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Abstract: Automatically segmenting specific tissues or structures from medical images is a straight-
forward task for deep learning models. However, identifying a few specific objects from a group of
similar targets can be a challenging task. This study focuses on the segmentation of certain specific
intervertebral discs from lateral spine images acquired from an MRI scanner. In this research, an
approach is proposed that utilizes MultiResUNet models and employs saliency maps for target
intervertebral disc segmentation. First, a sub-image cropping method is used to separate the tar-
get discs. This method uses MultiResUNet to predict the saliency maps of target discs and crop
sub-images for easier segmentation. Then, MultiResUNet is used to segment the target discs in
these sub-images. The distance maps of the segmented discs are then calculated and combined with
their original image for data augmentation to predict the remaining target discs. The training set
and test set use 2674 and 308 MRI images, respectively. Experimental results demonstrate that the
proposed method significantly enhances segmentation accuracy to about 98%. The performance of
this approach highlights its effectiveness in segmenting specific intervertebral discs from closely
similar discs.

Keywords: deep learning; u-net; distance transformation; intervertebral disc segmentation

1. Introduction

Low back pain, or lumbar pain, stands as one of the most prevalent issues faced by
individuals and ranks as the fifth leading cause of medical consultations. It impacts the
daily lives of at least 7.6% to 37% of patients [1–3], with 10% of patients experiencing
chronic pain and mobility challenges [1]. There exists a close association between low back
pain and intervertebral disc degeneration. In fact, degeneration of disc tissue begins earlier
than other muscle and bone tissue and often occurs without any symptoms. According to
the literature, the onset of initial intervertebral disc degeneration may commence as early
as adolescence. About 20% of young people show mild symptoms [4], and the incidence
gradually increases with age. Degenerative disc disease affects 10% of the male population
at the age of 50 and up to 50% of the male population at the age of 70. In some reports,
degenerative disc disease may be present in as many as 90% of individuals [5].

The human spine consists of the cervical spine (7 vertebrae, C1–C7), thoracic spine
(12 vertebrae, T1–T12), lumbar spine (5 vertebrae, L1–L5), and sacral spine (5 vertebrae,
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S1–S5) [6]. The primary function of the spine is to support the weight of the entire body.
Among the vertebral bones of the spine, the largest lumbar vertebrae, comprising 5 ver-
tebrae (L1–L5), bear a significant portion of the upper body weight [7]. Intervertebral
discs are fibrous tissues located between two vertebrae and are named after the vertebrae
they connect. In clinical practice, neurosurgeons or orthopedic surgeons can analyze and
diagnose the degree of intervertebral disc degeneration by measuring the height of the
lumbar intervertebral disc and observing the condition of the intervertebral disc [7,8]. Ob-
taining spinal imaging through techniques such as computed tomography (CT) or magnetic
resonance imaging (MRI) is crucial for diagnosing degenerative disc disease [9]. Among
these, MRI images provide a deeper understanding of the biochemical and structural
characteristics of tissues and can detect the fat and water content of intervertebral discs and
vertebrae [10]. Therefore, this study utilizes an image database that includes MRI scans as
experimental materials.

To diagnose intervertebral disc degeneration, neurosurgeons or orthopedic surgeons
typically need to analyze and compare three specific discs: L1/L2, L4/L5, and L5/S1. This
is because the discs L4/L5 and L5/S1, located below the lumbar spine, are more prone to
degeneration, while the disc L1/L2, situated above the lumbar spine, is less susceptible
to degeneration [11]. Generally, neurosurgeons or orthopedic surgeons manually mark
these three discs for diagnosis. If carried out solely manually, such a workflow can be labor-
intensive and time-consuming. Therefore, there is a need for a system that can automatically
segment and identify the specific intervertebral disc specified by the physician.

Recently, convolutional neural networks (CNNs) have ushered in significant advance-
ments within the field of image segmentation and recognition, particularly within the
domain of medical imagery. Consequently, deep learning models have gained extensive
adoption in the medical sector. For instance, Ronneberger et al. introduced the U-Net
framework [12], which has demonstrated remarkable efficiency in segmenting neuronal
structures within electron microscopy stacks, leveraging pre-existing annotated data. An-
other noteworthy approach, proposed by Kayalibay et al. [13], employs a CNN-based
method employing three-dimensional filters to proficiently segment hand and brain MRI
images. Oktai et al. introduced the attention-driven U-Net model [14], designed for medical
imaging segmentation, with the unique capability to autonomously adapt its focus to target
structures of diverse sizes and shapes. Singh et al. [15] proposed a graph network-based
module called latent graph attention (LGA) to incorporate global context into the existing
CNN architectures. LGA uses a network of locally connected graphs to propagate informa-
tion spatially, helping to establish a semantically coherent relationship between any two
spatially distant points, thereby achieving better object segmentation.

Furthermore, Ibtehaz et al. introduced the MultiResUNet model [16], which extends
the performance of the U-Net model to better address multimodal medical image segmenta-
tion. Lastly, Lou et al. devised the DC-UNet model [17], a modification of the classic U-Net
framework that has exhibited noticeable enhancements in performance. Wang et al. [18]
proposed a mixed transformer module for simultaneous inter- and intra-affinity learning
and constructed a U-shaped model named Mixed Transformer U-Net (MT-UNet) for accu-
rate medical image segmentation. Chen et al. [19] proposed a transformer-based attention
guidance network called TransAttUnet, which can enhance the representation of multi-scale
contextual information to generate discriminative features and effectively alleviate the loss
of fine details caused by convolutional layer stacking and continuous sampling operations,
ultimately improving the segmentation quality of medical images.

Several deep learning models have emerged in the scientific literature, focusing on
the segmentation of MRI images depicting intervertebral discs [20–29]. For instance,
Wang et al. [20] introduced a convolutional architecture based on the 3D U-Net, designed
for the segmentation of 66 intervertebral discs within multimodal MRI images. In a separate
study, Vania et al. [21] devised a multistage optimization approach, utilizing mask-RCNN
for the segmentation of intervertebral discs across 263 patients with T1 and T2 images.
Meanwhile, Das et al. [22] proposed a novel region-to-image matching network model
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for the identification and segmentation of intervertebral discs within 24 multimodal MRI
images derived from 16 subjects. Their model showcased an average identification accuracy
of 92.5%. Li et al. [23] designed a semi-supervised semantic segmentation network for
spine images based on conditional adversarial neural networks combined with U-Net
and Tversky loss to solve the segmentation problem and obtained an accuracy of 89.8%.
Mushtaq et al. [24] used YOLOv5 for vertebral localization and segmentation and achieved
a mean average precision of 97.5% from MRI scans of 514 subjects. The cropped images
derived from YOLOv5 bounding boxes undergo processing through HED U-Net, a hybrid
framework encompassing both segmentation and edge detection, to acquire segmented
vertebrae along with their corresponding edges. Then, Harris corner detector was applied
to obtain the corners of the desired vertebrae to determine LLAs (lumbar lordotic angles)
and LSAs (lumbosacral angles) for lumbar lordosis diagnosis. The diagnostic accuracy rate
was 74.5%.

Hess et al. [25] utilized convolutional neural networks to segment vertebral bodies,
intervertebral discs, and paraspinous muscles in T1-weighted MRI images from a dataset
of 206 MRI exams. Their results show that the segmentation masks and associated met-
rics exhibited high similarity between human- and computer-generated methods, with
Dice coefficients of 0.77. Wang et al. [26] proposed a deep learning model based on a 3D
Deeplab V3+ network to automatically segment multiple structures from MRI images at
the L4/5 level. The deep learning model obtained an average precision of 89.9% from a
total of 50 participants who had undergone a 3T MRI with T2-3D-space sequences. Wang
et al. [27] presented a modified U-Net network by adding multi-scale blocks and residuals
for spinal segmentation and achieved an average segmentation accuracy of over 88% from
210 adult spinal MRI images. Altun et al. [28] used U-Net-based methods to segment the
lumbar spinal stenosis region. They found that the highest segmentation success among
1560 images was obtained in the ResUNet model, with a 0.93 DICE score. Lu et al. [29] pro-
posed a model called ConvMixEst and Muti-Attention Unet (CAM-Unet), which combined
multilayer perceptron with the attentional mechanisms of inverted variational attention
and dilated gated attention and obtained a precision of 94.09%. Nonetheless, it is worth
noting that many of these approaches tend to segment all intervertebral discs within an
image as opposed to targeting some specific discs, and they also grapple with the challenge
of a limited amount of original image data.

This study aims to perform segmentation based on the intervertebral discs specified by
clinical doctors for the diagnosis of disc degeneration. Therefore, the segmentation targets
are specified according to the clinical doctors’ requirements, focusing on three different
intervertebral discs: L1/L2, L4/L5, and L5/S1. Approximately 3000 lateral spine MRI im-
ages were collected for this research to alleviate the limitations caused by insufficient image
data. Several different models, including U-Net [12], CNN-based [13], Attention U-Net [14],
and MultiResUNet [16], were employed to segment the three specific intervertebral discs,
revealing numerous instances of segmentation errors. Among them, U-Net and MultiRe-
sUNet have the highest segmentation accuracy, which is 76.6% and 83.4%, respectively.
However, none of the models achieved an average intersection-over-union (IoU) value
exceeding 72.3%. These inaccuracies include redundant segmentations of intervertebral
discs and erroneous segmentations of non-specific intervertebral discs. This difficulty
arises from the highly trivial and similar nature of intervertebral disc tissue, as well as
significant variations between slices, making accurate intervertebral disc segmentation
challenging [29].

Since MultiResUNet shows higher accuracy compared to U-Net, the literature [30]
proposes a two-stage method based on the MultiResUNet framework. This method divides
the target intervertebral disc into upper and lower parts. In the first stage, MultiResUNet
was used to segment the lower discs, and the segmented discs were used to generate
distance maps. In the second stage, the original image and distance maps were combined
and used to segment the upper disc. The method achieved an accuracy of 93.8% and
a mean IoU metric of 77.1%. While the two-stage MultiResUNet [30] has significantly
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improved segmentation accuracy, there is still a gap before its practical clinical application.
Clinicians aim to achieve higher accuracy rates. Therefore, this study proposes a more
accurate segmentation approach based on MultiResUNet and saliency maps. Experimental
results demonstrate that this method can enhance the segmentation accuracy of specific
intervertebral discs to about 98%, with the mean IoU metric remaining at 77%.

The main contributions of this study can be summarized as follows:

• The proposed method can identify some specific intervertebral discs from a group of
similar ones.

• The saliency map prediction algorithm improves the accuracy of cropping the target
intervertebral disc.

• The sub-image cropping method reduces the amount of data required to be processed,
speeds up computation time, and potentially improves prediction accuracy.

• The data-augmented segmentation method uses distance maps to help improve pre-
diction accuracy.

2. Materials and Methods
2.1. Study Design

This study is retrospective. The goal of this research is to create a high-precision
intervertebral disc segmentation model based on deep learning. Compared with traditional
image processing or manual methods, deep learning methods have the advantages of high
accuracy, speed, and saving operation time and labor. This segmentation model can replace
the work of manually segmenting the intervertebral discs and can specify segmentation
targets at the clinician’s request. Current work focuses on segmenting three different
intervertebral discs: L1/L2, L4/L5, and L5/S1. These three intervertebral discs can help
clinicians diagnose intervertebral disc degeneration.

2.2. Data and Ground Truth

The experimental images used in this study were a total of 2982 de-identified spinal
lateral images collected from MRI scanners at Asia University Hospital in Taichung, Taiwan,
from August 2016 to July 2020. When we acquired these deidentified images, there was no
interaction with the patients. That is, this study did not include any interaction or inter-
vention with human subjects or any access to identifiable private information. Therefore,
this study complied with the ethical standards of the institutional and national committees
on human experimentation and was performed in accordance with the guidelines of the
Declaration of Helsinki.

The image data used midsagittal slices of the lumbar spine and were converted into
512 × 512-pixel images. It mainly includes three parts: the thoracic, lumbar, and sacral
spines. The images were manually labeled by a physician with the three intervertebral
discs between the lumbar spine and sacrum, namely L1/L2, L4/L5, and L5/S1. During
the collection process, cases with anatomic abnormalities (such as lumbar sacralization or
sacrolumbarization) that lacked these three intervertebral discs were excluded. This was
due to the small number of images for these cases of anatomical abnormalities, and this
study did not classify any spinal disorders. We expect to accurately measure the size and
heterogeneity of segmental discs so that future studies on the correlation between discs
and spinal degeneration can be performed. As long as the three intervertebral discs of
the image (L1/L2, L4/L5, and L5/S1) could be manually segmented by the physician, the
images were collected in our experimental data.

The number of experimental images is calculated based on the sample size estimated
by the confidence interval [31]. If a 95% confidence interval is set and a standard deviation
of 0.01 and a margin of error of 0.04% are used, then the most conservative sample size
can be calculated, which is approximately 2400 images. The number of collected images,
about 3000 images, exceeded the most conservative sample size required. The experimental
images were randomly divided into a training set and a test set, which are 2674 and 308 im-
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ages, respectively. Figure 1 shows some experimental image samples and corresponding
manually labeled standard masks.
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Figure 1. Experimental image samples and the corresponding manually labeled mask.

2.3. Model

This section presents the details of the proposed approach for the segmentation of
target intervertebral discs based on deep learning. The overall structure of the proposed
approach is shown in Figure 2. The arrow here indicates the direction of the steps and
has no special meaning. The structure consists of three methods, namely the sub-image
cropping method, the sub-image disc segmentation method, and the data-augmented
segmentation method. The sub-image cropping method predicts the original image through
MultiResUNet to obtain the saliency map. This saliency map highlights the location of
the center points of the target intervertebral discs so that sub-images can be cropped to
improve prediction accuracy. The sub-image disc segmentation method uses MultiResUNet
to predict the sub-image to obtain the target discs. The data-augmented segmentation
method calculates the distance map of the segmented discs as augmented data and then
predicts the remaining target discs through MultiResUNet. These three methods will be
explained in detail in Sections 2.3.1–2.3.3.

The training and testing algorithms of the proposed method are described as follows.
Training algorithm:

1. For each of the 2674 training images, load its standard masks.
2. Compute the saliency map from standard masks.
3. Use training images and saliency maps to train MultiResUNet_Model_1.
4. Cropping training images and their standard masks to sub-images.
5. Use cropped images and standard masks to train MultiResUNet_Model_2.
6. Compute distance maps from standard masks.
7. Combine original images and distance maps.
8. Use original images + distance maps, and standard masks to train MultiResUNet_Model_3.

Testing algorithm:

1. For each of the 308 testing images
2. Input testing images to MultiResUNet_Model_1 to predict saliency maps.
3. Cropping testing images to sub-images by saliency maps.
4. Input cropped testing images to MultiResUNet_Model_2 to predict masks.
5. Return the predicted mask sub-images to the original image size.
6. Compute distance maps from the predicted masks.
7. Combine original images with distance maps.
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8. Input original images + distance maps to MultiResUNet_Model_3 to predict masks.
9. Integrate all the predicted discs together.
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2.3.1. The Sub-Image Cropping Method

The initial step of the proposed approach is to extract sub-images containing the target
intervertebral discs (L4/L5 and L5/S1). The original image size is 512 × 512, while the
sub-image size is 256 × 256. The size of the sub-image is half the length and half the width
of the original image and needs to completely contain each individual disc. The scanning
algorithm is to use a block of size 256 × 256 to sequentially crop the original image from left
to right and bottom to top. The sequentially cropped 256 × 256 sub-images are used to train
MultiResUNet to successfully predict intervertebral discs. During testing, the sequentially
cropped 256 × 256 sub-images are input into MultiResUNet to predict the intervertebral
discs. If the predicted disc area changes in the sub-image of the sequence, it means that
the disc is not completely included in the sub-image. This method continues until there
is no change in the predicted disc area in the sub-image. At this time, it means that the
intervertebral disc is completely included in the sub-image.

However, the sub-images extracted from the scanning algorithm may encompass
various locally cropped intervertebral discs. This results in poor prediction performance for
MultiResUNet due to significant changes in disc shape. Therefore, a saliency map prediction
algorithm that uses distance transforms to predict the positions of intervertebral discs is
proposed in this study. The saliency map is an image that highlights the location of the
center points of the target intervertebral discs. The center point of the target intervertebral
discs is calculated from known disc masks in the training set. Subsequently, the distance
transforms calculate Di from each pixel coordinate point (xi, yi) to the center point (x0, y0),
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where i represents the sequence number of the pixel in the image. The calculation formula
for Di is as follows:

Di = 1 −

(√
(xi − x0)

2 + (yi − y0)
2
)n

max(
(√

(xi − x0)
2 + (yi − y0)

2
)n

)

(1)

where n is the power of distance.
From Equation (1), it is evident that pixels closer to the center point yield larger values.

The MultiResUNet is employed to train each original image to its corresponding saliency
map. After completing the training, this network can be used to predict the saliency maps
of the test set images. By utilizing the predicted saliency maps, it is possible to estimate
the center points of the target intervertebral discs and subsequently crop sub-images from
the original image. The training and prediction flow chart of the saliency map prediction
algorithm in the sub-image cropping method is shown in Figure 3. The workflow is
depicted in the flowchart, as illustrated in Figure 2, following the steps from left to right
at the top of the figure. During the training process, saliency maps are obtained through
distance transformation using standard masks. The original images are then trained by
MultiResUNet to obtain the saliency maps. The prediction process is to input the test
images into MultiResUNet to obtain the predicted saliency maps. Then, the locations of the
sub-images can be extracted from the saliency maps.
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2.3.2. The Sub-Image Disc Segmentation Method

The second step of our approach aims to segment the target intervertebral discs (L4/L5
and L5/S1) following the initial prediction, which already allowed for the cropping of
sub-images containing the target intervertebral discs. Utilizing these 256 × 256 sub-images
along with the corresponding intervertebral disc masks from the training set, MultiResUNet
is employed to train each sub-image to its corresponding intervertebral disc mask. Upon
completing the training, this can be used to predict the target intervertebral discs. The
sub-image size constitutes one-quarter of the original image size. The main advantages
of this approach are the reduction in data volume, acceleration of computation time, and
potential enhancement of prediction accuracy. However, it is essential to restore the image
size to 512 × 512 pixels following the prediction, using the preserved original positions
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of the sub-images. The training and prediction flow chart of the MultiResUNet for the
sub-image disc segmentation method is shown in Figure 4. The flowchart for this part
of the process is outlined in Figure 2, proceeding from top to middle on the right side of
the figure. During the training process, sub-images and their masks are obtained from
the sub-image cropping method. The sub-images are then trained by MultiResUNet to
obtain the corresponding masks. The prediction process is to input the test sub-images into
MultiResUNet to obtain the predicted masks. Then, the predicted masks are restored to
their original image size.
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2.3.3. The Data-Augmented Segmentation Method

The third step of the proposed approach is to segment the upper target intervertebral
disc (L1/L2) using a data-augmented segmentation method. Upon examining the shape of
intervertebral discs, it is evident that the L1/L2 intervertebral disc bears a striking resem-
blance to its adjacent intervertebral discs. If the original image and the upper intervertebral
disc mask were directly used to train the MultiResUNet model, segmentation errors often
occurred during prediction, leading to the detection of neighboring intervertebral discs.
Since the positions of the lower target intervertebral discs can be determined following
the second prediction, distance maps can be employed here as auxiliary information to
predict the upper target intervertebral disc. The distance transformation is used to calculate
the distance maps for the lower target intervertebral discs. Distance values are zero at the
center point of the intervertebral disc, and they increase as coordinate points move farther
from the center. After normalization, these distance values form a distance map. Two
distance maps are obtained from the two target intervertebral discs for data augmentation.
The training dataset for this step consists of original images augmented with distance maps.
Figure 5a shows an example of an original image augmented with the distance maps. The
MultiResUNet is employed to train the image data to its corresponding target intervertebral
disc mask. Following the completion of training, it can be utilized to predict the final target
intervertebral disc. The final output results from the combination of the predicted upper
intervertebral disc with the two lower intervertebral discs. The training and prediction flow
chart of the data-augmented segmentation method is shown in Figure 5b. The flowchart
for this final stage is illustrated in Figure 2, proceeding from right to left at the bottom of
the figure.
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2.4. Evaluation

The experiments in this study use a training data set of 2674 images and a test data set
of 308 images to evaluate the optimal power n of distance in Equation (1), the performance
of the saliency map prediction algorithm, and the performance of the proposed method. The
number of training epochs in the MultiResUNet is set to 500. The images for the experiments
have a total of three intervertebral discs marked manually by physicians, i.e., L1/L2, L4/L5,
and L5/S1. These experiments use a test data set consisting of 308 images to evaluate the
accuracy of segmentation. Firstly, the segmented images must be categorized into two
classes: one for images with correct predictions and the other for images with incorrect
predictions. The calculation of accuracy involves dividing the number of images with
correct predictions by the total number of images in the test dataset. Assuming the total
number of images in the test dataset is denoted as T, then T = 308.

Next, the evaluation of correct predictions is divided into two steps. The first step is to
assess whether the predicted number of discs is correct. Connected-component labeling is
employed to calculate the predicted number of intervertebral discs. If the predicted number
of intervertebral discs equals 1, it is considered correct; otherwise, it is deemed incorrect.
The second step is to evaluate whether the predicted disc area is correct. The evaluation
of segmentation accuracy is commonly assessed using the Intersection over Union (IoU)
metric [12,16]. The IoU measures the overlap ratio between the segmented region and the
ground truth region, which is the intersection of these regions divided by their union. In
the ideal case, where there is a perfect overlap, the IoU ratio equals 1. Generally, an IoU
ratio greater than or equal to 0.5 is considered acceptable, indicating correct detection. In
this study, the threshold for correct detection is set to 0.7, aiming to enhance the overlap
between the predicted area and the ground truth area. Assuming the predicted area is
denoted as Rk

j and the ground truth area is denoted as Sk
j , where j represents the index of

the predicted image (j = 1, 2, . . ., T) and k represents the index of the intervertebral disc
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(k = 1, 2, 3), the IoU calculation formula for the k-th intervertebral disc in the j-th predicted
image is as follows:

IoUk
j =

Rk
j ∩ Sk

j

Rk
j ∪ Sk

j
(2)

Next, a flag f is set to indicate the correctness or incorrectness of the status. If the
predictions for all three intervertebral discs in the j-th predicted image are correct, the flag
for this predicted image is set to 1; otherwise, it is set to 0. The formula for the flag is
as follows:

f j =

{
1, where ∀k : IoUk

j ≥ 0.7
0, otherwise

(3)

Assuming the accuracy is denoted as A and the number of correctly predicted images
is B, then the formula for calculating accuracy is as follows:

A =
B
T

=
1
T

T

∑
j=1

f j (4)

The mean IoU is also used to assess the overlap ratio between the predicted interver-
tebral discs and the standard ground truth masks. Although the test dataset is annotated
with manually segmented ground truth masks by physicians, these ground truth masks
serve as a criterion for evaluation. The formula for calculating the mean IoU of a specific
disc, i.e., L1/L2, L4/L5, or L5/S1, is as follows:

IoUk =
1
T

T

∑
j=1

IoUk
j (5)

where k represents the index of the intervertebral disc (k = 1, 2, 3). The experiment sets the
number of predicted intervertebral discs to 3. The formula for the mean IoU of different
methods is also modified as follows:

IoU =
1

3T

T

∑
j=1

3

∑
k=1

IoUk
j (6)

The structural similarity index measure (SSIM) between the standard and predicted
intervertebral discs is also provided for different methods. If the SSIM is closer to 1, it
means the structures are more similar; otherwise, they are not similar.

3. Results

The experimental equipment is shown as follows: The hardware used was an Intel®

Core™ i9-9900K processor and 64GB of memory, with a NVIDIA GeForce GTX 2080 11GB
graphics card. The software used was the Windows 10 64-bit operating system, PyTorch
1.8.1, CUDA Toolkit 10.2, and Python 3.7.6. The total training time, including evaluation
time, is about 75 h. The total test time for all 308 images is 676.5 s, which is about 2.2 s for
one image.

3.1. The Evaluation of Power of Distance

From the sub-image cropping method in Section 2.3.1, the saliency map prediction
algorithm needs to evaluate the optimal power n of distance in Equation (1). The flow chart
of the saliency map prediction algorithm is shown in Figure 3. The power n of distance is set
from 1 to 5. The center point coordinates (x, y) of the resultant saliency map are compared
with the standard center point coordinates (x0, y0). The comparison method is to calculate
the error values of the x and y coordinates, i.e., |x − x0| + |y − y0|. If the error value is less
than 10, the prediction is considered correct. On the contrary, if the error value is greater
than or equal to 10, it is regarded as a wrong prediction. Figure 6 shows the numbers of
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correct predictions in 500 training epochs when using different powers of distance in the
saliency map prediction algorithm. It is obvious that within the first 50 training epochs, the
network has not yet stabilized, resulting in a smaller number of correct predictions. After
50 training epochs, the curve oscillates steadily and slightly. However, the oscillation of the
curve with a power of one is more serious. Table 1 intercepts the training process in the
51–500 epochs to compare the performance of different powers of distance. Experiments
have found that as the power gradually increases, the number of correct predictions also
approximately gradually increases. The best results in Table 1 are the data with a power
of five.
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Figure 6. The numbers of correct predictions in the 500 training epoch using different powers of
distance in the saliency map prediction algorithm.

Table 1. Performance comparison of the different powers of distance in the training process of the
saliency map prediction algorithm (ranges from 51 to 500 epochs).

Power of Distance Maximum No. of
Correct Predictions

Minimum No. of
Correct Predictions

Average No. of Correct
Predictions

Percentage of Correct
Predictions

n = 1 2507 2210 2450 91.6%
n = 2 2613 2532 2589 96.8%
n = 3 2647 2571 2618 97.9%
n = 4 2657 2519 2629 98.3%
n = 5 2666 2616 2643 98.9%

Next, the experiment must evaluate the performance of the saliency map prediction
algorithm on the test data set of 308 images. The experiment was evaluated based on the
training process range of 51–500 epochs. A total of 450 tests are performed, and the number
of correct predictions can be obtained for each test. At the same time, the error distance
between the center point coordinates of the predicted saliency map and the standard center
point coordinates is calculated during the test process. Table 2 shows the average number
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and percentage of correct predictions made during the test process, as well as the average
error distance. In Table 2, it is obvious that the results when the power is between 3 and 5
have the same and maximum number of correct predictions. However, the results with a
power of three have the smallest error distance of 8.7. Therefore, the power n of distance in
Equation (1) in the saliency map prediction algorithm is set to three.

Table 2. Performance comparison of the different powers of distance in the testing process of the
saliency map prediction algorithm (a total of 450 tests for each power of distance).

Power of Distance Average No. of
Correct Predictions

Percentage of Correct
Predictions

Average Error Values
|x − x0| + |y − y0|

n = 1 196 63.6% 14.1
n = 2 228 74.0% 14.9
n = 3 269 87.3% 8.7
n = 4 250 81.2% 14.3
n = 5 269 87.3% 9.2

3.2. The Evaluation of Sub-Image Cropping Method

In the sub-image cropping method, two algorithms have been proposed: the scanning
algorithm and the saliency map prediction algorithm. This experiment is required to
evaluate and compare these two algorithms. The experimental design is to use these
two algorithms to perform sub-image cropping of individual intervertebral discs. The
cropped sub-images are then used for intervertebral disc segmentation. The performance
of sub-image cropping methods is compared by the number of images with correctly
segmented discs.

Table 3 shows the performance comparison of scanning and saliency map predic-
tion algorithms for single-disc segmentation. The experimental steps are to perform the
sub-image cropping method and the sub-image disc segmentation method on a single
intervertebral disc and restore the result to the original image size. From the perspective of
the number and accuracy of correctly predicted images, it is obvious that the saliency map
prediction algorithm is better than the scanning algorithm. The L1/L2 intervertebral disc
has lower values of the number and accuracy of correctly predicted images because this disc
is very similar to its adjacent discs. Its segmentation is more challenging. The mean IoU is
also roughly higher than 70%, except for the L1/L2 intervertebral disc. Figure 7 shows the
correct and incorrect sampling images of a single intervertebral disc segmentation. Most
of the segmentation errors occur when the wrong disc is found or the IoU value is lower
than 0.7.

Table 3. Performance comparison of the scanning and saliency map prediction algorithms for
individual intervertebral disc segmentation.

Sub-Image
Cropping Method

Intervertebral
Disc

Number of Correctly
Predicted Images (B)

Number of Error
Predicted Images (T–B) Accuracy (A) Mean IoU

Scanning
L1/L2 203 105 65.9% 56.2%
L4/L5 287 21 93.2% 75.0%
L5/S1 283 25 91.9% 75.0%

Saliency Map
Prediction

L1/L2 274 34 89.0% 67.1%
L4/L5 292 16 94.8% 72.2%
L5/S1 295 13 95.8% 74.8%
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Figure 7. Correct versus incorrect sampling images of individual disc segmentation. The upper row
represents correct segmentation, and the lower row represents incorrect segmentation. The left side
of each pair of images is the standard mask, and the right side is the predicted result.

3.3. The Evaluation of Proposed Method

Next, experiments are conducted to evaluate the accuracy of various different methods.
The approach proposed in this study needs to be compared with five other different models
to evaluate the performance of different methods, including U-Net [12], CNN-based [13],
Attention U-Net [14], Multi-ResUNet [16], and the two-stage Multi-ResUNet model [30]. A
comparison between the proposed method and the experimental data of the aforementioned
five models is shown in Table 4. The steps of the proposed method are to perform the
sub-image cropping method and the sub-image disc segmentation method on the two
lower target discs (L4/L5 and L5/S1), and to perform the data-augmented segmentation
method on the upper disc (L1/L2). The comparison results show that with a confidence
interval of 95%, the accuracy of the proposed approach reaches 97.7 ± 1.6%, the mean IoU
is 77.0 ± 0.4%, and the SSIM is 0.6916 ± 0.0115, surpassing the performance of the other
five models. Figure 8 shows the results of the proposed approach. The upper row shows
the correct results, and the lower row shows the error results. In each pair of images, the
left image is the standard mask, and the right one is the prediction result. The three target
intervertebral discs (L1/L2, L4/L5, and L5/S1) in the top row of Figure 8 are accurately
segmented. In the bottom row of Figure 8, the case on the left is an error in the segmentation
of the two lower target intervertebral discs (L4/L5 and L5/S1), and the case on the right is
an error in the segmentation of the upper intervertebral disc (L1/L2).
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Figure 8. Sampling results of the proposed approach. The upper row shows the correct results, and
the lower row shows the error results. The left side of each pair of images is the standard mask, and
the right side is the predicted result.
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Table 4. Performance comparison of the proposed method and other methods (with a confidence
interval of 95%).

Model Number of Correctly
Predicted Images (B)

Number of Error
Predicted Images (T–B) Accuracy (A) Mean IoU SSIM

U-Net [12] 236 72 76.6 ± 0.9% 71.9 ± 0.2% 0.6696 ± 0.0155
CNN-based [13] 41 267 13.3 ± 0.3% 55.5 ± 0.2% 0.5421 ± 0.0139

Attention U-Net [14] 95 213 30.8 ± 0.9% 58.2 ± 0.4% 0.6830 ± 0.0155
MultiResUNet [16] 257 51 83.4 ± 0.3% 72.3 ± 1.0% 0.6859 ± 0.0134

Two-stage [30] 289 19 93.8 ± 2.4% 77.1 ± 1.0% 0.6901 ± 0.0138
Proposed Method 301 7 97.7 ± 1.6% 77.0 ± 0.4% 0.6916 ± 0.0115

4. Discussion

In general, most deep learning models can easily achieve the segmentation of multiple
similar target regions. Particularly, deep learning models based on U-Net exhibit excellent
performance in medical image segmentation. However, when the segmentation task
involves localizing specific target regions among them, the prediction accuracy significantly
deteriorates. It is easier to find the wrong intervertebral disc when segmenting one single
disc, as shown in the lower row of images in Figure 7. For instance, when attempting
to predict the intervertebral disc L1/L2, one may end up with neighboring discs such as
T12/L1 or L2/L3. It can be clearly observed from the results that the accuracy rate in
Table 3 is lower than that of the proposed method in Table 4. As evident from the results in
Table 4, directly segmenting the three intervertebral discs with U-Net-based models does
not yield high accuracy; e.g., the accuracy of U-Net [12] and MultiResUNet [16] is 76.6% and
83.4%, respectively, although their mean IoU does indeed exceed 70%. Furthermore, some
U-Net-based models perform worse, such as CNN-based [13] and Attention U-Net [14],
which achieve accuracy scores of only 13.3% and 30.8%, respectively, with the mean IoU
approaching 60%. This indicates that these methods are not applicable to the questions in
this study.

In Table 4, the accuracy of two-stage MultiResUNet [30] is improved to 93.8 ± 2.4%,
with a mean IoU of 77.1 ± 1.0% exceeding the threshold of 70%. The SSIM index also
increases from 0.6696 ± 0.0155 for U-Net to 0.6859 ± 0.0134 for MultiResUNet. Although
the accuracy of the two-stage MultiResUNet [30] has improved to approximately ninety
percent, there is still room for improvement. We conducted a detailed investigation into
the two-stage MultiResUNet method and found that many errors occurred during the first
stage, where the lower intervertebral discs L4/L5 and L5/S1 were cropped and predicted.
These errors included the misprediction of intervertebral discs such as L3/L4 and L4/L5.
The primary reason for these errors is the high similarity between adjacent intervertebral
discs and the presence of many incomplete intervertebral discs during the training of
MultiResUNet. This is due to the use of traditional image processing methods for cropping
sub-images, which leads to imprecise cropping of the target intervertebral discs.

To address this issue, this study proposes the use of a deep learning model, the saliency
map prediction algorithm, to crop the target intervertebral discs. For a detailed description
of the method, please refer to Section 2.3. The original images can predict saliency maps,
which are essentially distance maps, through MultiResUNet. By predicting these saliency
maps, we can obtain the center points of the target intervertebral discs and then crop
sub-images with complete intervertebral discs. In Table 4, the accuracy of the proposed
method is improved to 97.7 ± 1.6%, with a mean IoU of 77.0 ± 0.4%, which exceeds the
threshold of 70%, and the SSIM index is also improved to 0.6916 ± 0.0115.

5. Conclusions

This study presents a precision segmentation approach based on deep learning models
that can accurately predict specific target intervertebral discs required for clinical diagnosis.
In the first step, the approach employs MultiResUNet as the prediction model and uses a
sub-image cropping method based on a saliency map prediction algorithm. In the saliency
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map prediction algorithm, it predicts the saliency maps of the target intervertebral discs.
These saliency maps are then used to crop sub-images containing the target intervertebral
discs. This sub-image is one-quarter of the original image, which reduces the amount
of data required to be processed, speeds up computation time, and potentially improves
prediction accuracy. In the second step, a MultiResUNet is used to predict the target
intervertebral discs in the sub-images. After obtaining target intervertebral discs, the
distance transform is used to generate distance maps for data-augmented segmentation
in the third step. The original images are combined with distance maps and used to train
MultiResUNet to segment the remaining target intervertebral discs accurately. Therefore,
all target intervertebral discs (L1/L2, L4/L5, and L5/S1) can be predicted with precision.

Experimental results demonstrate a significant improvement in segmentation accuracy
using our proposed approach. In the evaluation, the segmentation accuracy is approxi-
mately 98%, and the mean IoU is about 77%. Compared to the results of MultiResUNet [16],
the accuracy and mean IoU of the proposed approach have increased by approximately 15%
and 5%, respectively. In comparison with the two-stage MultiResUNet [30], the accuracy of
the proposed approach has improved by about 4%.

Future research directions include a comparative analysis with the highly regarded U2-
Net and the currently employed MultiResUNet. Furthermore, it is hoped that this research
method can find practical application in clinical diagnosis by providing neurosurgeons with
a convenient means to analyze and compare specific target intervertebral discs, thereby
reducing the cost of manual segmentation. The approach can also serve as preprocessing
for any intervertebral disc segmentation and identification in future clinical studies and be
applied to the segmentation of a few specific targets among multiple similar targets.
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9. Sąsiadek, M.J.; Bladowska, J. Imaging of degenerative spine disease—The state of the art. Adv. Clin. Exp. Med. 2012, 21, 133–142.
10. Michopoulou, S.; Costaridou, L.; Vlychou, M.; Speller, R.; Todd-Pokropek, A. Texture-based quantification of lumbar inter-

vertebral disc degeneration from conventional T2-weighted MRI. Acta Radiol. 2011, 52, 91–98. [CrossRef]
11. Machino, M.; Nakashima, H.; Ito, K.; Katayama, Y.; Matsumoto, T.; Tsushima, M.; Ando, K.; Kobayashi, K.; Imagama, S. Age-

related degenerative changes and sex-specific differences in osseous anatomy and intervertebral disc height of the thoracolumbar
spine. J. Clin. Neurosci. 2021, 90, 317–324. [CrossRef]

12. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin, Germany, 5–9 October 2015;
Springer: Cham, Germany, 2015; pp. 234–241.

13. Kayalibay, B.; Jensen, G.; van der Smagt, P. CNN-based segmentation of medical imaging data. arXiv 2017, arXiv:1701.03056.
14. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.

Attention U-Net: Learning where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999.
15. Singh, A.; Bhambhu, Y.; Buckchash, H.; Gupta, D.K.; Prasad, D.K. Latent Graph Attention for Enhanced Spatial Context. arXiv

2023, arXiv:2307.04149.
16. Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation.

Neural Netw. 2020, 121, 74–87. [CrossRef] [PubMed]
17. Lou, A.; Guan, S.; Loew, M. DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Images

Segmentation. In Proceedings of the SPIE Medical Imaging 2021: Image Processing, San Diego, CA, USA, 15–20 February 2021;
p. 115962.

18. Wang, H.; Xie, S.; Lin, L.; Iwamoto, Y.; Han, X.H.; Chen, Y.W.; Tong, R. Mixed transformer u-net for medical image segmentation.
In Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2022), Singapore,
22–27 May 2022; pp. 2390–2394.

19. Chen, B.; Liu, Y.; Zhang, Z.; Lu, G.; Kong, A.W.K. Transattunet: Multi-level attention-guided u-net with transformer for medical
image segmentation. IEEE Trans. Emerg. Top. Comput. Intell. 2023. [CrossRef]

20. Wang, C.; Guo, Y.; Chen, W.; Yu, Z. Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D U-Net. arXiv 2020,
arXiv:2009.13583.

21. Vania, M.; Lee, D. Intervertebral disc instance segmentation using a multistage optimization mask-RCNN (MOM-RCNN). J.
Comput. Des. Eng. 2021, 8, 1023–1036. [CrossRef]

22. Das, P.; Pal, C.; Acharyya, A.; Chakrabarti, A.; Basu, S. Deep neural network for automated simultaneous intervertebral disc (IVDs)
identification and segmentation of multi-modal MR images. Comput. Methods Programs Biomed. 2021, 205, 106074. [CrossRef]

23. Li, Q.; Li, Z.; He, S. Segmentation of Intervertebral Disc based on Semi-supervised Conditional Generative Adversarial Network.
In Proceedings of the 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International
Conference on Computer Engineering and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022; pp. 891–895.

24. Mushtaq, M.; Akram, M.U.; Alghamdi, N.S.; Fatima, J.; Masood, R.F. Localization and edge-based segmentation of lumbar spine
vertebrae to identify the deformities using deep learning models. Sensors 2022, 22, 1547. [CrossRef]

25. Hess, M.; Allaire, B.; Gao, K.T.; Tibrewala, R.; Inamdar, G.; Bharadwaj, U.; Chin, C.; Pedoia, V.; Bouxsein, M.; Anderson, D.; et al.
Deep learning for multi-tissue segmentation and fully automatic personalized biomechanical models from BACPAC clinical
lumbar spine MRI. Pain Med. 2023, 24, S139–S148. [CrossRef]

26. Wang, M.; Su, Z.; Liu, Z.; Chen, T.; Cui, Z.; Li, S.; Pang, S.; Lu, H. Deep Learning-Based Automated Magnetic Resonance Image
Segmentation of the Lumbar Structure and Its Adjacent Structures at the L4/5 Level. Bioengineering 2023, 10, 963. [CrossRef]
[PubMed]

27. Wang, Z.; Xiao, P.; Tan, H. Spinal magnetic resonance image segmentation based on U-net. J. Radiat. Res. Appl. Sci. 2023, 16,
100627. [CrossRef]
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