also been proposed as an
objective screening test although it did not differentiate between concussed and controls in
one study [8]. An accurate, easy-to-use, objective test that can be used on the sideline would
be a significant advance. The smartphone-based quantitative pupillometry application
used in this study, which employs a computer vision algorithm and machine learning, had
a pre-SMOTE accuracy of 82%, sensitivity of 40%, specificity of 87%, AUC of 0.64, and
F1 score of 24% and a post-SMOTE accuracy of 91%, with 98% sensitivity, 84% specificity,
and an AUC of 0.91 and F1 score of 92% when comparing the PLRs of athletes after SRC
compared to baseline recordings of all athletes.

Previous studies using a medical grade pupillometer have shown differences in the
PLR metrics. A study of 20 warfighters with mTBI due to blast injury demonstrated
decreases in LAT, ACV, ADV, and 75% recovery time (T75) compared to uninjured controls
at 15-45 days post-injury [13]. Likewise, a study of 17 non-blast-injured individuals with
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chronic mTBI at least one year post-injury showed decreased ACV and ADV compared to
15 uninjured visually normal controls [14]. Pupillometry also showed decreases in ACV,
ADV, and T75 more acutely (<72 h) in 100 soldiers with acute blast injury compared to
100 controls [16]. Conversely, 98 adolescents 12-18 years old with concussion showed
increases in AVC, AVD, PDV, and T75 compared to 138 controls a median of 12 days post-
injury [18]. More recently, a study in adolescents 5-11 and 12-18 years old found limited
significant associations in pupillary metrics between those with pediatric concussion and
controls [37] and a study comparing pupillary metrics in adolescents with sports-related
concussion in the past 28 days to controls found limited differences in PLR metrics [38].
Thus, this significant variability in normal pupillary dynamics and PLR changes with
age may confound traditional analytic approaches. The advantage of machine learning
approaches is that multiple metrics can be considered simultaneously and in concert with
one another as feature inputs for the model to produce a disease-specific classification
using the PLR.

A machine learning approach allows for the complex and dynamic relationships that
exist within the PLR to be leveraged for disease classification in a way that would not other-
wise be possible with the human eye or traditional analytic techniques alone. In this study,
we investigated four unique machine learning model architectures (logistic regression,
support vector machine, k-nearest neighbors, and random forest) [27]. The random forest
model architecture was the most effective for distinguishing between baseline recordings
and concussion recordings in our post-SMOTE cohort, while a k-nearest neighbors ap-
proach was most effective in our pre-SMOTE dataset and the proximity of concussed PLR
recording 'neighbors’ can be visualized in three dimensions in Figure 2 (although the actual
model used four dimensions) [27]. The approach of combining multiple variables (in this
case, PLR parameters (Table 1)) to detect differences between cohorts is novel in the concus-
sion and pupillometry literature. This approach allows for more powerful classification and
discrimination between difficult-to-differentiate cohorts (such as athletes with and without
concussion) with an aim towards individual subject classification and diagnostic capability
in the future that is not otherwise possible when comparing individual PLR parameters in
isolation. One potential consequence of this approach is a relative lack of interpretability in
how exactly the machine learning model uses the PLR parameter feature input variables to
arrive at a disease-specific diagnosis (concussed versus baseline, for example). We believe
that with the advent of generative artificial intelligence and mainstream applications of
machine learning models in society, adverse reactions to placing increased trust in models
such as ours that is applied in this study will decrease in the future.

Initial research on mTBI presenting to the emergency room using the PupilScreen
app and machine learning showed the ability to discriminate concussed from controls
with an overall accuracy of 93.5%, sensitivity of 96.2%, specificity of 90.9%, area under
the curve of 0.936, and F1 score of 93.7% [23]. In that study, there were only 12 concussed
participants and SMOTE was again used and the population was older (54.1 years) and
had more severe injury than this cohort with all but one having a loss of consciousness and
all but one having memory alterations [23]. However, in the current study we observed
similar discriminatory ability using the PupilScreen app, despite less severe injury (SRC)
compared to mTBL

Current medical-grade quantitative pupillometry devices are expensive [39] and may
not be affordable or readily accessible to colleges, high schools, or youth sports, limiting
their use. In contrast, smartphone-based quantitative pupillometry improves accessibility
in these contexts, as well as in the underserved or remote populations that are most in need
of an objective biomarker of neurological status for the wide variety of disease [23,24,40]
and functional states [41-43] in which pupillometry has been studied. The ability to add
machine learning-based diagnostics to the smartphone is another benefit because it could
bring increased ability for objective diagnosis of SRC to the hands of trainers, physicians,
and coaches. Despite variability in smartphone models, the light stimulus intensity emitted
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by a smartphone pupillometer can be controlled via the smartphone software and thus
standardized across smartphone models and cameras.

This study does have limitations. There were only 11 athletes with SRC and 93 athlete
baseline recordings; thus, we found it necessary to alleviate this class imbalance by using
the SMOTE [28] algorithm. As this algorithm oversamples within the distribution of the
reference minority class sample, this inherently presumes that the 11 athletes with SRC
represent the range of PLR in football athletes with SRC. This assumption may be proven
incorrect in future studies with larger cohorts; however, the use of SMOTE is the best
option for this dataset and perhaps can help to justify larger studies in the future. We have
also thoroughly presented the pre-SMOTE results of our imbalanced dataset of 93 baseline
pupillometry recordings and 11 concussed pupillometry recordings to allow for complete
transparency in our results. Another potential limitation of this study is the use of the
box attachment [26] to the smartphone during the pupillometry recordings. This helps
to standardize the distance of the phone from the pupils; however, the dark environment
within the box when the light stimulus is not present from the phone camera flash makes it
difficult to detect the MDV PLR parameter (i.e., the re-dilation of the pupil once the light
stimulus is turned off). Future studies without the use of the box attachment could allow
for better calculation of this parameter by the computer vision pupil-detection models
deployed by PupilScreen which could lead to improved classification model performance.

Finally, this pilot study was only conducted on Division I male football players.
Football was selected because it has a both high incidence of concussion and a large number
of athletes. This study required immediate (most within 2 h, all within 24 h of injury)
assessment and medical personnel and equipment were available in this higher resourced
sport. There were no females on the football team. Results may be different in other
populations such as youth, high school, or professional athletes or female athletes. Future
work will include testing this model on another dataset and assessing performance in both
football players and other populations including other athletes of diverse genders and
sports such as soccer and women’s volleyball.

5. Conclusions

Accurate, objective testing for acute SRC is needed. Currently recommended testing
modalities rely on self-report of symptoms or their accuracy is poor. Smartphone pupillom-
etry in combination with machine learning provided fast and objective concussion testing
in a small study of football athletes and was able to differentiate concussed from control
athletes. Additional studies in larger and more diverse cohorts should be conducted.
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