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Abstract: Purpose: We aimed to assess the efficacy of machine learning and radiomics analysis using
magnetic resonance imaging (MRI) with a hepatospecific contrast agent, in a pre-surgical setting,
to predict tumor budding in liver metastases. Methods: Patients with MRI in a pre-surgical setting
were retrospectively enrolled. Manual segmentation was made by means 3D Slicer image computing,
and 851 radiomics features were extracted as median values using the PyRadiomics Python package.
Balancing was performed and inter- and intraclass correlation coefficients were calculated to assess
the between observer and within observer reproducibility of all radiomics extracted features. A
Wilcoxon–Mann–Whitney nonparametric test and receiver operating characteristics (ROC) analysis
were carried out. Balancing and feature selection procedures were performed. Linear and non-logistic
regression models (LRM and NLRM) and different machine learning-based classifiers including
decision tree (DT), k-nearest neighbor (KNN) and support vector machine (SVM) were considered.
Results: The internal training set included 49 patients and 119 liver metastases. The validation cohort
consisted of a total of 28 single lesion patients. The best single predictor to classify tumor budding
was original_glcm_Idn obtained in the T1-W VIBE sequence arterial phase with an accuracy of 84%;
wavelet_LLH_firstorder_10Percentile was obtained in the T1-W VIBE sequence portal phase with an
accuracy of 92%; wavelet_HHL_glcm_MaximumProbability was obtained in the T1-W VIBE sequence
hepatobiliary excretion phase with an accuracy of 88%; and wavelet_LLH_glcm_Imc1 was obtained
in T2-W SPACE sequences with an accuracy of 88%. Considering the linear regression analysis, a
statistically significant increase in accuracy to 96% was obtained using a linear weighted combination
of 13 radiomic features extracted from the T1-W VIBE sequence arterial phase. Moreover, the best
classifier was a KNN trained with the 13 radiomic features extracted from the arterial phase of the
T1-W VIBE sequence, obtaining an accuracy of 95% and an AUC of 0.96. The validation set reached
an accuracy of 94%, a sensitivity of 86% and a specificity of 95%. Conclusions: Machine learning
and radiomics analysis are promising tools in predicting tumor budding. Considering the linear
regression analysis, there was a statistically significant increase in accuracy to 96% using a weighted
linear combination of 13 radiomics features extracted from the arterial phase compared to a single
radiomics feature.
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1. Introduction

Tumor budding, recognized as single cells or clusters of less than five cells, is consid-
ered as an aggressive histo-morphologic biomarker in cancer and has been well established
as a poor prognostic feature in colorectal cancer, since high tumor budding is correlated
with poor survival [1]. In colorectal cancer, tumor budding is associated with tumor pro-
gression and represents an additional prognostic factor in the TNM classification. Tumor
buds can be found at the invasive front (peritumoral budding; PTB) and tumor center
(intratumoral budding; ITB) of primary tumors [1,2]. The effects in patients with metastatic
CRC (mCRC) were investigated. Previous studies have shown that tumor buds are also
present in colorectal liver metastases (CRLM). In a meta-analysis, 1503 patients from nine
retrospective cohort studies were evaluated and the authors demonstrated that, compared
to those with low tumor budding, mCRC patients with high tumor budding are associated
with poor progression-free survival, and therefore, they have a worse prognosis [2]. In ad-
dition, Noro et al. [3] assessed the rule of tumor budding in recurrences after hepatectomy
in 52 patients with liver metastases, showing in a univariate analysis that preoperative
chemotherapy, budding grade, extrahepatic metastases, and number of liver metastases at
the time of recurrence were associated with overall survival (OS), while in a multivariate
analysis, budding grade and number of liver metastases at the time of recurrence were asso-
ciated with OS. The authors suggested that budding could be considered a new pathologic
factor that affects the treatment choice [3]. Nowadays, tumor budding can only be assessed
in surgical resection specimens, so that this prognostic marker has a limited value in patient
risk evaluation in a pre-surgical setting. Radiomics analysis is an emerging field in research
settings, since, thorough a mathematical approach, this allows us to obtain biological data
from medical images [4–8]. Radiomics analysis allows multiple features to be obtained from
medical imaging, including shape features and first-, second- or higher-order statistical
features. After an adequate feature selection procedure to ensure the robustness of the
parameters and eliminate redundant ones, these can be used as input predictors of machine
learning methods in classification problems related to clinical oncological settings.

The great part of radiomic studies in an oncological setting is that they have a clas-
sification task or prediction of clinical outcomes as a target [9–16]. These approaches are
guided by the idea that this analysis conveys data on tumor biology as a “virtual biopsy”
that allows us to obtain information of the whole lesion and could be utilized more easily
at multiple time points for disease evolution assessment [17–22].

Radiomics analysis could be a promising tool to “virtually” evaluate a lesion, with the
possibility of analyzing the entire tumor during the history of the disease to obtain those
markers that can influence the choice of treatment. Based on our knowledge, there are no
studies in the literature that report the use of radiomics analysis in magnetic resonance for
the evaluation of tumor budding.

The aim of this study is to evaluate the ability of machine learning and radiomics
features, obtained from magnetic resonance images, to assess tumor budding in colorectal
liver metastases patients.

2. Materials and Methods
2.1. Dataset Characteristics

The local ethics committee accepted this retrospective study waiving the signature of
the patient’s consent due to the nature of the study.

The selection of patients was conducted from January 2018 to May 2021, consider-
ing the following inclusion criteria: (1) patients subjected to surgical resection for liver
metastases; (2) proven pathological liver metastases; (3) patients subjected to MRI study
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in the pre-surgical setting with good-quality images; and (4) tumor budding assessment.
Exclusion criteria were (1) no histological data, (2) no MRI studies, (3) low-quality MRI
images and (4) no tumor budding assessment.

The patient cohort included a training set and an external validation set obtained from
Careggi Hospital, Florence, Italy. A per lesion analysis was performed.

2.2. Imaging

A 1.5 T Magnetom Symphony scanner (Siemens, Erlangen, Germany) and a 1.5 T
Magnetom Aera scanner (Siemens) equipped with an 8-element body and phased array
coils were used for image acquisition of MR, including sequences obtained before and
after intravenous (IV) injection of contrast medium. Volumetric interpolated T1-weighted
SPAIR (VIBE) with controlled respiration was used to acquire images after IV injection
of contrast agent (CA) with a liver-specific CA (0.1 mL/kg of Gd-EOB-BPTA, Primovist,
Bayer Schering Pharma, Berlin, Germany). A power injector (Spectris Solaris® EP MR,
MEDRAD, Inc., Indianola, IA, USA) was used to deliver contrast agent at an infusion rate
of 2 mL/s, and VIBE T1-w images were acquired in four different phases: arterial phase (35
s delay), portal venous phase (90 s), transition phase (120 s) and hepatobiliary excretion
phase (20 min).

The study protocol is reported in Table 1.

Table 1. Sequence parameters of MRI study protocol.

Sequence Orientation TR/TE/FA
(ms/ms/deg.)

AT
(min)

Acquisition
Matrix ST/Gap (mm) FS

T2-W Trufisp Coronal 4.30/2.15/80 0.46 512 × 512 4/0 Without

T2-W HASTE Axial 1500/90/170 0.36 320 × 320 5/0 Without and
with (SPAIR)

T2W HASTE Coronal 1500/92/170 0.38 320 × 320 5/0 Without

T2W SPACE Axial 4471/259/120 4.20 384 × 450 3/0 With (SPAIR)

T1-W In-Out phase Axial 160/2.35/70 0.33 256 × 192 5/0 Without

DWI Axial 7500/91/90 7 192 × 192 3/0 Without

T1-W VIBE Axial 4.80/1.76/30 0.18 320 × 260 3/0 With (SPAIR)

Note. W = weighted, TR = repetition time, TE = echo time, FA = flip angle, AT = acquisition time, SPAIR = Spectral
Adiabatic Inversion Recovery, HASTE = Half-Fourier Single-Shot Turbo Spin-Echo, VIBE = volumetric interpolated
breath hold examination.

2.3. Image Processing

Two expert radiologists, with 20–25 years of experience in liver imaging, manually
drew the contours of the lesions avoiding bias artifacts, slice by slice, on the arterial phase,
on the portal phase, on the hepatobiliary excretion phase of the weighted VIBE sequence
T1 and on the SPACE T2 weighted sequence, using the segmentation tools provided by
3D Slicer version 5.6.1 (available at the link https://download.slicer.org/ accessed on
15 January 2022). The radiologists performed the segmentation of the volumes of interest
first separately and then in agreement with each other. Figure 1 shows an example of a
segmentation phase.

Using PyRadiomics [https://pyradiomics.readthedocs.io/en/latest/features.html
accessed on 15 January 2022], 851 radiomic features for each volume of interest were
extracted as median values.

Radiomic characteristics are divided into first-order statistics; shape-based (3D); shape-
based (2D); gray-level co-occurrence matrix; gray-level run-length matrix (16 features);
gray-level zone size matrix (16 features); adjacent grayscale difference matrix (5 features);
and gray-level dependency matrix. The radiomic characteristics are in accordance with
the definitions of the Imaging Biomarker Standardization Initiative (IBSI). Descriptions are

https://download.slicer.org/
https://pyradiomics.readthedocs.io/en/latest/features.html
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available at (https://readthedocs.org/projects/pyradiomics/downloads/ Data accessed
16 May 2021).

Radiomics analysis was performed blind to clinical and histopathological data on
baseline images.
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2.4. Statistical Analysis

The non-parametric Wilcoxon–Mann–Whitney test was performed to identify statisti-
cally significant differences in radiomics features between the two groups of patients with
high-grade versus low-grade or no tumor budding.

Inter- and intraclass correlation coefficients (ICC) were calculated to evaluate the
interobserver and intraobserver reproducibility of all radiomic features. Radiomic features
with interclass and intraclass ICC > 0.75 were found to have good reproducibility and could
be selected for model construction.

Balancing was performed through sample synthesis for underrepresented classes
using the SASYNO (self-adaptive synthetic oversampling) approach. Using this procedure,
balancing and increasing the number of cases in the population were carried out.

Receiver operating characteristic (ROC) analysis and Youden index were used to
calculate the cut-off value to obtain the area under the ROC curve (AUC), sensitivity, posi-
tive predictive value (PPV), negative predictive value (NPV) and accuracy. The statistical
significance of results for dichotomous tables was assessed using McNemar’s test.

In addition to the univariate analysis, multivariate analysis was performed to identify
the combinations of the most significant radiomics features in classifying tumor budding.
Significant features in the Wilcoxon–Mann–Whitney test with an intraclass ICC ≥ 0.75 and
high accuracy greater than 75% were used as input in the least absolute selection and
contraction operator (LASSO) method. At the end of the LASSO procedure, only the
robust features were used in the classification phase. In the LASSO method, 10-fold cross-
validation was used to select the optimal alpha smoothing parameter, since the mean square
error of each patient was the smallest, and only parameters with a non-zero coefficient
were reserved.

The linear regression model was used to evaluate the best linear combination of
significant features, and classifiers based on machine learning methods were also adopted
including support vector machine (SVM), k-nearest neighbors (KNN), artificial neural
network (NNET) and decision tree (DT) as nonlinear methods. The best multivariate model
was chosen considering maximum accuracy. Training was performed using 10,000-fold
cross validation. Additionally, an external validation cohort was used to validate the results
of the best classifier.

Statistics and Machine Toolbox of MATLAB R2021b (MathWorks, Natick, MA, USA)
were used to perform all described statistical procedures.

A p value of ≤ 0.05 was considered significant.

3. Results

Forty-nine patients (18 women and 31 men) with a mean age of 60 years (range
36–82 years) and 119 liver metastases were included in the training set. The validation
cohort, however, was composed of a total of 28 patients with a single lesion (9 women and
19 men) with an average age of 61 years (range 42–78 years).

Characteristics of patients and liver metastases are shown in Table 2.
In the univariate analysis (Table 3), the best predictors to classify the two groups of

patients with high-grade versus low-grade or no tumor budding were as follows:

- original_glcm_Idn obtained in the T1-W VIBE sequence arterial phase with an accuracy
of 84%, a sensitivity of 87% and a specificity of 77%;

- wavelet_LLH_firstorder_10Percentile obtained in the T1-W VIBE sequence portal
phase with an accuracy of 92%, a sensitivity of 86% and a specificity of 81%;

- wavelet_HHL_glcm_MaximumProbability obtained in the T1-W VIBE sequence hepa-
tobiliary excretion phase with an accuracy of 88%, a sensitivity of 94% and a specificity
of 68%;

- wavelet_LLH_glcm_Imc1 obtained in the T2-W SPACE sequences with an accuracy of
88%, a sensitivity of 93% and a specificity of 71%.
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Table 2. Characteristics of the study population (77 patients and 147 metastases) including both
internal and external validation datasets.

Patient Description Numbers (%)/Range

Sex
Men 50 (64.9%)

Women 27 (35.1%)

Age 61 years; range: 36–82 years

Primary cancer site

Colon 52 (67.5%)

Rectum 25 (32.5%)

Hepatic metastases description 147

Patients with single nodule 48 (62.3%)

Patients with multiple nodules 29 (37.7%)/range: 2–13 metastases

Nodule size (mm) median size 35.8 mm; range 7–58 mm

Tumor budding

Absent 19 (13%)

Low grade 18 (12%)

High grade 110 (75%)

Table 3. Diagnostic performance in the univariate analysis in the classification of the two groups of
patients with high-grade versus low-grade or no tumor budding.

Diagnostic
Performance

T1-W VIBE Sequence
Arterial Phase

T1-W VIBE Sequence
Portal Phase

T1-W VIBE Sequence
Hepatobiliary

Excretion Phase
T2-W SPACE

original_glcm_Idn wavelet_LLH_
firstorder_10Percentile

wavelet_HHL_glcm_
MaximumProbability

wavelet_LLH_
glcm_Imc1

AUC 0.74 0.80 0.70 0.77

Sensitivity 0.87 0.96 0.94 0.93

Specificity 0.77 0.81 0.68 0.71

PPV 0.92 0.93 0.89 0.90

NPV 0.67 0.86 0.81 0.79

Accuracy 0.84 0.92 0.88 0.88

Cut-off 0.94 −37.14 0.28 −0.14

All these findings were statistically significant in the McNemar test (p value ≤ 0.05).
Considering the linear regression analysis (Table 4), to classify the two groups of

patients with high-grade versus low-grade tumors or without tumor budding, there was a
statistically significant increase in the accuracy to 96% (sensitivity of 99% and specificity
of 87%, p-value < 0.05 in the McNemar test) using a weighted linear combination of
13 radiomic significant and robust features (Table 5) extracted from the arterial phase of the
VIBE T1-W sequence (see Figure 2):

1. original_glcm_Idn;
2. original_glcm_Idm;
3. original_glcm_Id;
4. wavelet_LHH_firstorder_Minimum;
5. wavelet_LHH_firstorder_10Percentile;
6. wavelet_LLH_glcm_MaximumProbability;
7. wavelet_LLH_glcm_Imc1;
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8. wavelet_LLH_firstorder_10Percentile;
9. wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized;
10. wavelet_LLH_glrlm_LongRunEmphasis;
11. wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis;
12. wavelet_HLH_firstorder_10Percentile;
13. wavelet_LLL_glcm_InverseVariance.

Table 4. Diagnostic performance in the linear regression analysis in the classification of the two
groups of patients with high-grade versus low-grade or no tumor budding.

Diagnostic
Performance

T1-W VIBE Sequence
Arterial Phase

T1-W VIBE Sequence
Portal Phase

T1-W VIBE Sequence
Hepatobiliary

Excretion Phase
T2-W SPACE

Linear Regression
Model of

wavelet_LLH_
firstorder_10Percentile

wavelet_HHL_glcm_
MaximumProbability

wavelet_LLH_
glcm_Imc1

AUC 0.90 0.89 0.81 0.89

Sensitivity 0.99 1.00 0.89 0.92

Specificity 0.87 0.87 0.84 0.94

PPV 0.96 0.96 0.94 0.98

NPV 0.96 1.00 0.72 0.81

Accuracy 0.96 0.96 0.88 0.93

Cut-off 0.49 0.59 0.67 0.65

Table 5. The best linear regression model.

Variables Coefficients

Intercept −6.88

original_glcm_Idn 21.37

original_glcm_Idm 47.83

original_glcm_Id −56.56

wavelet_LHH_firstorder_Minimum 0.01

wavelet_LHH_firstorder_10Percentile −0.03

wavelet_LLH_glcm_MaximumProbability 2.02

wavelet_LLH_glcm_Imc1 9.51

wavelet_LLH_firstorder_10Percentile −0.01

wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized −3.54

wavelet_LLH_glrlm_LongRunEmphasis −0.01

wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 2.52

wavelet_HLH_firstorder_10Percentile 0.27

wavelet_LLL_glcm_InverseVariance −5.27

Considering a linear regression analysis of all significant data extracted from each MRI
sequence, no increase in diagnostic performance in tumor budding classification was found.

Considering pattern recognition approaches in tumor budding classification, the best
classifier was a KNN trained with the 13 radiomic features extracted from the arterial
phase of the VIBE T1-W sequence, achieving 95% accuracy, 84% sensitivity, a specificity
of 99% and an AUC of 0.96 (Figure 3). The validation set achieved an accuracy of 94%, a
sensitivity of 86% and a specificity of 95%.
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When we combined the significant features obtained from each MRI sequence, there
was no increase in diagnostic performance in classifying tumor budding using pattern
recognition approaches. However, the best classifier was a KNN which achieved an
accuracy of 95%, a sensitivity of 100%, a specificity of 81% and an AUC of 0.90 (Figure 4).
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4. Discussion

Tumor budding is recognized as a prognostic feature for primary colorectal cancer. In
fact, although TNM classification remains the gold standard for prognostic stratification
of colorectal cancer patients, heterogeneity in survival within the same stages required
additional markers [23–26]. Several authors have found tumor budding to be independently
associated with disease recurrence, cancer-related death and reduced overall survival
(OS) [27–35]. In the setting of liver metastases, few data have been reported [36–38], and
the main issue is that the only way to assess this pathological marker is in a surgical
specimen. However, strong correlations between the KRAS/BRAF mutational status and
tumor budding have been reported [36]. So, patients with liver metastases with tumor
budding and/or KRAS mutational status [39,40] respond poorly to anti-EGFR therapy [32].
In the context of personalized medicine, this is evident as the possibility to predict several
prognostic markers allows us to identify the best treatment for a specific patient [41–46].
Radiomics analysis could be a promising tool to evaluate a lesion “virtually”, with the
possibility to analyze the whole tumor during the disease history to obtain those markers
which can affect the treatment choice [47–65]. In addition, this approach is safe and
inexpensive since radiomics data are obtained from radiological studies which a patient
should be subjected during staging and follow-up [66–84].

Qu et al. [54], in a retrospective study on 266 patients, showed that radiomics analysis based
on MR T2W sequences allowed us to predict tumor budding in patients with rectal cancer. To
the best of our knowledge, only our group has assessed budding in liver metastases [4,8,85–87].
However, in a previous evaluation [85–87], we assessed specific phases of a contrast study.
In this study, we evaluated the performance of all sequences performed during the study
protocol. We have proven that in a univariate analysis, the best predictors to classify tumor
budding were (a) original_glcm_Idn extracted in the T1-W VIBE sequence arterial phase with
an accuracy of 84%, a sensitivity of 87% and a specificity of 77%; (b) wavelet_LLH_firstorder_
10Percentile extracted in the T1-W VIBE sequence portal phase with an accuracy of 92%, a
sensitivity of 86% and a specificity of 81%; (c) wavelet_HHL_glcm_MaximumProbability ex-
tracted in the T1-W VIBE sequence hepatobiliary excretion phase with an accuracy of 88%,
a sensitivity of 94% and a specificity of 68%; and (d)wavelet_LLH_glcm_Imc1 extracted in
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the T2-W SPACE sequences with an accuracy of 88%, a sensitivity of 93% and a specificity of
71%. Analyzing these results, it is clear that all sequences should be assessed during radiomics
evaluation. In addition, considering the linear regression analysis, a statistically significant
increase in accuracy to 96% (sensitivity of 99% and a specificity of 87%) was obtained using a
linear weighted combination of 13 radiomic features (original_glcm_Idn; original_glcm_Idm;
original_glcm_Id; wavelet_LHH_firstorder_Minimum; wavelet_LHH_firstorder_10Percentile;
wavelet_LLH_glcm_MaximumProbability; wavelet_LLH_glcm_Imc1; wavelet_LLH_firstorder_
10Percentile; wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized; wavelet_LLH_
glrlm_LongRunEmphasis; wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis; wavelet_
HLH_firstorder_10Percentile; wavelet_LLL_glcm_InverseVariance) extracted from the arterial
phase of the T1-W VIBE sequence. While considering a linear regression analysis of all sig-
nificant features extracted in each MRI sequence, there was not an increase in diagnostic
performance. With regard to the pattern recognition approaches, the best classifier is a KNN
(settings: number of neighbors = 10; distance metric = Euclidean; distance weight = squared
inverse; standardize data = true; hyperparameter options disabled) trained with the 13 ra-
diomic features extracted from the arterial phase of the T1-W VIBE sequence, obtaining an
accuracy of 95%, a sensitivity of 84%, a specificity of 99% and an AUC of 0.96. These data
suggest that all contrast phases should be performed during follow-up of liver metastases.

Since previous studies demonstrated that mCRC patients with high tumor budding
are associated with poor progression-free survival compared to those with low tumor
budding, and therefore, have a worse prognosis [2], it has been suggested that budding
could be considered a new pathologic factor that affects the treatment choice. However,
nowadays, tumor budding can only be assessed in surgical resection specimens, so this
prognostic marker has limited value in patient risk assessments in a pre-surgical setting.
In this scenario, the possibility that a radiomics analysis allows us to obtain this feature,
as we have demonstrated, may open up a new research method in the personalized
medicine scenario.

Our results showed that radiomics is a promising tool to predict those markers that
should be evaluated only on a surgical specimen. However, it is clear that there is a necessity
to validate this approach, which is still in the research phase, considering the critical issues
due to the lack of standardization, the quality of published studies, the low reproducibility,
specially for MRI studies due to the high variability in the study protocol (e.g., scanners,
sequences, contrast medium protocol), and the lack of standardization of the signal intensity
(SI) [88]. Although MRI is the best modality to assess liver lesions [89–109], compared to
computed tomography (CT), the variability in the SI assessment requires a normalization
pre-processing phase [88], to increase the reproducibility of the results. However, this
approach requires a multidisciplinary team (radiologists, biomedical engineers and medical
physicists), which can only be found in a research center.

This study has the following limitations: (1) The small sample size, even if we assessed
a homogeneous group, and it was a per lesion analysis; (2) the retrospective nature, which
could cause selection bias; (3) a manual segmentation, which could cause interobserver
variability; however, two expert radiologists in consensus approved this approach. Also,
(4) we did not perform a normalization pre-processing approach, and finally, (5) we did not
assess the chemotherapy effects; however, all patients were subjected to the same treatment,
so this should not have affected our results. In addition, our results were validated by an
external group to increase the study reproducibility.

5. Conclusions

Machine learning and radiomics analysis are promising tools in the prediction of
tumor budding in liver metastases. All sequences and contrast phases should be performed
since in the univariate analysis, the best predictors were obtained from the arterial phase,
portal phase, hepatobiliary phase and T2-W SPACE sequences. In addition, considering the
linear regression analysis, a statistically significant increase in accuracy to 96% (sensitivity
of 99% and a specificity of 87%) was obtained using a linear weighted combination of 13 ra-
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diomic features extracted from the arterial phase of the T1-W VIBE sequence. Nowadays,
tumor budding can only be assessed in surgical resection specimens, so this prognostic
marker has limited value in patient risk assessments in a pre-surgical setting. In this sce-
nario, the possibility that radiomics analysis allows us to obtain this feature may open up a
new research method in the personalized medicine scenario.
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