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Abstract: Fluoroscopy has always been the cornerstone imaging method of interventional cardiol-
ogy procedures. However, radiation exposure is linked to an increased risk of malignancies and
multiorgan diseases. The medical team is even more exposed to X-rays, and a higher incidence of
malignancies was reported in this professional group. In the last years, X-ray exposure has increased
rapidly, involving, above all, the medical team and young patients and forcing alternative fluoroless
imaging methods. In cardiac electrophysiology (EP) and pacing, the advent of 3D electroanatomic
mapping systems with dedicated catheters has allowed real-time, high-density reconstruction of both
heart anatomy and electrical activity, significantly reducing the use of fluoroscopy. In addition, the
diffusion of intracardiac echocardiography has provided high anatomical resolution of moving car-
diac structures, providing intraprocedural guidance for more complex catheter ablation procedures.
These methods have largely demonstrated safety and effectiveness, allowing for a dramatic reduction
in X-ray delivery in most arrhythmias’ ablations. However, some technical concerns, as well as higher
costs, currently do not allow their spread out in EP labs and limit their use to only procedures that
are considered highly complex and time-consuming and in young patients. In this review, we aim
to update the current employment of fluoroless imaging in different EP procedures, focusing on its
strengths and weaknesses.

Keywords: 3D electroanatomic mapping system; ALARA; catheter ablation; fluoroless; intracardiac
echocardiography; radiation exposure

1. Introduction

Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving
images of the human body organs and, so far, has been the gold standard imaging guidance
for most interventional cardiology procedures. Radiological exposure is a hot topic nowa-
days, as cardiology is responsible for about 40% of the entire exposure from all medical
sources [1,2]. In electrophysiology (EP), fluoroscopy leads the majority of the procedures,
being the only imaging guidance available for cardiac pacing procedures and still a corner-
stone for most catheter ablations (CAs) performed into the right chambers. However, the
utmost concern of long-term ionizing radiation exposure of both patients and personnel
related to the inherent risk of neoplasms pushed scientific research toward alternative
imaging methods [3]. Indeed, the U.S. Nuclear Regulatory Commission recommends
making every effort to keep exposure to ionizing radiation as low as reasonably achiev-
able (ALARA) [4]. Therefore, in the last twenty years, several non-fluoroscopic imaging
technologies have been developed and have slowly taken place in EP labs, dramatically
reducing radiation exposure for both the patient and the medical team [5–7]. With the
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advent of fluoroless imaging tools, such as three-dimensional (3D) electroanatomic map-
ping (EAM) systems and intracardiac echocardiography (ICE), most CA procedures can
be performed without X-rays [8]. EAM systems provide consistent advantages compared
to fluoroscopy because they allow the building of a real-time, intracavitary 3D map of the
heart chambers and the heart’s electrical activity [9]. ICE, by placing an ultrasound probe
or transducer directly into the heart chambers, also provides real-time, high-resolution
anatomical images, allowing for precise guidance during CA procedures involving mov-
ing structures [10]. In several studies, minimal and zero fluoroscopy approaches were
demonstrated to be associated with shorter operating time and ionizing radiation exposure
without compromising the safety and efficacy of treatments [11]. Their main employment
involves CAs of supraventricular tachycardia (SVT) such as atrioventricular nodal reen-
trant tachycardia (AVNRT), atrioventricular reentrant tachycardia (AVRT), atrial fibrillation
(AF), atrial flutter (AFL), and premature ventricular contractions (PVCs), although all EP
procedures could potentially be fluoroless. However, some technical factors, the need for
experienced operators, and costs limit the spread of their use. In this review, we aim to
update the current state of non-fluoroscopic EP procedures, focusing on their strengths
and weaknesses.

2. Radiation-Related Risks

Interventional cardiologists in EP are one of the occupational categories that are more
exposed to radiation [12–14]. X-rays are known to be harmful and carcinogenic [15], and
the most radiation-sensitive solid organs are the lungs, breasts, colon, bladder, and thyroid,
while leukemia is the early diagnosed cancer after radiation exposure. Furthermore, a
number of X-ray-related diseases different from cancer, such as dermatitis, cataracts, and
cognitive impairment, have also been frequently described [12]. Transient or irreversible
infertility and congenital malformations have been demonstrated after X-ray exposure [15].
Radiation exposure carries adverse effects on the human body that are classified as de-
terministic and stochastic. Deterministic effects are dose-related and defined as a safety
threshold over which the severity of harm increases. These effects are directly related
to ionizing radiation exposure and its negative effect on cellular repair mechanisms and
functions. Dermatitis, cataracts, bone necrosis, and myocardial damage are typical con-
sequences of deterministic effects. On the contrary, the stochastic effect is related to the
probability of developing a disease with any amount of exposure in a non-linear way.
Accordingly, even a single exposure to ionizing radiation can be associated with carcino-
genesis. In this case, DNA damage leading to the activation of oncogenes and oncogenesis
pathways underlies the final effect, resulting in cancer. The radiation-induced effects can
also be acute or cumulative, and the degree of the injury and the timing depends on the
amount of X-ray exposure. Cumulative effects may occur many years after exposure. Of
note, cumulative effects are reported worse in obese patients who need increased doses
of radiation than normal weight patients [13]. Since a threshold for safe exposure to ra-
diation cannot be defined and no radiation is the most acceptable threshold that can be
considered, the American College of Cardiology has stated the importance of reducing
ionizing radiation exposure, defining the “As Low As Reasonable Achievable” (ALARA)
concept [14,16]. According to ALARA, every procedure involving ionizing radiation needs
to be performed without forgetting about the exposure risks. To understand the amount
of radiation exposure during a common CA, it must be considered that a radiofrequency
(RF) ablation requires a radiation dose from 1 to 25 mSv, while a chest X-ray requires only
0.02 mSv [17]. A 0.1–0.5% increase in fatal malignancy after AF ablation was reported in
a study [18]. Moreover, the burden of radiation exposure has significantly increased in
recent years due to the increase in the average age of patients and the increase in diagnostic
and interventional procedures. On the other part, more and more younger patients are
undergoing procedures using X-rays. Finally, the pediatric population must be carefully
considered due to increased susceptibility to radiation damage due to the more active cell
turnover and long life expectancy [19–21]. In particular, children affected by congenital
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heart diseases are at significant risk of developing stochastic and cumulative effects during
their lives because of the constant need for numerous examinations and procedures [22]. In
this state, actions to reduce the amount of X-ray exposure are deemed necessary. Healthcare
operators have adopted several precautions to protect themselves from X-rays by wearing
lead aprons, lead glasses, thyroid shields, and wearable dosimeters and using ceiling-
and table-mounted shields. However, radiation exposure never reaches zero [23], and
the main source of exposure for the medical team is the scattering radiation arising from
the patient [22]. Of particular interest, some studies reported a higher incidence of brain
tumors involving the left hemisphere among interventional cardiologists [24,25]. Another
non-negligible X-ray-exposure-related consequence is orthopedic diseases, mainly involv-
ing the spine and joints, caused by the everyday wearing of lead aprons [22,26]. Chronic
neck and back pain, as well as cervical disc herniations, are frequently encountered among
operators and are a cause of absences from work and anticipated retirements [27]. Finally,
risk exposure is an absolute contraindication for pregnant women, who, therefore, must be
removed from their occupation for numerous months.

3. Non-Fluoroscopic Technologies

Radiation exposure reduction in EP procedures started with the introduction of new
technologies that can be applied with minimal or zero use of fluoroscopy. Electrical and
magnetic fields applied by 3D EAMs and ultrasound technologies used for ICE underwent
significant improvements since their first release, leading to new perspectives in the EP lab.
Figure 1 compares the use of fluoroscopy with fluoroless technologies.
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Figure 1. Flouroless procedures.

3.1. Three-Dimensional Electroanatomic Mapping Systems

Three-dimensional EAM systems are among the most valuable projects produced by
multidisciplinary teamwork that included physicians and engineers and were introduced in
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the 1990s. They provide a 3D reconstruction of heart structures supplying both anatomical
and electrophysiological characteristics of cardiac chambers, such as the activation time,
the voltage amplitude, and the presence of late potentials. The spread of EAM systems
has given a turning point to the understanding of the characteristics of arrhythmias, in
particular, more complex ones such as AF and VT, providing new insights and improving
the effectiveness of their treatment. At the same time, different EAMs based on tissue
electrical characteristics or potential propagation are generated and integrated [28]. The
greater spatial resolution provided by mapping systems associated with the use of contact
sensible catheters has improved the safety of procedures, reducing the rate of severe
complications according to the complexity of the procedure [29,30]. Different systems
based on different mapping technologies have been developed. The CARTO® system
(Biosense Webster Inc., Johnson & Johnson (J&J), New Brunswick, NJ, USA) is based on
three generators positioned under the table, each of which emits a low-level magnetic
field; the location of the mapping catheter is identified by calculating the distance from the
three different magnetic fields, and an external pad is applied to the back of the patient
to monitor any movement. Specific catheters equipped with electromagnetic sensors are
required. Six skin patches are also applied on the patient that allow for the measurement
of the level of impedance at the tip of the catheter, which provides useful information
both during the mapping and ablation phases [31,32]. Improved anatomic resolution can
be reached by integrating the electroanatomic maps with computer tomography scans or
magnetic resonance imaging 3D reconstruction [33–36]. The CARTO-3 system is the last
version of the system and allows the integration of magnetic fields with electrical fields
such as those used by other EAM systems. EnSite NavX™ (St. Jude Medical, Abbott,
Abbott Park, IL, USA) is a system based on impedance generated by electrical fields that,
similar to CARTO, provides a point-to-point creation of the EAM [37]. A low-level current
(1 mA) is applied through six patches positioned in orthogonal planes on the patient’s
chest, and the potential difference is recorded by the catheter tip in order to determine its
localization. The benefits of NavX are the compatibility of the system with all catheters
and the acquirement point speed of 96 points/s, much faster than the CARTO system.
Also, chamber geometry created by the NavX system can identify and automatically tag
anatomical landmarks with a much higher resolution than that created by the CARTO
system, in which points are manually acquired. This method provides EAMs based on
several thousand points. EnSite X (Abbott) is a new mapping system combining impedance
and magnetic field data to improve the real-time location of catheters. Integration with
CT and MRI images is also possible. The RHYTHMIA Mapping System (Boston Scientific,
Cambridge, MA, USA) is a hybrid system using both impedance and electrical fields
combined with a multipolar basket-like catheter composed of high-density, very small-
size electrodes. This allows the creation of ultra-high-resolution activation and voltage
maps using rapid and accurate automated data acquisition and annotation [38]. Notably,
RHYTHMIA does not allow for integration with CT or MRI. Table 1 provides an overview
of the pros and cons of the above-cited EAM systems. EAM systems have simplified
the diagnostic process and provided novel strategies for arrhythmias treatment [39]. A
dramatic reduction in fluoroscopy time has been demonstrated without affecting the safety
and efficacy of procedures [8,31]. On the other hand, intracardiac and thoracic impedance,
as well as the patient’s movements during the procedure, can affect the map reconstruction
and significantly prolong procedure times [40,41]. The employment of steerable catheters
to improve ablation catheter handling and tissue contact, leading to reduced ablation time
and high-quality lesions, is constantly increasing, particularly during pulmonary vein (PV)
isolation [42]. The recent production of a new generation of steerable catheters that can
be integrated with EAM systems and, therefore, visualized on the 3D map provided a
significant optimization in the procedure workflow [43]. Their demonstrated use, compared
to standard, non-visualizable catheters, further reduces the left atrial procedure time, RF
delivery, and fluoroscopy exposure without compromising safety or effectiveness [44,45].
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Table 1. Pros and cons of above-cited EAM systems.

CARTO Ensite NavX RHYTHMIA

Company Biosense Webster Abbott Boston Scientific

Location method Magnetic field Electrical and magnetic field Electrical field

Mapping technique Point-to-point Point-to-point Non-contact

Compatibility with any
catheter No Yes No

Patient movement sensibility High Low Low

Need for intracardiac
reference catheter No Yes Yes

Contact-sensing catheters Force Electromagnetic Impedance

CT–CMR integration Yes Yes No

ICE integration Yes No No

Pros

- Anatomical accuracy
- Imaging integration
- Contact force sensing

catheters

- Anatomical accuracy
- Different mapping

catheters allowed
- Imaging integration
- Less arrhythmogenic

shape of multipolar
mapping catheter

- Mapping beat to beat

Cons

- Biosense Webster
catheters

- Sensibility to patient
movements

- Sensibility to reference
catheter movement

- Absence of contact
sensibility on multipolar
mapping catheters

- Less precise anatomical
map

- Stiffer catheters
- Absence of contact

sensibility on multipolar
mapping catheters

Abbreviations: CMR, cardiac magnetic resonance; CT, cardiac tomography; ICE, intracardiac echocardiography.

3.2. Intracardiac Echocardiography

ICE is performed by using a deflectable catheter carrying a two-dimensional ultra-
sound probe at the tip advanced through the femoral vein into the heart, providing high
spatial and temporal resolution images of complex, moving structures such as valves and
papillary muscles [46]. This imaging method precisely identifies tissue where ablation
needs to be performed; obstacles like artificial prostheses and occluders are also visualized
and avoided. ICE catheters can be divided into rotational catheters and phased-array
catheters [10,47]. Radial ICE is composed of a tip with a single-rotating crystal element
that provides a 360-degree view perpendicular to the longitudinal axis of the catheter and
differs from phased-array ICE, which is made up of a 64-element transducer that allows
for anteroposterior and lateral deflection. Phased-array catheters have wider applications
because of their higher frequency range and ability of Doppler and color-flow imaging.
The types of ICE systems available so far are Radial ICE (Ultra ICE™, Boston Scientific,
Marlborough, MA, USA), ViewFlex™ Xtra ICE catheter (Abbott, Chicago, IL, USA), and
ACUSON Acunav (J&J, New Brunswick, NJ, USA) [10]. ICE has been demonstrated to be
a safe and feasible modality to provide localization of diagnostic and ablation catheters
and real-time high-resolution images of cardiac structures with a significant reduction in
fluoroscopy time exposure [48–50]. Unlike transesophageal echocardiography (TOE), ICE
does not require sedation and can be performed by the same operator that performs the EP
procedure [10]. Compared to fluoroscopy guidance, catheter placement is more difficult, es-
pecially for non-experienced operators. Nevertheless, a reduction in mapping and ablation
time has been demonstrated [51,52]. ICE allows the detection of complex arrhythmogenic
structures that are not visible with fluoroscopy, such as endocardial crypts, perivalvular
tissues, ischemic scars, moderator bands, and papillary muscles. Moreover, ICE helps to
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exclude the presence of left atrial appendage sludge or thrombosis and provides direct
visualization of the catheters, early detecting some potentially severe complications such
as catheter thrombosis, pericardial effusion, and steam pop. ICE is considered a gold
standard in the ablation of left-sided arrhythmias, in particular ventricular arrhythmias
(VAs) [47,53,54]. Improved-quality images and fluoroscopy time reduction are obtained
by integrating ICE with EAM, as made by the CARTOSOUND module by using a special
phased-array ICE catheter (SOUNDSTAR ultrasound catheter, Biosense Webster, Irvine, CA,
USA) [10,47]. Despite ICE having no potential contraindications and needing little vascular
access (6–10 Fr), some factors, such as the need for experienced operators, the single-use
label, and high costs, limit its spread. Caution is needed in patients with implanted cardiac
devices because of the risk of lead dislocation [54]. Figure 1 shows the main benefits of
fluoroless technologies.

4. Fluoroless Procedures in EP Labs
4.1. Paroxysmal Supraventricular Tachycardias

Supraventricular tachycardias (SVTs) are the most frequent cause of young individuals’
referral to the cardiologist or electrophysiologist because of discomfort and stress [55,56].
SVTs are registered from the gestation period to adulthood, and over 65 years old, the
incidence increases five-fold. In the general population, the prevalence is 2.5 out of 1000
persons, and the incidence is 36 per 100,000 persons per year [57]; females are more prone
to be affected [57], particularly during pregnancy [58]. Atrioventricular nodal re-entrant
tachycardia (AVNRT), atrioventricular re-entrant tachycardia (AVRT), and atrial tachycar-
dia (AT) are the most common paroxysmal SVTs. CA of this group of tachyarrhythmias
is the gold-standard therapy due to its safety, high effectiveness, and cost savings [59].
The procedure is conventionally performed through fluoroscopy guidance, despite several
meta-analyses reporting that they may be potentially performed completely fluoroless
with similar results by using EAM systems [11,60]. Conflicting results exist in published
studies about procedural times involving fluoroless ablations compared to fluoroscopy
ones [26,27,61]. Overall, fluoroless was demonstrated to not prolong the procedure dura-
tion [62,63]. However, to achieve such results, a complete learning curve must be reached
by the operators: Kochar et al. demonstrated that 20 procedures have to be performed to
achieve the necessary confidence to reduce the fluoroscopic and the procedure time [64].
The acute procedure success of both methods is substantially similar [39,65]. The acute
success rate was registered at above 97% [11], and only a few studies reported higher recur-
rence rates in the fluoroless group than in the conventional one [30]. No differences were
reported in the complication rate [11]. Zero- or minimal-fluoroscopy CA plays an important
role in the treatment of SVTs during pregnancy. In these cases, antiarrhythmic drugs may
be effective but at costs of risk for the fetus [66], equal to radiation exposure. In these cases,
fluoroless or minimal radiation exposure CA is considered mandatory [67,68], as reported
in the latest guidelines with a recommendation level IIa and IIb, respectively [55,56]. Mini-
mizing radiation exposure is also of paramount importance in the pediatric population to
reduce long-term consequences [69,70].

4.2. Atrial Fibrillation and Atrial Flutter

AF and AFL are the most frequent cardiac arrhythmias, with a prevalence of 2%
to 4%, and are showing continuous growth with higher prevalence in men and older
people [71]. Accordingly, CA of these arrhythmias is the most performed EP procedure
worldwide, being an effective strategy for rhythm control, leading to improved quality of
life and mortality [72,73]. RF, electroporation, and cryoablation are the most commonly
used methods. The mean radiation equivalent of an AF ablation performed with RF in
conventional mode is 15 mSv [74]. The introduction of the EAM systems has been a turning
point in the management of these arrhythmias as they improved the effectiveness of the
procedure and the understanding of the persistent forms, as well as reduced the use of
duodecapolar catheters. Moreover, since point-by-point AF ablation is a relatively longer



Diagnostics 2024, 14, 182 7 of 16

procedure compared to single-shot techniques [10,75], achieving a reduction in fluoroscopic
exposure was of paramount importance. Routinary use of echocardiography-guided
transeptal puncture allows to reach the left atrium in a safer mode without fluoroscopy and
is usually performed by TOE during deep sedation or general anesthesia. However, ICE
may be an alternative echocardiographic guidance in those patients who need lesser deep
sedation without the risk of esophageal complications [76].

As reported in a recent meta-analysis, fluoroless AF ablation reduces the fluoroscopy
time (−5.21 min; −5.51, −4.91; p-value < 0.01) and the radiation dose (−3.96 mGy;
−4.27, −3.64; p-value < 0.01) in a consistent manner without influencing ablation time [5].
Accordingly, a recent retrospective study reported a procedure time of 176 ± 46 vs.
194 ± 56 min compared to conventional AF ablation (p-value = 0.0021) [77]. Among
different EAM systems, those based on magnetic fields have been linked to shorter time
with significant reductions in fluoroscopy and RF delivery due to their relative indepen-
dence from impedance changes linked to tissue edema, respiration, and periprocedural
fluid shift [78]. Single-shot technologies were developed to standardize the ablation work-
flow and reduce times but do not use mapping systems and, therefore, remain relatively
dependent on fluoroscopy so far. A first attempt to perform fluoroless PV cryoablation
by using ICE was performed in 2021 by Alyesh et al. [79] and recently reproduced in a
randomized study by Janhee et al. [80]. The indicators of PV occlusion used in the studies
included the integration of hemodynamic measures with continuous-wave pressure moni-
toring and ICE color Doppler images in the first and ICE alone in the second. Compared to
the conventional approach, the fluoroless group did not differ in procedural time, acute
success, complication, and recurrence rate. Compared to AF, CA of AFL is very effective
in definitively abolishing the arrhythmia, with a rate of recurrence <10% for the most
common type of AFL, which is dependent on a macro re-entry around the cavotricuspid
isthmus (CTI) [81]. Atypical AFLs are the minor part and include those arising in the left
atrium and are usually associated with cardiomyopathies, cardiac surgery, and incomplete
AF ablation. CA of these types are longer and more complex, with a significantly higher
rate of recurrence [82]. AFL ablation guided by EAM systems aims to identify the best
line of ablation based on local electrograms and activation map of the re-entry circuit,
then to assess the bidirectional block. Compared to conventional ablation, this method
demonstrated similar efficacy and procedure time but avoided X-ray exposure at the ex-
pense of increased costs [83,84]. AFL ablation guided by ICE alone was also explored
in some studies, reporting an improved success rate, decreased procedure and ablation
time, and minimized radiation exposure due to a better visualization of the CTI [85–87].
Finally, the integration of ICE and 3D EAM allows the performance of a safe and precise
transeptal puncture as well as provides high-resolution imaging of the anatomy of both
right- and left-sided cardiac structures, including LAA. With this method, all types of AFL
are potentially approachable without the use of fluoroscopy and without compromising
duration, safety, or efficacy [53,88].

4.3. Ventricular Tachycardia and Premature Ventricular Contraction

VAs range from isolated or clustered PVC to potentially lethal sustained VT and
ventricular fibrillation (VF). The incidence of lethal VAs is approximately 50 per
100,000 person-years in middle-aged individuals and increases with age [89]. CA is
demonstrated to be effective in the treatment of the major part of VAs and is generally
recommended in cases of recurrent VAs leading to left ventricular dysfunction, failure of an-
tiarrhythmic drugs, or multiple interventions of implantable cardioverted defibrillator [89].
Only case reports and observational studies have been published so far regarding zero-
fluoroscopy CA of VAs [90–92]. EAM systems are deemed necessary with these types of
arrhythmias due to the higher accuracy in the identification of the ablation substrate, the ad-
ditional insights provided on VA electrical behavior, and the need in some cases to perform
ablation in structures in continuous movement. The combined use of EAM systems and
ICE also provides advantages over the conventional procedure due to the capacity to add
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an anatomical view of the target structure that may be of paramount importance in cases of
high-movement structures such as papillary muscles or high-risk structures such as the left
ventricular summit due to its proximity to the coronary vessels [90]. ICE also provides the
real-time thickness of the wall, which is important in deciding the amount of energy to use;
this has particular importance for the ventricle wall, which varies from 3 mm to 25 mm [93].
Possible complications can also be recognized early [91]. Important technical concerns
of VA ablation are related to the frequent need for multiple accesses to cardiac chambers
(either transeptal or retroaortic) that significantly prolong the procedure time. Furthermore,
patients with complex, severe VAs are often affected by advanced heart failure and multi-
ple comorbidities; therefore, they cannot tolerate excessively prolonged procedures. On
the contrary, those with idiopathic VAs are usually younger, fit, and with normal hearts;
fluoroless procedures may fit very well in this population. Lamberti et al. [91] enrolled
nineteen patients who underwent zero-fluoroscopy idiopathic VA ablation, including VT
and PVCs from the right ventricle outflow tract (RVOT, 42%), the left ventricle outflow
tract (LVOT, 21%), the left fascicle (16%), the peri-tricuspidalic region (11%), the peri-mitral
region (5%) and the lateral left free wall (5%). The acute success rate was 100% without
complications reported, suggesting that the fluoroless ablation is possible in a wide variety
of regions, with both a retrograde transaortic or a transeptal puncture approach. Similar
results were collected in a previous study on a pediatric population [94]. More recently,
Sadek et al. [92] reported successful zero-fluoroscopy VA ablation in four subjects with
idiopathic VAs and six subjects with structural heart disease. ICE imaging was substantial
for guiding the catheters in device carriers. Accordingly, a learning curve of 15–20 cases
is deemed necessary to carry out the procedure in normal times [64]. Major studies on
fluoroless ablation are described in Table 2.

Table 2. Major studies in fluoroless ablation.

Reference Arrhythmia Treated No. of Patients (Fluoroless vs.
Conventional Fluoroscopy) Main Findings

Di Cori et al. [61] SVT/AFL 93 vs. 116
- Safety and efficacy of fluoroless
- Arrhythmia type predicted fluoroless

procedure

Kalinsek et al. [16] SVT 294 vs. 280
- Safety and efficacy of fluoroless in adult

and pediatric populations

Bergonti et al. [30] SVT 206 vs. 412
- Better long-term results and reduced

complications with fluoroless

Casella et al. [39] SVT 134 vs. 128
- Safety and efficacy of fluoroless
- Reduction in patients’ exposure, risk of

cancer and mortality

Stec et al. [62] SVT 179 vs. 714

- Safety and efficacy of fluoroless
- No difference in procedure time,

complication rate, acute and
long-term success

Chen et al. [63] SVT 1020 vs. 2040
- Safety and efficacy of fluoroless
- Reduction in radiation exposure

Fadhle et al. [65] SVT 100 (Carto) vs. 100 (Ensite)
vs. 100

- Safety and efficacy of EAM systems

Ferguson et al. [76] AF 21
- Feasibility of fluoroless, in particular in

childhood, pregnancy, and obesity

Lurie et al. [77] AF 147 vs. 176

- Safety and efficacy of fluoroless
- Reduced procedure times
- Similar acute success, complication rate,

and recurrence
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Table 2. Cont.

Reference Arrhythmia Treated No. of Patients (Fluoroless vs.
Conventional Fluoroscopy) Main Findings

Khaykin et al. [78] AF 71 (Carto) vs. 165 (Ensite) vs.
197

- Lower procedure time, fluoroscopy
duration, and radiofrequency energy
delivery time with EAM systems

Rivera et al. [90] TV/PVC 27
- Safety and efficacy of fluoroless
- Acute success rate 84%, recurrence

rate 24%

Lamberti et al. [91] TV/PVC 52
- Safety and efficacy of fluoroless
- 100% acute success rate

Sadek et al. [92] AF/AFL/VT 80
- Safety and efficacy of fluoroless
- No increase in procedural time
- Medium learning curve

Alyesh et al. [79] AF 50 vs. 50
- Safety and efficacy of fluoroless

cryoablation

Jinhee et al. [80] AF 50 vs. 50
- Safety and efficacy of fluoroless,

ICE-guided procedure

Turcsan et al. [86] AFL 219 vs. 151

- Safety and efficacy of fluoroless,
ICE-guided procedure

- 100% acute success rate
- Shorter procedure time

Jacinto et al. [88] AFL 31 vs. 191
- Safety and efficacy of fluoroless
- Reduction in procedure time

Abbreviations: AF, atrial fibrillation; AFL, atrial flutter; EAM, electroanatomic mapping system; SVT, supraven-
tricular tachycardia; PVC, premature ventricular contraction; VT, ventricular tachycardia.

5. Device Implantation and Other Possible Use of Zero-Fluoroscopy

X-ray guidance is currently the gold standard for every cardiac pacing procedure,
despite few studies and case reports reporting some alternative options to be considered
in special cases like pregnancy and childhood. The CARTO system was used to place
an atrial catheter in a patient with Ebstein’s anomaly for the corrected placement of the
catheter in a dilated right atrium with a diffused low-amplitude voltage signal [95]. EnSite
NavX was used to guide the implantation of a single-lead atrioventricular pacemaker in
fifteen patients [96]. Similar cases have been described in the context of AF treated with
ablate and pace [97] and in a case series of CRT-D implants [98]. To cannulate and map
the coronary sinus (CS), an electrophysiological catheter connected to an EAM system was
introduced via the subclavian vein and was used to create the 3D map of the CS branches.
When necessary, especially for the smallest vessels, wire cannulation was performed using
fluoroscopy. During vessel mapping, the local ventricular activation time and the bipolar
voltage amplitude were recorded using the right ventricular electrogram as a reference. The
final position of the CS lead was chosen by relating the maximum activation delay between
the electrogram in the right ventricle and the electrogram in the CS branch. Transthoracic
ultrasound guidance and modification in radiation protocols, like ultralow frame rate at
2–4 frame/s, could otherwise reduce the radiation exposure without a significant increase
in procedure time [99,100]. Recently, EAM systems application in guidance of percutaneous
endomyocardial biopsy (EMB) to identify myocardial pathological substrate demonstrated
to be feasible and to improve precision and diagnostic yield of the biopsy [101]. Of
note, a cutoff of 5 mV voltage amplitude demonstrated a substantially higher sensitivity
(70% vs. 26%) and a negative predictive value (62%) than 1.5 mV in predicting abnormal
myocardium. Compared to CMR, electrogram-guided EMB showed similar sensitivity and
good specificity in detecting myocardial scar areas [102].
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6. Cost-Effectiveness

The use of 3D mapping systems and ICE involves an important amount of costs
compared to fluoroscopy [103]. Some studies have been conducted to evaluate if these
technologies are cost-effective in terms of long-term reduction in radiation complications.
The cost-effectiveness of these procedures has been demonstrated only in some cases,
such as children [104], and in cases of complex CA necessitating very high fluoroscopy
use, such as for AF ablation [105]. Traditional SVT ablation requires a lesser amount of
radiation; therefore, fluoroless procedures are currently considered only in cases where
X-ray use is avoided. A more extensive analysis must be conducted, taking into account the
financial advantage that zero-fluoroscopy provides not only in reducing patients’ exposure
to radiation but operators’ too, including prevention of orthopedic complications. In the
future, with the aim to reduce waste, costs, and environmental impact, the reprocessing
of single-use catheters and other electrophysiological tools will have to be considered. A
study reported the feasibility and safety of ICE probe reprocessing that allowed the use of
the same probe up to 20 times, resulting in 90% cost reduction (>EUR 2 million in savings
for the studied period) and 95% waste reduction (639.5 kg less, mostly non-degradable)
without increased risk of infection and malfunction [106]. Nevertheless, currently available
single-use devices are not approved for multiple use, and universally accepted guidelines
that regulate device sterilization and reprocessing are lacking. In Brazil, the reprocessing of
such products is regulated by the National Health Surveillance Agency (ANVISA), which
demands manufacturers that label their products as single-use to submit documents that
substantiate the reasons for not reprocessing. Currently, the list provided by ANVISA on
medical products whose reprocessing is invariably forbidden does not contain any product
used in the electrophysiological procedures routine [107]. This could be a starting point to
extend the concept of cost and waste saving to a universal level.

7. Limitations and Future Perspectives

The topic of radiation exposure is of paramount importance because of the increase in
life expectancy and the use of X-rays in medical practice. In the EP field, the “Go for Zero
Fluoroscopy” project is working to find valuable alternatives to X-rays. A 2020 registry
review enrolling 25 EP laboratories from 14 European countries reported a hopeful trend
toward a reduction in radiation, carried out in particular by higher volume centers [108].
However, the importance of a readily available C-arm cone beam in EP laboratories has
to be highlighted for its rapid accessibility, easy interpretation of fluoroscopic images,
and long experience. Its readiness is of paramount importance in cases of procedural
complications such as cardiac tamponade, vascular complications, anatomical variants,
and technical problems of the EAM system. This condition also raises the question of
when X-ray aprons can be avoided. So far, it is advisable to wear X-ray aprons in cases of
complex CA involving procedures at higher risk of severe complications like transeptal
or epicardial puncture and the retroaortic approach. Moreover, fluoroscopic support
can be helpful since EAM systems are not able to identify intracardiac obstacles such as
electrocatheters already in place. Fluoroless procedures may be improved in the next future
by advancements in several technological fields: (I) imaging technologies such as advanced
ultrasound, CMR, and 3D EAM systems integrated with artificial intelligence algorithms
for better procedural guidance; (II) increased employment of robotics and automation
in EP procedures could improve precision and reduce the reliance on fluoroscopy; and
(III) advancements in personalized treatment plans involving pre-procedural imaging,
simulation tools, and advanced machine learning to improve the effectiveness and safety of
more complex procedures. Finally, the operator’s experience and mindset are a fundamental
factor to be considered in order to reduce X-ray exposure. Indeed, high use of fluoroscopy
is always reported at the beginning of the training, with its reduction achieved with
increasing experience [109]. Extensive training is therefore needed to improve operators’
skills; simulators can be used to practice and become accustomed to the procedure. A solid
experience in conventional procedures is also needed in order to use fluoroscopy as low as
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possible if needed. Of paramount interest, it has been demonstrated that being a female
operator is an independent predictor for low radiation exposure [110].

8. Conclusions

Radiation exposure in EP lab is an utmost important topic and deserves further
consideration and diffusion in the future. The protection of both patients and operators has
to be taken into serious account due to the negative effects that long-term X-ray exposure
can cause. Novel echocardiographic and electroanatomic imaging modalities paved the
way for fluoroless procedures in high-volume centers. However, high costs and the need
for experienced operators currently limit their diffusion in peripheral ones.
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et al. Feasibility and safety of reprocessing of intracardiac echocardiography catheters for electrophysiology procedures—A large
single center experience. Cardiovasc. Ultrasound 2023, 21, 20. [CrossRef] [PubMed]

107. Kuniyoshi, R.R.; Sternick, E.B.; Nadalin, E.; Hachul, D.T. Reprocessing of Medical Products in Electrophysiology. Arq. Bras.
Cardiol. 2017, 108, 169–172. [CrossRef]
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