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Abstract: Lumbar disc bulging or herniation (LDBH) is one of the major causes of spinal stenosis
and related nerve compression, and its severity is the major determinant for spine surgery. MRI
of the spine is the most important diagnostic tool for evaluating the need for surgical intervention
in patients with LDBH. However, MRI utilization is limited by its low accessibility. Spinal X-rays
can rapidly provide information on the bony structure of the patient. Our study aimed to identify
the factors associated with LDBH, including disc height, and establish a clinical diagnostic tool to
support its diagnosis based on lumbar X-ray findings. In this study, a total of 458 patients were
used for analysis and 13 clinical and imaging variables were collected. Five machine-learning (ML)
methods, including LASSO regression, MARS, decision tree, random forest, and extreme gradient
boosting, were applied and integrated to identify important variables for predicting LDBH from
lumbar spine X-rays. The results showed L4-5 posterior disc height, age, and L1-2 anterior disc
height to be the top predictors, and a decision tree algorithm was constructed to support clinical
decision-making. Our study highlights the potential of ML-based decision tools for surgeons and
emphasizes the importance of L1-2 disc height in relation to LDBH. Future research will expand on
these findings to develop a more comprehensive decision-supporting model.

Keywords: lumbar disc bulging; herniated intervertebral disc; disc height; machine learning; decision
tree; plain radiography; magnetic resonance imaging

1. Introduction

Lumbar disc bulging or herniation (LDBH) is one of the most common degenerative
spinal disorders, leading to nerve compression and radiculopathy [1]. Approximately
10% of patients experiencing low-back pain are diagnosed with LDBH [2]. Large herni-
ated discs can result in severe compression of nerve roots and spinal stenosis, leading
to lower-extremity neuralgia, weakness, and numbness and potentially causing various
disabilities [3]. To prevent irreversible neurological complications, surgical intervention
is needed for patients with severe neurological symptoms [4–10]. Diagnostic imaging,
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including X-rays and magnetic resonance imaging (MRI), is often employed to assess the
degree of nerve root compression caused by disc herniation and to identify the level of
LDBH before surgical intervention [4]. Simple spinal X-rays can offer insights into the
parameters of the bony structure; nevertheless, for accurate confirmation of disc herniation
and the severity of nerve root compression, spinal MRI is typically necessary [8,11]. MRI
offers clear visualization of various spinal structures, including ligaments, facet joints,
and discs, making it especially effective for soft-tissue assessment. As a result, MRI is
commonly the preferred preoperative evaluation tool for surgeons [12]. However, MRI has
limitations, including time consumption, limited accessibility (due to insufficient facilities),
and high cost.

Plain radiography (X-ray) is the most commonly used and accessible imaging tech-
nique due to its cost-effectiveness and ease of use [13]. Spinal X-rays provide rapid vi-
sualization of conditions such as spine fractures, spondylolisthesis, spur formation, and
structural deformities. Some degree of soft-tissue degeneration can also be inferred from
changes in bony structure [14]. For example, a decreased intervertebral space may suggest
degenerative disc changes, and severe spondylolisthesis often coexists with spinal stenosis.
Despite advances in imaging technology, the accuracy of X-ray-based diagnostic imaging
for LDBH remains questionable [15]. Literature reviews have even noted discrepancies
between imaging findings and clinical parameters [16]. Additionally, there is a lack of
standardized methods for interpreting the lumbar X-ray images of patients with LDBH.
Therefore, the utilization of simple lumbar X-ray imaging to establish an effective method
to assist physicians in rapid interpretation is an important yet still poorly understood area.

The emergence of machine learning (ML) has introduced a new perspective for ad-
dressing healthcare challenges in medicine and surgical decision-making [17]. Current
medical practices incorporate ML methods, which play a crucial role by extracting valuable
insights from data without the need for predefined human rules [18–20]. ML also aids
healthcare professionals in enhancing the quality of care and making precise decisions based
on data analysis and interpretation [18]. ML is already extensively employed by physicians
and surgeons, encompassing applications in surgical decision support, computer-assisted
navigation, and robot-assisted procedures, which have become standard in surgical prac-
tice [21,22]. In the current medical landscape, ML algorithms are not only utilized for
constructing quantitative classification models but are also widely adopted for medical
image interpretation. Various neural network architectures, for instance, have been applied
to the interpretation of high-quality CT scans, contributing to image enhancement, restora-
tion, and the generation of 2D/3D medical imagery [23–26]. These advancements provide
healthcare professionals with diverse decision-making references.

Deep learning techniques have initially demonstrated success in the automatic detec-
tion and classification of spinal scoliosis. Transfer learning methods, for example, have been
proposed to automatically detect and classify spinal scoliosis from spinal X-rays, achieving
a level of high accuracy in practical applications [27]. Deep learning techniques have
also been applied to identify conditions such as osteopenia and osteoporosis from lumbar
X-rays [28]. Natural language processing (NLP) techniques have shown their potential
value in spine image analysis. Research has employed the noninvasive identification of
curve types in spinal scoliosis from a patient’s 3D back surface, exhibiting a level of high
accuracy when compared to expert evaluations from X-ray images [29]. Additionally, NLP
techniques have been utilized to identify lumbar spine imaging findings related to low
back pain, demonstrating performance comparisons with traditional statistical analysis
methods [30]. The diagnosis and treatment of osteoporosis have also benefited from ML
techniques. ML models have been employed to predict the T score and identify osteoporotic
vertebrae based solely on conventional CT Hounsfield unit (HU) measurements, aiding
spine surgeons in accurately assessing osteoporotic spines preoperatively [31]. Furthermore,
ML techniques have achieved high levels of accuracy in the classification of conditions
such as spondylolisthesis and lumbar lordosis [32].
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The use of ML techniques in spine image analysis has increased substantially, showing
their potential in enhancing diagnostic accuracy and predictive capabilities across various
studies [28,33–35]. However, to our knowledge, there is a dearth of research addressing the
interpretation or prediction of LDBH outcomes and the relationship between MRI and plain
lumbar X-ray. This prospective study aimed to achieve the following objectives: (1) utilize
ML techniques to establish the connection between lumbar disc-height measurements from
X-ray images and the presence of LDBH detected through MRI scans; and (2) based on this
connection, develop a decision-support system capable of predicting LDBH exclusively
using X-ray images and basic patient information, including age and sex. This system
was designed to develop a decision-support algorithm for clinical practitioners. It aims to
identify potential candidates for surgical intervention while minimizing subjective factors
and human interference. This process facilitates prompt MRI scheduling for individuals in
need of surgical treatment.

2. Materials and Methods
2.1. Participants and Study Design

A total of 662 patients who underwent lumbar spine MRI at Fu Jen Catholic University
Hospital, Taipei, Taiwan, between January 2020 and December 2020 were retrospectively
analyzed. Patients were included if they had undergone both lumbar spine MRI studies
and X-rays, with the time interval between the two not exceeding 3 months. Patients
were excluded if they lacked lumbar spine X-rays or had undergone previous lumbar
fixation or fusion surgery. Patients with pathological factors, including vertebral fracture
and spondylodiscitis, were also excluded from this study. All imaging was performed
using the same equipment and imaging site. A total of 662 patients who underwent both
lumbar spine MRI and X-ray were eventually included in this study. Sixty-eight patients
with incomplete studies, 37 with previous spine surgery, 21 with vertebral body fractures,
3 patients with extremely blurred X-ray, and 8 patients with spondylodiscitis or other
congenital spine diseases were all excluded. Moreover, X-rays from 67 patients were also
excluded due to potential interference, such as severe scoliosis, excessive obesity, and issues
with imaging quality. These interferences resulted in errors in the image segmentation
produced by the measurement software, leading to the exclusion of certain measurement
data that exceeded the upper limits of normal anatomical structures. The L1-2, L2-3, L3-4,
L4-5, and L5-S1 anterior and posterior disc heights of the included patients were measured
from the lateral view of their spinal X-rays, and the measurements were rechecked by
one experienced neurosurgeon and one neurologist. Finally, a total of 458 patients were
used for analysis (Figure 1). In total, 13 clinical and imaging variables were collected. The
protocol of this study was evaluated and deemed acceptable by the Research Ethics Review
Committee of the Fu Jen Catholic University Hospital (No. FJUH110121).

2.2. Definition of Disc Bulging, Protrusion, and Herniated Disc

Disc bulging and protrusion are defined as the presence of fibrous tissue on the dorsal
side of the disc annulus that extends beyond the posterior edge of the vertebral endplates,
leading to a reduction in the volume of the spinal canal or the occupation of the foramen
space. In addition, the migration of disc material, including the nucleus pulposus, endplate
cartilage, and annulus fibrosus, can also cause a reduction in the neural canal space. In
clinical practice, we commonly use MRI to diagnose intervertebral disc protrusion and to
assess whether there is any compression of the nerves. When a patient’s lumbar spine MRI
showed disc protrusion and compression on the spinal canal in any segment from L1-S1,
the patient was classified into the LDBH group.

2.3. Definition and Measurement of Disc Height

In this study, disc height was defined as the distance between the corner point of the
vertebral body and the point of its orthogonal projection on the endplate of the adjacent
vertebral body (Figure 2). For example, in the figure, the distance between corner point
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C and its orthogonal projection point E is defined as the anterior disc height. In the same
way, the length from corner point B to its projection point F is defined as the posterior disc
height. The anterior height and posterior height were measured separately at the L1-2, L2-3,
L3-4, L4-5, and L5-S1 levels. Consequently, 10 measurement data points were collected
from every included patient. In most studies, disc height is preferentially measured as the
length between adjacent corner points (bd or ac), but in severe spondylolisthesis patients,
the length may be overestimated [36–41].
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Measurement of Disc Height with BiLuNet

BiLuNet is a novel multipath convolutional neural network designed for semantic
segmentation in X-ray images, and it has been employed in medical applications such as
lumbar vertebrae, sacrum, and femoral head segmentation. One of the significant benefits
of BiLuNet is its capability to produce a high level of accuracy in segmenting and shape
fitting lumbar vertebrae, sacrum, and femoral heads on X-ray images [42]. This study
employs BiLuNet for the localization of intervertebral discs in X-ray images and measures
their heights. The measured values are then applied in the subsequent machine learning
workflow (Figure 3).
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Figure 2. (a–d) are the corner points of the adjacent vertebral body. (e) is the orthogonal projection
point on the endplate (a and b) of (c), and (f) is the orthogonal projection point of (b). The disc
height is defined as the distance between the corner point of the vertebral body and the point of its
orthogonal projection on the endplate of the adjacent vertebral body. For example, the anterior disc
height is the length from (e) to (c), and the posterior disc height is the length from (b) to (f).
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2.4. Statistical Analysis

This study used five ML algorithms, namely, least absolute shrinkage and selection
operator (LASSO), multivariate adaptive regression splines (MARS), decision tree, ran-
dom forest, and extreme gradient boosting (XGBoost), to construct predictive models for
classifying LDBH patients and to evaluate the importance of different measurements of
disc height.

2.4.1. LASSO

LASSO is one of the best regression methods for both variable selection and regulariza-
tion for addressing the overfitting problem and obtaining accurate results. It uses a penalty
parameter to shrink small coefficients toward zero during model estimation [43,44].



Diagnostics 2024, 14, 134 6 of 14

2.4.2. MARS

The MARS technique, standing for multivariate adaptive regression splines, represents
a sophisticated and nonlinear approach to spline regression, a variant of regression analysis.
This method distinctively employs a multitude of piecewise linear segments, commonly
known as splines, each characterized by varying slopes or gradients. In its operation,
MARS treats every data sample as a ‘knot’, segmenting the dataset into multiple parts.
This partitioning facilitates the execution of linear regression analysis in a stepwise manner,
focusing on each divided section individually. The process of knot determination in
MARS is twofold: initially, a forward selection procedure is employed. This step involves
the comprehensive screening of all potential basic functions along with their respective
knots. Following this, a backward elimination strategy is implemented, where these basic
functions are systematically removed. The aim of this backward phase is to refine and
optimize the combinations of the remaining knots, ensuring that the most effective and
representative model is achieved [45].

2.4.3. Decision Tree

A decision tree is a supervised learning method in which a tree-like structure is
used to draw conclusions about some observations. Numerous different trees can be
developed: regressive binary partition trees use an algorithm that can perform classification
for regression problems; models where the target variables are continuous data are called
regression trees; and models where the target variables are discrete data are known as
classification trees [46]. The latter form was used in this study.

2.4.4. Random Forest

Random forest is an ML model in which the integration of multiple decision trees
can improve the high variability in the original decision tree model. A random forest is
constructed by first generating multiple decision trees [47]. Then, the final prediction is
obtained by voting for the result of the resulting decision tree.

2.4.5. Extreme Gradient Boosting

XGBoost is a popular algorithm for both regression and classification tasks. It improves
the integration of the gradient boosting algorithm to obtain better performance in ML
tasks. The XGBoost algorithm uses parallel, distributed learning via fast, well-optimized,
and scalable algorithms [48]. Ensemble algorithms can enhance the model’s performance
through the addition of new models until the performance of the model no longer advances.

2.4.6. ML Workflow and Implementation Details

In this study, all methods were conducted in R software version 4.0.3 and RStudio
version 1.4.1103. The algorithms for the methods are based on the relevant R packages.
LASSO was implemented using the “glmnet” package, version 4.1-1. MARS was imple-
mented using the “earth” package, version 5.3.2. The decision tree was implemented using
the “rpart” package, version 4.1-15. Random forest was implemented with the “random-
Forest” package, version 4.6-14. XGBoost was implemented with the “XGBoost” package,
version 1.5.0.1. The “caret” package, version 6.0-90, was used to evaluate the importance of
different factors in each method.

This research introduced a structured machine learning workflow (Figure 3), primarily
aimed at evaluating and ranking the importance of features. Initially, the raw data under-
went preprocessing to ensure its quality and integrity. After this preprocessing phase, the
dataset was partitioned into training and testing sets, with the training set accounting for
80% of the total data and the testing set accounting for the remaining 20%. Subsequently,
several classification models were employed, and each model was subjected to 10-fold cross-
validation to assess its performance. The 10-fold cross-validation method was adopted to
determine the optimal hyperparameters for each model, as this approach provides a more
consistent evaluation of various methods. This study assessed the performance of these
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machine learning algorithms using metrics such as accuracy, recall, specificity, precision,
and F1 score.

To estimate the best parameter set for the development of the five models, the “caret”
package in R was utilized to tune the relevant hyperparameters. The initial models were
constructed using default settings. Afterward, feature importance was extracted indepen-
dently from each model. An average ranking method was then applied, considering the
outputs from all models, to offer a comprehensive and objective assessment of feature
significance. This study employed the “varImp” function from the caret package to as-
certain the relative significance of predictors in each model. Through this function, we
sorted the predictors based on their relative contribution to the importance of variables for
every model.

3. Results

The 12 variables considered as impact factors for LDBH (Y) in patients are shown in
Table 1. The average age of patients who had LDBH was 60.00 ± 14.00 years, while the
average age of the non-LDBH patients was 58.98 ± 14.14 years. In the LDBH group, there
were 133 males (51.4%) and 126 females (48.6%). In the non-LDBH group, 100 patients
(50.3%) were male, and 99 patients (49.7%) were female. The anterior and posterior mean
disc heights from L1/2 to L5/S1 were measured and are listed in Table 1.

Table 1. Subject demographics and clinical characteristics.

LDBH
n = 259

Non-LDBH
n = 199

Age (mean ± SD) 60.00 ± 14.00 58.98 ± 14.14
Sex = Male (%) 133 (51.4) 100 (50.3)

BMI (mean ± SD) 25.76 ± 4.09 26.33 ± 4.21

Disc height measurement (mean ± SD) (mm)

Disc height L1-2 anterior 9.69 ± 2.12 9.36 ± 2.19

Disc height L1-2 posterior 7.46 ± 1.60 7.33 ± 1.50

Disc height L2-3 anterior 10.74 ± 2.40 10.26 ± 2.16

Disc height L2-3 posterior 8.04 ± 2.04 7.68 ± 1.79

Disc height L3-4 anterior 11.83 ± 2.68 11.44 ± 2.78

Disc height L3-4 posterior 8.96 ± 2.74 8.28 ± 2.12

Disc height L4-5 anterior 12.88 ± 8.90 11.47 ± 3.76

Disc height L4-5 posterior 10.99 ± 9.53 9.68 ± 5.99

Disc height L5-S1 anterior 15.10 ± 7.27 14.57 ± 7.92

Disc height L5-S1 posterior 9.59 ± 9.31 8.51 ± 5.28

Abbreviations: LDBH: lumbar disc bulging or herniation.

This study used LASSO, MARS, decision tree, random forest, and XGBoost to con-
struct predictive models to evaluate the measured parameters. Table 2 shows the model
performance of the five methods with the validation dataset and testing dataset. The
average F1 score values of the LASSO, MARS, decision tree, random forest, and XGBoost
models were 0.706, 0.778, 0.569, 0.729, and 0.706 with the testing dataset, respectively. The
MARS model provided the highest average F1 score value, followed by the random forest,
LASSO, XGBoost, and decision tree models.

The importance ranking of each variable generated by the LASSO, MARS, decision
tree, random forest, and XGBoost methods is shown in Figure 4. In this figure, it can be
seen that each model provides a different sequence for the relative importance ranking of
each variable. For example, the posterior L3-4 disc height is the most important variable in
the model constructed with LASSO regression, and the second most important variable is
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anterior L4-5 disc height. Computing the average rank to explore the importance of the
variables shows that the three most relatively important variables are the anterior L4-5 disc
height, anterior L1-2 disc height, and posterior L1-2 disc height, which can provide certain
insights into their role in LDBH.

Table 2. Performance of the LASSO, MARS, decision tree, random forest, and XGBoost methods.

Method Avg_Accuracy Avg_Recall Avg_Precision Avg_Specificity Avg_F1

Testing Dataset

LASSO Regression 0.615 0.857 0.600 0.333 0.706
MARS 0.689 0.924 0.676 0.357 0.778

Decision Tree 0.516 0.592 0.547 0.429 0.569
Random Forest 0.655 0.794 0.675 0.458 0.729

XGBoost 0.615 0.857 0.600 0.333 0.706

Abbreviations: avg: average.
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Figure 4. The importance rankings of each variable using the LASSO, ridge, decision tree, random
forest, XGBoost, and MARS methods. This figure reveals that the anterior L4-5 and the anterior and
posterior L1-2 disc heights are the three most important variables in terms of average ranking. * The
top three most important variables.

4. Discussion

To our knowledge, few studies have attempted to use ML methods to predict lumbar
disc diseases from spinal X-rays. This study revealed that the L4-5 anterior disc height and
L1-2 anterior and posterior disc heights were the top three parameters that helped us to
best predict LDBH using plain lumbar X-ray imaging. The classification and regression tree
(CART) method generated the best and most promising classification results and provided
an output of six clinical features that were critical for the prediction of LDBH. Decision rules
for the prediction of LDBH according to the plain X-ray findings were also constructed, as
shown in Figure 5.
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Figure 5. A decision tree can be built in RStudio according to the importance of the input parameters.
For example, according to this decision tree, a patient has a 46% risk of LDBH if his posterior L4-5
disc height is less than 11 mm and his L1-2 posterior disc height is less than 7.4 mm. This decision
tree helps identify the risk of lumbar disc bulging, or herniation simply from information derived
from lumbar spine X-ray. Abbreviations: LDBH: Lumbar disc bulging or herniation.

Disc bulging, protrusion, and even herniated intervertebral discs (HIVDs) are the
most common spinal degenerative diseases and can only be confirmed by spinal MRI.
Disc degeneration is the beginning stage of LDBH and is strongly associated with facet
degeneration, foramen, and lateral recess narrowing, spondylolisthesis, and spinal stenosis.
As the degeneration worsens, the symptoms can change from low-back pain to severe
neuralgia, claudication, and even cauda equina syndrome. Access to facilities and the costs
of MRI limit early detection. This delay may result in irreversible neurological deficits.
Decreased disc height, spur formation, spondylolisthesis, and an abnormal range of motion
between adjacent vertebral bodies are features of disc degeneration on spinal X-ray, but it
is difficult to diagnose LDBH and its related neural structure compression. In this situation,
ML can help clinicians construct a decision tree model to predict LDBH simply with plain
lumbar X-ray findings and gain new insights for future studies. In areas without access
to MRI, such as remote or primary care clinics, this decision-support system may assist
high-risk patients in receiving timely examination and treatment.

The strength of artificial intelligence (AI) has grown in the field of neurosurgery.
ML can help clinicians via automated computer systems that predict outputs through
mathematics [49]. Currently, ML applications in spinal surgery include image classification
(e.g., the detection of compression fractures on CT or MRI [50–52], the construction of risk
models, and decision support tools) and diagnostic assistance [53–57]. Trinh et al. [58]
reported that several deep learning methods can be used to develop a diagnostic algorithm
for automatically recognizing spondylolisthesis based on lumbar X-ray images. In one
retrospective cohort study, a deep learning method was applied to predict adolescent
idiopathic scoliosis (AIS) with standing posteroanterior X-rays [59].

However, few studies have focused on using plain X-ray findings to identify potential
patients who need further MRI studies or surgical intervention due to LDBH. The rela-
tionship between disc degenerative diseases and disc height remains controversial. One
in vitro study with partial discectomy of 15 human lumbar discs demonstrated that the
change in disc height was associated with the mass of central disc tissue, and disc height
decreases were also related to radial disc bulge. Another study showed that the influences
of disc level and degree of degeneration on mechanical behavior are not significant [60,61].
However, in another retrospective study, researchers investigated the relationship between
disc morphology and bulging by using MRI scans. They revealed that disc height/depth
was significantly associated with the outcome of disc herniation, especially at the L3-4
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and L4-5 levels [37]. Our study, which differed from previous methods, attempted to
identify possible significant measurements of different disc heights on spine X-rays using
ML methods. The age, sex, BMI, and anterior and posterior disc heights at L1-2, L2-3, L3-4,
L4-5, and L5-S1 were measured and analyzed using ML methods. The performance of
the ML methods, listed in Table 2, demonstrates that these methods are not inferior to
traditional LASSO regression.

The importance of the anterior and posterior disc height at different levels was ranked
by the five ML methods and is listed in Figure 4. The parameter with the highest average
rank was the anterior disc height of L4-5. This finding is compatible with previous studies
and clinical MRI results [61]. Disc degeneration can occur at any lumbar spine level but is
more commonly found at L4-5 [61]. In the context of this study, age, gender, and BMI are
relatively ranked in the middle to lower range in terms of average importance for predicting
overall LDBH risks. This suggests that the predictive significance of age, sex, and BMI
for LDBH may not be as substantial as is commonly perceived. When only considering
patient X-ray information, the measurement of disc height for each segment appears to
hold more reference value in predicting LDBH compared to the actual measurements of
age, sex, and BMI.

Disc degeneration mainly occurs at L3-4, 4-5, and L5-S1 and frequently results in
LDBH. Clinical physicians can easily and directly diagnose disc degeneration through
degenerative findings at these three levels on spinal X-rays. However, the average ranking
from the ML methods revealed that the height at L1-2 was a potentially more predictive
factor than the heights at L3-4 and L5-S1. ML methods may uncover the importance of disc
height at L1-2 to predict overall LDBH risks. ML methods may uncover the importance of
disc height at L1-2 to predict overall LDBH risks. This unconventional finding seems to
have clinical relevance as well. Decreased disc height is always present from the beginning
of disc degeneration, and the L1-2 disc degeneration rate is the lowest among all levels in
the lumbar discs. More severe degeneration in L1-2 hints at a higher risk of other levels of
disc bulging or herniation. The thoracolumbar junction, particularly the segment from T12
to L2, is considered a transition zone between the relatively less mobile thoracic vertebrae
and the more mobile lumbar vertebrae. Segments within this region bear significant stress,
contributing to over 60% of compressive fractures occurring in the vertebral bodies of T12-
L2 [62]. The reduced disc height at L1-2 may also suggest that patients’ spines experience
greater stress, leading to an accelerated rate of degeneration in the lumbar region compared
to normal individuals. This could explain the close relationship between L1-2 disc height
and the overall lumbar disc body height.

In the past, plain X-ray could only be used to identify simple bone structure problems,
such as spondylosis, spondylolisthesis or compression fractures. The advantages of X-ray
over other imaging modalities are that it is less expensive, and its images can be assessed
and judged more easily and faster. Our study results, although preliminary, show the
development of a novel decision-support system that enables clinical physicians in remote
or primary care clinics lacking access to MRI to use simple and fast spinal X-ray screening
to identify high-risk patients and promptly refer them to hospitals with MRI capabilities.
The purpose and results of this study do not replace the critical role of MRI in diagnosing
lumbar degenerative diseases. However, from the perspective of diagnostic assistance and
decision support, it can be seen as a valuable contribution.

4.1. Clinical Implications

This pilot study has some clinical implications. First, our study aimed to provide a tool
for identifying potential parameters to rapidly identify the possible risk of LDBH based on
X-ray findings. By analyzing the results, we provided a potential method for physicians
to quickly refer patients in a timely manner. Although previous studies have provided
controversial conclusions about the correlation between the parameters found in spinal
X-rays and the definite diagnosis found in MRI, this study still used multiple analysis
methods, including ML methods, to clarify the relationship between X-ray findings and
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MRI diagnosis. If a reliable decision tree can be made in the future, X-rays can identify high-
risk patients in rural areas and shorten the MRI waiting list in medical centers. Although the
patient number is limited, the result is positive and hints that X-rays can potentially provide
more information. Second, this study used ML methods to assess LDBH and revealed a new
perspective. Using this method could improve the diagnosis of LDBH and allow hospitals
with insufficient equipment or long MRI schedules to select potential high-risk patients.
In future works, the model can be combined with other clinical parameters, including
occupation, and any other information from plain X-rays. This pilot study recommends
the model as a potential primary benchmarking tool for use in the screening of LDBH in
outpatient clinics.

4.2. Limitations and Work in Progress

This study presents several limitations. Primarily, the sample size we utilized is not
very large and is sourced exclusively from a single institution. In addition to the data
processing discussed, our research employed a range of statistical techniques pertinent
to ML. As outlined in Section 2.4, our approach integrated methods such as LASSO,
ridge regression, decision trees, random forests, and XGBoost. We further incorporated a
10-fold cross-validation approach to ensure a more stable evaluation of our models. The
amalgamation of these methodologies reinforces the robustness and credibility of our
findings. Second, our analysis focused exclusively on disc height, sex, BMI, and age. To
broaden the scope of future investigations, it is imperative to explore a more extensive
array of parameters that can be derived from X-rays. Consequently, the generalizability
of our findings should be interpreted with caution, and further studies are warranted.
In recognition of these constraints, we are actively pursuing several enhancements to
address these limitations. These include the following: (1) Expanding the sample size to
bolster the reliability and comprehensiveness of our results. (2) Collaborating with multiple
institutions to access a more diverse and representative dataset. (3) Integrating additional
parameters for a more in-depth analysis, including the clinical sign and symptoms of each
induvial to enhance the accuracy of predicting MRI outcomes. Our ongoing efforts are
dedicated to fortifying the robustness and applicability of our study in the pursuit of more
extensive and generalizable insights.

5. Conclusions

Our study utilized ML-based methods to correlate lumbar disc height on X-rays with
LDBH and attempted to construct a potential clinical decision-making tool to support
the diagnosis of LDBH based on X-ray imaging parameters. The results revealed that
the anterior L4-5 and anterior L1-2 disc heights, as well as posterior L1-2 disc heights,
were the three most important variables in diagnosing potential LDBH. The importance
of the L1-2 disc height was also revealed for the first time in this study. While still only
preliminary, the current study attempts to correlate lumbar disc height on X-rays with
LDBH and construct a potential algorithm for screening high-risk LDBH patients. Our
results represent an exploratory study of LDBH risk using MRI as the gold standard, and
further studies will include more patients and analyze more parameters to construct a more
reliable decision-supporting model.
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