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Abstract: Heart strokes are a significant global health concern, profoundly affecting the wellbeing of
the population. Many research endeavors have focused on developing predictive models for heart
strokes using ML and DL techniques. Nevertheless, prior studies have often failed to bridge the
gap between complex ML models and their interpretability in clinical contexts, leaving healthcare
professionals hesitant to embrace them for critical decision-making. This research introduces a
meticulously designed, effective, and easily interpretable approach for heart stroke prediction,
empowered by explainable AI techniques. Our contributions include a meticulously designed model,
incorporating pivotal techniques such as resampling, data leakage prevention, feature selection,
and emphasizing the model’s comprehensibility for healthcare practitioners. This multifaceted
approach holds the potential to significantly impact the field of healthcare by offering a reliable
and understandable tool for heart stroke prediction. In our research, we harnessed the potential
of the Stroke Prediction Dataset, a valuable resource containing 11 distinct attributes. Applying
these techniques, including model interpretability measures such as permutation importance and
explainability methods like LIME, has achieved impressive results. While permutation importance
provides insights into feature importance globally, LIME complements this by offering local and
instance-specific explanations. Together, they contribute to a comprehensive understanding of the
Artificial Neural Network (ANN) model. The combination of these techniques not only aids in
understanding the features that drive overall model performance but also helps in interpreting and
validating individual predictions. The ANN model has achieved an outstanding accuracy rate of 95%.

Keywords: Artificial Neural Network; deep learning; data leakage; sampling; feature selection;
explainable AI; LIME tabular

1. Introduction

A heart stroke, also called a cerebrovascular accident (CVA) or brain stroke, is a
serious medical condition in which blood flow to the brain suddenly ceases, damaging the
cerebral cells. Numbering among the leading causes of death and disability in the world,
strokes [1] are a major health problem. Every year, there are roughly 13.7 million new
instances of stroke, as reported by the World Health Organization (WHO). It is estimated
that nearly 5 million people die from strokes every year. Ischemic stroke is responsible for
approximately 87% of all instances of stroke. The amount of blood that can flow to the
brain is reduced by clots or plaques that block blood vessels. Strokes caused by hemorrhage
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are caused by a ruptured blood vessel in the brain, causing internal or external bleeding.
The major risk factor for stroke that may be modified is hypertension, also known as high
blood pressure. A variety of factors, such as smoking, diabetes, obesity, excessive alcohol
consumption, high cholesterol, low activity levels, and insufficient physical activity also
increase the risk of heart disease.

Strokes [2,3] can occur in people of any age, although the likelihood of having one
rises with advancing years. Stroke is the greatest cause of mortality among women, even
though males have a slightly larger risk of experiencing one than do women. It is common
for stroke patients to experience sudden numbness or weakness on one side of their bodies.
Confusion, difficulty speaking or understanding speech, severe headaches, and difficulty
walking are some of the additional symptoms that may be encountered. Stroke is one of
the primary causes of impairment that lasts a long time, and survivors may face difficulties
in their physical, cognitive, and emotional functioning [4,5]. The mortality rate associated
with stroke can vary significantly based on many factors, including the type of stroke, the
amount of time that passes before treatment begins, and the pre-existing diseases of the
patient. Modifications to one’s way of life, such as consuming a nutritious diet, engaging
in regular physical activity, and controlling risk factors, can help lower one’s stroke risk.
To manage risk factors, patients may be offered blood-thinning and antihypertensive
medications.

1.1. Problem Statement

Heart stroke is often associated with fluctuations in blood pressure and cholesterol
levels within the body. Some proactive strategies, like adopting a heart-healthy diet and
embracing a physically active lifestyle, can effectively mitigate the risk factors contributing
to heart strokes. Detecting the early signs of heart-related issues can be facilitated through
regular medical check-ups and specialized laboratory tests designed to assess cardiovascu-
lar health. For individuals with specific risk factors, including hypertension or a family
history of heart disease, timely intervention is crucial. The untreated consequences of heart
strokes can have far-reaching impacts, affecting not only the individuals affected but also
placing a strain on their families and national healthcare resources. Hence, early identifica-
tion and implementing appropriate preventive measures are pivotal in safeguarding the
wellbeing of individuals at risk of heart stroke [6–8]. Integrating intelligent systems that
consider both symptoms and diagnostic tests can significantly aid in the early diagnosis and
prevention of heart-related conditions, potentially saving lives and reducing the burden on
healthcare systems.

1.2. AI Challenges in the Field of Heart Strokes

Artificial Intelligence (AI) has the potential to analyze a range of factors, including an
individual’s medical history, risk factors, and results from diagnostic tests. This analysis
aims to evaluate an individual’s susceptibility to experiencing a heart stroke. AI algorithms
can process extensive datasets, encompassing vital signs and medical records, to pinpoint
individuals at risk of suffering from a heart stroke. Developing an intelligent machine
learning-based diagnostic approach is also feasible for predicting heart strokes. Regarding
heart stroke prediction, comparable challenges can surface, with the selection of appropriate
AI algorithms and the quality of input data emerging as pivotal factors in attaining precise
predictions. Healthcare professionals must comprehend the rationale behind an AI model’s
predictions, as this comprehension informs their decision-making process in patient care.
In this context, healthcare practitioners must have confidence in and grasp the insights
provided by AI-driven predictions to deliver the highest quality care to their patients.
AI holds significant potential in heart stroke prediction and diagnosis; however, it must
confront parallel challenges to ensure precision and interpretability in its application by
healthcare professionals.
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1.3. Research Drive

Several studies have been conducted using the Stroke Prediction Dataset in recent
years, and the results have been positive. Train–test splits are relatively straightforward
to implement when the dataset is characterized by pronounced variability. Nevertheless,
obtaining consistently high accuracy remains a formidable challenge when utilizing the
cross-validation (CV) approach. Additionally, the dataset exhibits an imbalanced class dis-
tribution, necessitating effective class-balancing techniques to mitigate potential overfitting
or underfitting. Lastly, despite substantial ongoing research, the challenge of interpretability
persists in existing ML detection and progression prediction.

1.4. Objectives, Contribution, and the Structure of the Paper

Heart stroke is a pervasive and serious health concern globally, impacting the overall
well-being of the population. Numerous research efforts have been made to develop effec-
tive predictive models for heart strokes using machine learning (ML) and deep learning
(DL) techniques. The proposed approaches aim to improve accuracy by incorporating
resampling techniques, preventing data leakage, and implementing feature selection. How-
ever, these studies have often fallen short in influencing clinical practice at the expense of
their interpretability in clinical settings. Consequently, physicians struggle to comprehend
these models and hesitate to rely on them for clinical decision-making. This research
introduces a meticulously designed, effective, and easily interpretable approach for heart
stroke prediction, leveraging explainable AI techniques.

The most important contributions made by this research can be summarized as follows:

• The proposed model introduces a meticulously designed, effective, and easily inter-
pretable approach for heart stroke prediction, leveraging explainable AI techniques;

• Model quality and effectiveness can be enhanced by using several techniques in ML
and DL. The proposed approach has incorporated techniques such as resampling, data
leakage prevention, and feature selection, which are significant;

• To enhance the model’s reliability and balance accuracy and interpretability, we pro-
vided insight into the model’s internal workings. The model is, therefore, easier for
healthcare professionals to understand and apply.

An outline of the sections that follow in chronological order is provided below:

• The second section provides an overview of the most recent research in the topic;
• Our suggested methodology is broken down in Section 3, including explanations of

datasets and methods;
• The performance of the model is presented in Section 4;
• In this report’s fifth and last section, we summarize the most important findings from

our investigation and discuss new potential lines of inquiry for further study.

2. Literature Review

Scientists have been exploring diverse ML methodologies for early disease prediction.
Numerous ML algorithms, including hybrid methods, have been devised to enhance the
performance of predictive models. The Stroke Prediction Dataset has been a common
choice among researchers in this domain, and this section provides an overview of relevant
studies conducted in this area.

In a study documented in [9], the Cardiovascular Health Study (CHS) dataset was
utilized, employing five distinct ML techniques. Their research revealed that the most
favorable outcomes were obtained by integrating decision trees with principal component
analysis, artificial neural networks, and support vector machines. It is worth noting that the
CHS dataset limited the number of input parameters. Another approach, as detailed in [10],
involved the application of the detecting risk factor of stroke disease (DRFS) technique
to extract information about stroke symptoms from social media posts. This method em-
ployed natural language processing (NLP) to extract text from comments, which increased
the model’s processing time. In the study discussed in [11], the authors introduced a
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modified version of the random forest algorithm for stroke prediction, demonstrating its
significant performance improvement compared to previous methods. However, this study
had limitations, including a focus on a specific subset of strokes and a potential lack of
adaptability to future advancements in the field. Three machine learning models were ob-
served to have 74% to 75% accuracy in [12], decision trees, random forests, and multi-layer
perceptrons. The study slightly favored the multi-layer perceptron, although it solely used
accuracy as an evaluation criterion, which may not always suffice. In [13], stroke prediction
was explored using decision trees, naïve Bayes, and SVM, with a maximum accuracy of
60%. In contrast, [14] employed three data mining classification algorithms—C4.5, Jrip,
and multi-layer perceptrons (MLP)—achieving a notable accuracy of 95%. However, this
high precision was achieved by combining intricate algorithms, consequently extending
the training and prediction times.

Stroke prediction strategies employing naive Bayes, decision trees, and neural net-
works were examined in [15]. The decision tree algorithm exhibited the highest accuracy at
75%, although the model’s practical utility was questioned due to insights from the confu-
sion matrix. A distinctive approach in [16] proposed an automatic feature selection method
for stroke prediction using the CHS dataset. This algorithm conservatively selected robust
features, but when combined with the support vector machine, it led to an overwhelming
number of vectors, diminishing the model’s effectiveness. Finally, [17–19] employed the
backpropagation algorithm with artificial neural networks (ANN) to precisely predict
thromboembolic strokes. However, as the complexity of neural networks increases with
more neurons, training them becomes more challenging and resource-intensive.

3. Proposed Methodology

This section provides a succinct overview of the experimental data, their interpretation,
and possible experimental inferences.

3.1. Proposed Approach

Figure 1 depicts the whole workflow of the proposed technique in its entirety. After
obtaining the data from Kaggle (https://www.kaggle.com/datasets/fedesoriano/stroke-
prediction-dataset, [20] accessed on 30 September 2023), the information was cleaned and
preprocessed in several different ways, including the treatment of missing values and the
correction of class imbalances.

Model quality and effectiveness were enhanced through various techniques used in
ML and data analysis. Among these, resampling techniques, data leakage prevention,
and feature selection are significant. Resampling methods, which include oversampling,
undersampling, and SMOTE, address the challenge of class imbalance in datasets. This is
crucial when one class is notably underrepresented, ensuring balanced model training. Data
leakage prevention is another essential step to safeguard against the inadvertent mixing of
information between training, validation, and test datasets, ultimately guarding against
overfitting. Additionally, feature selection techniques help streamline the modeling process
by identifying and retaining the most relevant attributes, enhancing model efficiency and
interpretability while mitigating the risk of overfitting. Collectively, these techniques
contribute to robust, reliable, and more practical machine learning models suitable for
real-world applications [21,22].

https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
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3.2. Feature Analysis

This study was sourced from Kaggle’s Stroke Prediction Dataset. There are 5110 rows
in all, along with 12 columns. The following categories are represented in the columns:
‘Id’, ‘Gender’, ‘Age’, ‘Bmi’, ‘Hypertension’, ‘Heart_Disease’, ‘Ever_Married’, ‘Work_Type’,
‘Avg_Glucose_Level’, ‘Residence_Type’, ‘Smoking_Status’, and ‘Stroke’. The variable of
interest is called ‘stroke’, it takes on a binary form, with a value of ‘0’ indicating that there
is no risk of stroke and a value of ‘1’ indicating a risk of stroke. The dataset has a large
class imbalance, with class ‘0’ having 4861 instances and class ‘1’ only having 249 instances.
This disparity is noteworthy. This class imbalance has been addressed by applying data
pre-processing to improve the accuracy of predictive modeling.

Table 1 provides a clear overview of each attribute in the dataset, including its data
type and a brief description of its meaning and possible values. Table 2 provides statistical
information for several attributes in the dataset. For the “ID” attribute, there are 5110 data
points, with a mean value of approximately 36,518. Based on the same data points, the age
attribute has an average age of around 43.23 years, with a standard deviation of approxi-
mately 22.61. The “HYPERTENSION” attribute, which is binary (0 or 1), has a mean value
of approximately 0.097, indicating that about 9.7% of the data points have hypertension.

Table 1. The Stroke Prediction Dataset includes the following attributes.

Attribute-Name Attribute-Type Attribute-Description

Id Unique
Identifier A unique identifier for each patient.

Gender Categorical Gender of the patient is categorized as “Male”, “Female”, or “Other”.
Age Numeric Age of the patient.

Hypertension Binary (0, 1) In this case, a value of 1 denotes the presence of hypertension,
whereas a value of 0 denotes its absence.

Heart_Disease Binary (0, 1) In this case, a value of 1 denotes the presence of a heart disease,
whereas a value of 0 denotes its absence.

Ever_Married Categorical Patient’s marital status is coded as “No” or “Yes”.

Work_Type Categorical
We can filter results by occupation or job status using terms like

“children”, “Govt_jov”, “Never_worked”, “Private”, or
“Self-employed”.

Residence_Type Categorical Classification of the patient’s place of residence, either “Rural” or
“Urban”.

Avg_Glucose_Level Numeric A measurement of the average blood sugar level for the patient.
Bmi Numeric The patient’s body mass index.

Smoking_Status Categorical Patient’s smoking history; possible values are “formerly smoked”,
“never smoked”, “smokes”, and “Unknown”.

Stroke Binary (0, 1) Whether the patient had a stroke (1) or not (0) is indicated by this
value.
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Table 2. Statistical Information about the Stroke Prediction Dataset.

Attribute Name Age Hypertension Heart_Disease Avg_Glucose_Level Bmi Stroke

Count 5110 5110 5110 5110 4909 5110
25% 25 0 0 77.245 23.5 0
50% 45 0 0 91.885 28.1 0
75% 61 0 0 114.09 33.1 0

MAX 82 1 1 271.74 97.6 1
MIN 0.08 0 0 55.12 10.3 0
Mean 43.226614 0.097456 0.054012 106.147677 28.893237 0.048728
STD 22.612647 0.296607 0.226063 45.28356 7.854067 0.21532

Similarly, the “HEART_DISEASE” attribute, also binary, has a mean value of around
0.054, suggesting that approximately 5.4% of the data points indicate the presence of heart
disease. The “AVG_GLUCOSE_LEVEL” attribute has a mean value of approximately 106.15,
with values ranging from 55.12 to 271.74. However, the “BMI” attribute has 4909 data points
(indicating missing values) with an average BMI of approximately 28.89 and a standard
deviation of approximately 7.85. Finally, the “STROKE” attribute, which is binary, has a
mean value of about 0.049, indicating that approximately 4.9% of the data points represent
instances of stroke.

3.3. Data Insights

Figure 2 displays pair plots for each feature, illustrating their relationships with the
other features, including themselves. These plots serve as a valuable tool for identifying
feature relationships. When data points are scattered across the plot, it indicates a lack of a
strong relationship between the features. As a result, a line connecting the points suggests a
linear relationship. In this context, when examining the pair plot, two features stand out as
having a particularly strong positive correlation. These features exhibit a notable tendency
to move together linearly, signifying their interdependence or association in the dataset.
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The Pearson correlation heatmap [23], which investigates the linear relationship be-
tween all of the features, is depicted in Figure 3. The Pearson correlation coefficient, which
ranges from −1 to +1 and is used to quantify the link between pairs of features, is used to
compute this correlation. This coefficient can take on a value between 0 and 1. A coefficient
value that is closer to 0 shows that there is either no connection or a lesser correlation. In
contrast, values that are closer to +1 or −1 indicate that there is either a stronger positive
or negative correlation.
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3.4. Data Pre-Processing

Data pre-processing is crucial for enhancing data quality, reducing noise, and ensuring
accuracy in machine learning models. As part of this process, features are selected, cleaning
is performed, missing values are handled, scaling is carried out, categorical variables are
encoded, and missing values are handled. Effective data pre-processing lays the foundation
for robust and reliable model training and evaluation.

3.4.1. Missing Data Handling

Among the 5110 total records, 201 missing BMI values were shown in Figure 4, which
were imputed using Scikit-learn’s Simple Imputer with the median as a replacement. The
‘id’ column, deemed inconsequential, was removed. Additionally, an outlier was identified
in the ‘gender’ attribute with the label ‘Other’ and was subsequently excluded.
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In summary, our data pre-processing comprised:

• Detecting and addressing missing values;
• Eliminating the ‘id’ column;
• Handling outliers.

These measures are critical for ensuring data integrity and optimizing machine learn-
ing model performance.

3.4.2. Handling Imbalanced Data

We used a method known as SMOTE Tomek [24,25], which combines the SMOTE
(synthetic minority oversampling technique) and Tomek algorithms, to generate a balanced
dataset in this study. Various methods may be used to accomplish this goal; however, we
used one of these methods in this particular investigation. Tomek is an undersampling
method, whereas SMOTE is a methodology that generates synthetic samples from members
of minority classes to address class imbalance. Initially, SMOTE was used to achieve a
more even distribution of classes by introducing new synthetic instances from the minority
class. This was accomplished by creating new synthetic instances using the minority class.
In addition, we used the Tomek link to exclude samples that were positioned close to the
boundary that divides the two classes, which finally improved the separation between
these classes [26]. This experiment only modified the training dataset, while the test dataset
was left unchanged. As shown in Table 3, SMOTE is used both before and after training to
compare the data distribution within each class. This comparison takes place before and
after applying the method.

Table 3. Training datasets before and after different imbalance handling techniques using SMOTE.

SMOTE Techniques Numbers in Class 0 (No Stroke) Numbers in Class 1 (Stroke)

Before SMOTE 3771 156
SMOTE 3771 3771

ADASYN 3790 3771
SMOTE + TOMEK 3763 3763

SMOTE + ENN 2452 2033
SMOTE + Undersampling 2827 1131
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3.4.3. Data Leakage

Data leakage [27] arises when external information is incorporated into the model-
building process using data from outside the training dataset. Unfortunately, it is a fre-
quently overlooked issue. Addressing data leakage is imperative for creating robust models,
as relying on it often results in overly optimistic but practically unusable models that cannot
be deployed in production environments. When data leakage is not properly managed,
model performance deteriorates when deployed online. Although it may appear trivial,
understanding this concept can be challenging. Dataset transformations include filling
missing values with means, medians, modes, standardizations, normalizations, etc. How-
ever, this can result in data leakage if the processes are executed without considering the
yet-to-be-seen test data. The training data should be split before any transformations to
prevent data leakage. These transformations should be applied to training and test datasets
based on the training data. Additionally, using k-fold cross-validation is encouraged to
mitigate data leakage risks.

Figure 5 shows a noticeable distinction when comparing values between scenarios with
and without data leakage. We observe that age has a strong correlation with stroke, whereas
the ever married and average glucose level categories show some kind of correlation. In
contrast, gender, residence-type, and work-type are negatively correlated with strokes.
However, none of the features demonstrate an extreme positive or negative correlation with
stroke in data leakage cases. Instead, the categories age, heart-disease, average glucose
level, hypertension, and ever-married exhibit some form of positive correlation. All the
features generally display correlation values close to zero, indicating a neutral correlation
with stroke.
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3.4.4. Feature Selection

Feature selection for categorical features [28–30] involves choosing the most relevant
and informative categorical variables to include in a predictive model while excluding less
relevant ones. Mutual information measures the dependency between two variables and
can be used to evaluate the relevance of categorical features. Features with higher mutual
information with the target variable are more informative.

From Figure 6, the mutual information score between stroke and categorical features
indicates consistently low values, regardless of the presence or absence of data leakage.
Based on these scores, it is advisable not to include any of these features in the mod-
eling process. Each categorical feature can be analyzed by using the chi-square test of
independence [31]. Features with significant chi-square values are considered relevant.
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From Figure 7, in the case of no data leakage, it is recommended to exclude features
with low scores, specifically those scoring below 20. Consequently, we omitted the following
features: smoking_status, heart_disease, and hypertension. However, it is worth noting
that this contradicts the domain-specific information. On the other hand, it is advisable to
include heart disease and hypertension in the modeling process when dealing with data
leakage, as they exhibit higher chi-squared scores than other features with lower scores.
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3.4.5. Feature Selection for Numerical Features

ANOVA, or analysis of variance, is a statistical test used to analyze the variation
between two or more groups or treatments to determine whether they are significantly
different from each other. ANOVA is often used in hypothesis testing to assess the equality
of means among multiple groups.

From Figure 8, based on the ANOVA scores provided above, we excluded features
with scores below 20. Consequently, regardless of the presence or absence of data leakage,
we chose not to include BMI in our modeling. Based on the statistical tests above, we
removed features from the datasets to prepare them for data scaling. In this process, we
prioritized the statistical results over domain-specific information.



Diagnostics 2024, 14, 128 11 of 23

Diagnostics 2024, 14, x FOR PEER REVIEW 11 of 24 
 

 

 

Figure 7. Chi-square test score concerning various features. 

3.4.5. Feature Selection for Numerical Features 

ANOVA, or analysis of variance, is a statistical test used to analyze the variation be-

tween two or more groups or treatments to determine whether they are significantly dif-

ferent from each other. ANOVA is often used in hypothesis testing to assess the equality 

of means among multiple groups. 

From Figure 8, based on the ANOVA scores provided above, we excluded features 

with scores below 20. Consequently, regardless of the presence or absence of data leakage, 

we chose not to include BMI in our modeling. Based on the statistical tests above, we re-

moved features from the datasets to prepare them for data scaling. In this process, we 

prioritized the statistical results over domain-specific information. 

 

Figure 8. ANOVA score concerning various features. 

3.4.6. Data Scaling 

Because they treat feature values as numerical inputs without interpreting their sig-

nificance, machine learning models do not know how to interpret them. Therefore, it be-

comes essential to scale the data appropriately. There are two main options for data scal-

ing: 

• Normalization: features with non-normal (Gaussian) distributions can benefit from 

this method; 

• Standardization: standardization is used for features that exhibit a normal distribu-

tion but have values that are significantly larger or smaller in range compared to 

other features. 

In addition to tree-based algorithms like random forests and XGBoost (XGB) classifi-

ers, we normalized the dataset using min-max. Normalization was specifically applied to 

SVM, logistic regression, and ANN algorithms, as these models benefit from it. 

  

Figure 8. ANOVA score concerning various features.

3.4.6. Data Scaling

Because they treat feature values as numerical inputs without interpreting their signif-
icance, machine learning models do not know how to interpret them. Therefore, it becomes
essential to scale the data appropriately. There are two main options for data scaling:

• Normalization: features with non-normal (Gaussian) distributions can benefit from
this method;

• Standardization: standardization is used for features that exhibit a normal distribution
but have values that are significantly larger or smaller in range compared to other
features.

In addition to tree-based algorithms like random forests and XGBoost (XGB) classifiers,
we normalized the dataset using min-max. Normalization was specifically applied to SVM,
logistic regression, and ANN algorithms, as these models benefit from it.

3.5. Model Building
3.5.1. Random Forest

Regarding the generation of base learners, the boosting technique known as random
forest uses parallel ensemble methods. Under this strategy, each base learner model is
allowed to autonomously work on a data sample, producing individual predictions. In the
end, the conclusive prediction is arrived at through a voting classifier that considers the
forecasts provided by all of the base learners. RF will build many decision trees and then
aggregate the results of those trees to obtain a more accurate and reliable prediction. The
decision trees serve as the foundational learner models for the random forest algorithmic
architecture. The major objective of parallel approaches such as RF is to take advantage
of the independence possessed by base learners to drastically cut down on errors through
averaging. The Gini impurity for dataset D can be expressed in Equation (1).

Gini(D) = 1 −
c

∑
i=1

p2
i (1)

From the above equation, D represents the stroke prediction dataset, c is the number
of classes, and p denotes the probability of class within the dataset D.

3.5.2. XGBoost

XGBoost iteratively builds new models and then incorporates those models into an
ensemble model. Initially, it works backwards from a previously constructed model to
determine the residual errors for each observation. It builds a new model to anticipate
those residuals by using the errors that have been made in the past. Then, the forecasts
generated by the newly developed model are added to the ensemble. Because it can strike
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a balance between bias and variance properly, XGBoost stands out compared to other
gradient-boosting algorithms and is recommended. For a binary classification problem,
where the labels are either 0 or 1, the most common objective function used in XGBoost is
the binary logistic loss. The objective function for XGBoost is expressed in Equation (2).

F(x) =
m

∑
j=1

[(y j

)
log

(
pj
)
+

(
1 − yj

)
(y j

)
log

(
1 − pj

)]
+

K

∑
k

Ω(Fk) (2)

In the above equation, the notation m is the number of training samples, the notation
yj is the true label of the jth sample (0 or 1), pj is the predicted probability of the jth sample
belonging to class 1, K is the number of leaves in the tree, Ω(Fk) is the regularization term
that penalizes complex models, where (Fk) represents the output score of the kth tree.

3.5.3. Logistic Regression

The logistic regression (LR) transformation procedure within the linear regression
framework offers a probabilistic interpretation for binary data. It performs the function
of a classification algorithm by establishing a connection between various characteristics
and the probability of a particular outcome. This classification approach utilizes the logit
function, where the term “Logistic” comes from. LR is quite helpful in medical diagnostics,
particularly when considering particular symptoms and qualities. Like other types of
regression analysis, the likelihood ratio (LR) analysis belongs to the field of predictive
analysis; specifically, it computes the probability that a result will occur. It exemplifies a
particular implementation of linear regression developed for a categorical target variable.
Logical regression uses the logit function, which reduces the influence of outliers. Logical
regression is a type of multiple regression. The objective function for logistic regression is
typically the log–loss (or cross–entropy) function in Equation (3).

J(θ) = −1/n
n

∑
j=1

[
y(j) log

(
hθ

(
x(j)

))
+

(
1 − y(j)

)
+ log

(
hθ

(
x(j)

))]
(3)

where the notations are:

- J(θ) is the cost function to be minimized;
- n is the number of training examples;
- y(j) is the actual label of the jth training example;

- hθ

(
x(j)

)
is the predicted probability that

(
x(j)

)
belongs to the positive class.

3.5.4. Support Vector Machine

Supervised machine learning involves applying support vector machines (SVM) to
address regression and classification problems. SVMs operate by identifying a hyperplane
within an N-dimensional space, where N represents the number of features. The primary
objective is to maximize the margin between data points associated with distinct classes.
This approach facilitates the effective separation of classes in the feature space, making
SVMs a versatile and powerful tool for supervised learning tasks. SVMs work very effec-
tively in high-dimensional spaces and are ideal for situations with a noticeable margin of
separation between classes.

In support vector machines, the objective function for classification tasks is to find
the hyperplane that maximally separates the data into distinct classes. The main goal
is to maximize the margin between the classes while minimizing the classification error.
The formulation of the objective function depends on whether the problem is a linear or
non-linear classification task. For a linearly separable case, the objective function aims to
maximize the margin. The objective function for SVM is given in Equation (4).

F (x) = sin(w·x + b) (4)
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where the notations are:

- w is the weight vector;
- x is the input feature vector;
- b is the bias term.

The margin is inversely proportional to the norm of the weight vector ∥w∥. Therefore,
the objective function to be maximized can be formulated as shown in Equations (5) and (6).

Maximize =
1
2
∥w∥2 (5)

subject to the constraint:
F (x) = yj

(
wj·x + b

)
(6)

where the notation wj is the class label of the jth sample.

3.5.5. Artificial Neural Network

Three primary layers comprise an artificial neural network (ANN): the input, the
hidden, and the output layers. The data enters the system via the input layer, and the
outputs emerge from the output layer. The backpropagation layer is an intermediate layer,
which aims to change the weights to differ as little as possible from the target values. The
ANN model that is being offered has an input layer that is made up of eight nodes, and
then two hidden layers are made up of ten and eight nodes, respectively. The output layer
comprises a single node because of the binary categorization nature of its output. Activation
functions were applied to the first two layers using rectified linear units (ReLu), whereas the
third layer was activated using sigmoid functions. In classification problems, regularization
terms and a loss function are usually combined to form the objective function of an ANN.
The goal function of a typical feedforward neural network used for classification is intended
to be minimized during training. The cross-entropy loss, sometimes called log loss, is the
most widely used loss function for classification tasks. The cross-entropy loss is frequently
applied to binary classification tasks. The objective function is expressed in Equation (7).

F(x) = −1/M
M

∑
j=1

yj· log
[
ŷj
]
+

(
1 − yj

)
·log

(
1 − ŷj

)
+ λR(θ) (7)

where the notation M is the number of training samples, yj is the true label of the jth sample,
ŷj is the predicted probability of the jth sample, θ represents the weights and biases of the
parameters of the neural network, R(θ) is the regularization term, and λ is a regularization
parameter that controls the strength of regularization.

4. Experimental Results and Performance Analysis
4.1. Performance Parameters

We have derived five key quality parameters in stroke prediction to evaluate model
performance. Let us define the following terms based on stroke prediction. Now, we can
express the evaluation metrics using these terms from Equations (8)–(12).

- True Positives (TP): the number of correctly predicted stroke cases;
- True Negatives (TN): the number of correctly predicted non-stroke cases;
- False Positives (FP): the number of incorrectly predicted stroke cases;
- False Negatives (FN): the number of incorrectly predicted non-stroke cases.

• Accuracy (ACC): accuracy measures the proportion of all correct predictions, the
corresponding formula is shown in Equation (8).

ACC =
Tp + Tn

Tp + Tn + Fp + Fn
(8)
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• Precision (PR): precision assesses the accuracy of positive predictions, the correspond-
ing formula is shown in Equation (9).

PR =
Tp

Tp + Fp
(9)

• Recall (Sensitivity) (RE): recall, also known as sensitivity, evaluates the model’s ability
to identify all positive instances, the corresponding formula is shown in Equation (10).

RE =
Tp

Tp + Fn
(10)

• Specificity (SP): specificity gauges the model’s capacity to correctly identify negative
instances, the corresponding formula is shown in Equation (11).

SP =
Tn

Tn + Fp
(11)

• F1-Score (F1): The F1-score combines precision and recall into a single metric, the
corresponding formula is shown in Equation (12).

F1 = 2 × (PR × RE)
(PR + RE)

(12)

• ROC Curve and AUC-ROC: the ROC curve graphs the true positive rate (recall) against
the false positive rate (1—specificity) at different decision thresholds. The AUC-
ROC quantifies the area under the ROC curve, indicating the model’s discriminatory
power. These formulas provide quantitative ways to assess the performance of stroke
prediction models based on their predictions of true positives, true negatives, false
positives, and false negatives. Each metric serves a specific purpose and can help
evaluate the model’s effectiveness in different aspects of stroke prediction.

4.2. Performance Results

Here, we summarize the suggested ML models’ prediction performance outcomes.
In addition, how the risk factors affected the top-performing model’s classification perfor-
mance.

In Table 4 and Figure 9, the “Actual” scenario (no resampling), all models have high
accuracy. This suggests that the models are making very few positive predictions, and
when they do, those predictions are accurate. However, they miss many positive cases.
Under resampling techniques, like in Table 5 “Smote”, “Adasyn”, “Smote_Tomek”, and
“Smote_Enn”, the models generally have lower accuracy and precision compared to the
“Actual” scenario. However, their recall and F1-scores improved significantly. This indicates
that resampling helped the models identify more positive cases, even though they may
produce some false positives. “Undersampling” results in mixed performance. While it
improves recall and F1-score for some models, it leads to lower performance for others,
particularly in precision.

Table 4. Mean of prediction results with and without resampling.

Model Accuracy Accuracy (SMOTE-TOMEK)

Random Forest 0.97 0.89
Logistic_Regression 0.80 0.78

SVM 0.90 0.84
XGBoost 0.95 0.90

ANN(Proposed) 0.97 0.95
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Table 5. Evaluation metrics of various machine learning models under different sampling techniques.

Model ACC PR RE F1 Resample Technique Used

Random Forest 0.87 0.141414 0.264151 0.184211 Smote
Random Forest 0.89 0.128205 0.188679 0.152672 Adasyn
Random Forest 0.89 0.126761 0.169811 0.145161 Smote_Tomek
Random Forest 0.84 0.130435 0.339623 0.188482 Smote_Enn
Random Forest 0.90 0.152542 0.169811 0.160714 Undersampling

LR 0.77 0.128492 0.433962 0.198276 Smote
LR 0.78 0.133333 0.452830 0.206009 Adasyn
LR 0.78 0.135294 0.433962 0.206278 Smote_Tomek
LR 0.77 0.135593 0.603774 0.221453 Smote_Enn
LR 0.75 0.158537 0.490566 0.239631 Undersampling

SVM 0.83 0.140351 0.301887 0.191617 Smote
SVM 0.84 0.087719 0.188679 0.119760 Adasyn
SVM 0.84 0.109677 0.320755 0.163462 Smote_Tomek
SVM 0.79 0.140097 0.547170 0.223077 Smote_Enn
SVM 0.84 0.177966 0.396226 0.245614 Undersampling
XGB 0.89 0.127671 0.168911 0.145161 Smote
XGB 0.84 0.077819 0.184679 0.117760 Adasyn
XGB 0.90 0.155342 0.168911 0.107714 Smote_Tomek
XGB 0.89 0.127761 0.168911 0.146461 Smote_Enn
XGB 0.84 0.124535 0.339723 0.178482 Undersampling
ANN 0.94 1.000000 0.218868 0.137037 Smote
ANN 0.96 1.000000 0.18868 0.037037 Smote
ANN 0.95 1.000000 0.18868 0.037037 Smote_Tomek
ANN 0.93 0.210526 0.075472 0.111111 Smote_Enn
ANN 0.95 0.000000 0.000000 0.000000 Undersampling

In summary, resampling techniques are applied to address class imbalance in the
dataset. These techniques improve the models’ ability to correctly identify positive cases
(stroke) while considering different trade-offs between precision and recall. The choice of
resampling method should depend on the specific goals and requirements of the stroke
prediction task, considering the importance of minimizing false negatives (missed stroke
cases) and the tolerance for false positives (incorrectly predicted stroke cases). Figures 10
and 11 present valuable insights into the performance of various machine learning models.
Figure 10 displays the confusion matrix, while Figure 11 showcases the ROC_AUC curve
for these models.
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The ANOVA test is also used to determine whether there are significant differences in
AUC values among the models. In this analysis, we used the AUC values for each model,
and the ANOVA test results indicate significant differences in AUC values among the
models based on the given p-value.

These hyperparameter configurations in Table 6 are tailored to optimize each algo-
rithm’s performance based on the specific requirements for our stroke prediction dataset.

Table 6. Hyperparameters used in the current study.

Algorithm Parameter Values

Random Forest

n_estimators 200
max_depth 20

min_samples_split 5
min_samples_leaf 2

max_features ‘sqrt’
bootstrap True

Logistic Regression
C 1

penalty ‘l2’
max_iter 200

SVM

C 1
kernel ‘rbf’

gamma ‘auto’
degree 4

XGBoost

n_estimators 200
max_depth 5

learning_rate 0.1
subsample 0.9

min_child_weight 2

Artificial Neural Network

hidden_layer_sizes (100)
activation ‘relu’

alpha 0.001
learning_rate_init 0.01

4.3. Model Interpretability

Prior studies on stroke prediction datasets have not elucidated the rationale behind
model predictions. Our research, however, delves into the significance of each feature and
clarifies the factors influencing specific model decisions. We offer both global and local per-
spectives. Locally, we pinpoint which features carry the most weight in individual test cases.
This is achieved through the LIME explanation [32]. Globally, we assess feature contribu-
tions across a data set, such as all test data, using methods like permutation importance.

4.3.1. Explainability Using LIME (Local)

Explainability of the outcome using LIME (local interpretable model-agnostic ex-
planation) is a crucial aspect of ML model interpretability. LIME is a technique used to
understand and provide insights into why an ML model makes specific predictions for
individual data points or instances. A LIME tabular explainer was employed, as shown in
Figure 12, for interpreting multiple ML models, including (a) LR, (b) SVM, (c) RF, (d) XGB,
(e) ANN. This interpretability technique provided insights into the decision-making pro-
cesses of these diverse models, offering a comprehensive understanding of their predictions
and behaviors.
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4.3.2. Permutation Importance

An important feature in a predictive model is assessed using permutation importance
in machine learning. It helps understand which features are the most important in making
accurate predictions. Permutation importance is valuable for various purposes:

• Feature Selection: it helps identify the most relevant features in your dataset, allowing
you to simplify and optimize your model;

• Model Evaluation: it provides insights into which features contribute the most to the
model’s predictive power;

• Interpretability: permutation importance offers a way to explain model predictions by
highlighting the importance of each feature.

Permutation importance was calculated, as shown in Figure 13, for five distinct ma-
chine learning models: (a) LR, (b) SVM, (c) RF, (d) XGB, and (e) ANN. This analysis allowed
us to determine the significance of each model’s features by measuring how their random
shuffling impacted the model’s performance, providing valuable insights into feature
importance for predictive accuracy.
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Healthcare systems could greatly benefit from using our suggested method, leading to
better patient outcomes and enhancing current practices. In the real world, here are some
concrete suggestions:

• Prevention initiatives and treatment program development;
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• Coordinating with EHRs;
• Medical professionals’ decision-support tool;
• Prevention through patient education;
• Remote monitoring and telemedicine;
• Working in tandem with program that promote public health;
• Constantly enhancing models and feedback system.

5. Conclusions

Machine learning and deep learning models for detecting cardiac strokes are crucial.
When it comes to detecting strokes early on, these models are vital for allowing prompt
therapies and reducing the risk of long-term effects. The two main goals of our study are to
improve the predictive accuracy and interpretability of basic neural networks and machine
learning models used to forecast heart attacks.

Our all-inclusive model includes resampling methods, data leakage avoidance, and
ANOVA feature selection. Making the model accessible to healthcare practitioners requires
finding a compromise between model accuracy and interpretability. This study’s major
addition is its multi-faceted approach to understanding the model’s inner workings and
improving the accuracy and clarity of stroke prediction. The healthcare system may see
less strain and better patient outcomes as a result of this in the long run.

Our current research provides a solid groundwork, but there are still opportunities
for further investigation and improvement. To ensure our models are strong and can be
applied to other populations, we should look into validating them externally on various
datasets, and on continuously fine-tuning the model parameters to enhance prediction
performance and investigate additional optimization strategies. These potential future
directions highlight our dedication to expanding the area and improving our models for
better results.
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