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Abstract: Deep learning (DL) networks have shown attractive performance in medical image pro-
cessing tasks such as brain tumor classification. However, they are often criticized as mysterious
“black boxes”. The opaqueness of the model and the reasoning process make it difficult for health
workers to decide whether to trust the prediction outcomes. In this study, we develop an interpretable
multi-part attention network (IMPA-Net) for brain tumor classification to enhance the interpretability
and trustworthiness of classification outcomes. The proposed model not only predicts the tumor
grade but also provides a global explanation for the model interpretability and a local explanation
as justification for the proffered prediction. Global explanation is represented as a group of feature
patterns that the model learns to distinguish high-grade glioma (HGG) and low-grade glioma (LGG)
classes. Local explanation interprets the reasoning process of an individual prediction by calculating
the similarity between the prototypical parts of the image and a group of pre-learned task-related
features. Experiments conducted on the BraTS2017 dataset demonstrate that IMPA-Net is a verifiable
model for the classification task. A percentage of 86% of feature patterns were assessed by two radiol-
ogists to be valid for representing task-relevant medical features. The model shows a classification
accuracy of 92.12%, of which 81.17% were evaluated as trustworthy based on local explanations. Our
interpretable model is a trustworthy model that can be used for decision aids for glioma classification.
Compared with black-box CNNs, it allows health workers and patients to understand the reasoning
process and trust the prediction outcomes.

Keywords: decision support; interpretability; trustworthiness; deep neural networks; brain tumor
classification; multi-part attention

1. Introduction

Brain cancer is one of the ten leading causes of death globally among men and
women [1,2]. The World Health Organization estimates the 5-year survival rate is only 21%
for people aged 40 and over [2]. In most clinical scenarios, LGGs are well-differentiated,
slow-growing lesions, while HGGs are usually aggressive with dismal prognosis [3,4].
Survival rates differ markedly for different tumor grades. Identifying tumor grade at an

Diagnostics 2024, 14, 997. https://doi.org/10.3390/diagnostics14100997 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14100997
https://doi.org/10.3390/diagnostics14100997
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3341-5483
https://orcid.org/0000-0002-0506-499X
https://orcid.org/0000-0002-2404-1101
https://doi.org/10.3390/diagnostics14100997
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14100997?type=check_update&version=2


Diagnostics 2024, 14, 997 2 of 18

early stage is a major unmet need; it contributes to formulating better treatment strategies
and enhances the overall quality of life of patients.

Magnetic resonance (MR) imaging is a non-invasive technique that remains the stan-
dard of care for brain tumor diagnosis and treatment planning in clinical practice [5,6]. It
provides a reasonably good delineation of the gliomas and conveys biological information
on the tumor location, size, necrosis, edema tissue, the mass effect, and breakdown of
the blood–brain barrier (which results in contrast enhancement in post-contrast-enhanced
T1-weighted (ceT1w) MR images) [6]. In general, LGGs are less invasive. They usually
have well-defined boundaries and homogeneous tumor cores without prominent mitosis,
necrosis, and microvascular proliferation [6–9]. HGGs always show more mass effect.
They usually show microscopic peritumoral white matter tract invasion. The demon-
stration of this diffuse infiltration is an important discriminating feature for the accurate
glioma diagnosis [6].

Diagnosis of brain tumors from MR images is a time-consuming and challenging task
that requires professional knowledge and careful observation. As alternatives, various
automated diagnosis approaches have been developed to assist radiologists in the interpre-
tation of the brain MR images and reduce the likelihood of misdiagnosis. Convolutional
neural networks (CNNs) provide a powerful technology for medical data analysis [10].
CNN-based deep learning architectures can extract important low-level and high-level
features automatically from the given training dataset of sufficient variety and quality [11];
they embed the phase of feature extraction and classification into a self-learning procedure,
allowing fully automatic classification without human interaction, which can be applied to
the problem of tumor diagnosis.

Over the last decade, methods using CNNs have been extensively investigated for
brain tumor classification due to their outstanding performance with very high accuracy
in a research context [12,13]. The differential classification of HGG and LGG is a com-
paratively simple task that has been tackled in numerous different ways using different
CNN methods, and the best-performing models have demonstrated close to 100% perfor-
mance [10]. For example, Khazaee et al. [14] used a pre-trained EfficientNetB0 for HGG and
LGG classification. The model achieved a mean classification accuracy of 98.87%. Chikha-
likar et al. [15] proposed a custom CNN model to classify the type of tumor present in MRI
images, achieving an accuracy of 99.46%. The authors in [16] used transfer learning with
stacking InceptionResNetV2, DenseNet121, MobileNet, Incep-tionV3, Xception, VGG16,
and VGG19 for the same classification task. The average classification accuracy for the test
dataset reached 98.06%. Zhuge et al. [17] utilized a pre-trained ResNet50. The classification
accuracy of the proposed model reached 96.3%.

The above CNN-based methods all achieved remarkable performance on automated
HGG and LGG classification. However, MR images are unlikely to be artifact-free [18],
and the lesion signal measured by MRI is typically mixed with nuisance sources. The
above-mentioned black-box CNNs may learn confounding sources from MR images for
decision making, and the health outcomes cannot easily gain the trust of physicians or
patients because the evidence is unknown [6,19].

The lack of transparency and interpretability concerning the decision-making process
still limits their development into clinical practice [12,19,20]. Visualizing the features that
are faithful to the underlying lesion is crucial to ensuring the interpretability and trustwor-
thiness of classification outcomes. Interpretability is the ability to provide explanations
in terms understandable to a human [21], based on their domain knowledge related to
the task, or common knowledge, according to the task characteristics. The need for inter-
pretability has already been stressed by many papers [21–23], emphasizing cases where
lack of interpretability may be harmful. Can we explain why algorithms go wrong? When
things go well, do we know why and how to exploit them further?

In order to deploy a system in practice, it is necessary to present classification results
in such a way that they are acceptable to end users. This is only possible if users trust the
decision-making process, which, as a consequence, must be transparent and interpretable.
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To date, a limited number of saliency-based interpretable methods have suggested different
frameworks to improve the interpretability and trustworthiness of CNNs for brain tumor
classifications [24–27]. We divide the previous interpretable approaches into two categories:
object-level methods and pixel-level/part-level methods.

At the coarsest level, there are models that have been proposed to offer object-level
explanations for brain tumor classification tasks, such as a class activation mapping method
GradCAM [24,25] that highlights that entire object as the explanation behind the tumor
predictions. The authors in [25] proposed a pre-trained ResNet-50 CNN architecture to
classify three posterior fossa tumors and explained the classification decision by using
GradCAM. The heatmap generated by the GradCAM technique can identify the area of
emphasis and help visualize where the classification model looks for individual predictions.

At a finer level, there are a few interpretable techniques that have been applied to
explain the brain tumor classification results with pixel-level/part-level explanations, such
as pixel-level interpretable algorithms SHAP, Guided Backpropagation (GBP) [24], and a
part-level interpretable model called LIME. Authors in [27] explained the tumor predictions
made by the CNN model with SHAP and LIME methods. The SHAP algorithm explains
the individual prediction by computing the contribution of each pixel on a predicted
image to the prediction using Shapley values to understand what are the main pixels that
affect the output of the model [28]. The LIME algorithm is a counterfactual explanation
method that approximates the classification behavior of a complex neural network using a
simpler, more understandable model without exploring the model itself [29]. In the study,
the authors segmented the input image into superpixels and made small disturbances
around each superpixel to figure out the contribution/importance of each superpixel to
the prediction result. Another study conducted by Pereira et al. [24] utilized GradCAM
and GBP maps to provide insights into the regions that support the prediction to perform
quality assessment of tumor grade prediction between HGG and LGG. The GBP is a
gradient-based visualization method that can visualize which pixels in the input image are
more informative for the correct classification.

The above methods identify the most important pixels or objects of an image as the
explanation for the prediction outcomes. To some extent, they verify the validity of the
classification models. Nevertheless, it is worth stressing that knowing the most important
pixels or objects of an image that determined a specific prediction does not always amount
to a good-quality explanation.

Ideally, networks should be able to explain the reasoning process behind each indi-
vidual decision, and this process, ideally, would be similar to that used by a radiologist,
who looks at specific features of the MR image relevant to the task. For example, if a
doctor classifies a tumor as HGG, this decision always relies mainly on the high-level
class-representative features or properties, like the tumor’s irregularity, the necrotic area,
or the enhancing ring [30].

The objectives of this study were to build an interpretable multi-part attention [31]
network (IMPA-Net) for brain tumor classification to unbox the model and the reasoning
process of individual predictions with understandable MR imaging features. The proposed
IMPA-Net, motivated by [32], provides both global and local explanations for brain tumor
classification on MRI images. Figure 1 gives a more detailed illustration of the connections
and distinctions between the two explanations. The global explanation is represented by a
group of feature patterns that the model learns and uses for the classification. The quality
of the feature patterns can be used to evaluate the ability and reliability of the model on the
classification task. The local explanation interprets the reasoning process of an individual
prediction by comparing the prototypical parts of the image with feature patterns. It can be
used to evaluate the trustworthiness of individual predictions.
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Figure 1. Global and local explanations provided by the proposed IMPA-Net. (a) Research context
illustrates the importance and basic ideas of global and local explanations for deep learning-based
brain tumor classification. It outlines the problems in this research field that the proposed IMPA-
Net attempts to address; (b) local explanation: given an input image, IMPA-Net compares the
activated parts of the input image with the feature patterns and thereby predicts the tumor grade;
(c) global explanation can be interpreted as the class-representative features the entire model learns
to distinguish two classes.

The main contribution of this paper is that it addresses the black-box problems of
CNN classification models for glioma diagnosis by developing a model with the follow-
ing characteristics:

(i) The first multi-part interpretable model that can provide both global and local expla-
nations for brain tumor classification, enabling better human–machine collaboration
for decision aid.

(ii) It presents the reasoning process of individual predictions to show how the model
arrives at the decision making in this context, allowing health workers to evaluate the
reliability of the prediction outcomes.

(iii) It allows the prediction results to be interpreted in a clinical context.
(iv) It highlights the most relevant information for predictions based on medical disease-

related features that can be understood and interpreted by clinicians and patients.

The remainder of the paper is structured as follows. Section 3 gives a detailed intro-
duction to the dataset, the proposed interpretable multi-part attention network, and the
experimental setup. Results are given in Section 3. Section 4 evaluates the performance
of the proposed method on both aspects of its classification and explanation. Section 5
concludes the key findings of this study. Section 6 concludes the proposed work and
discusses the future research directions.
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2. Materials and Methods

The overall workflow of the development and evaluation of the proposed method-
ology is shown in Figure 2. Input brain MRI images are firstly pre-processed by resizing,
normalization, and cropping, and then three augmentation methods, including rotation,
shearing, and skewing are performed to produce the training dataset. The proposed
methodology classifies the input image by comparing its prototypical patches with pre-
learned feature patterns of classes HGG and LGG. In this stage, feature patterns of both
classes are optimized and produced. The quality of the feature patterns is evaluated in the
next step on aspects of their interpretability, class representability, and correctness, and then
poor-quality feature patterns are excluded in the local explanation process. In the next stage,
local explanations of individual predictions are given to illustrate how the model arrives at
the final decisions, and each case will be evaluated based on whether it satisfies two basic
conditions identified for reliability assessment. Finally, the proposed model is evaluated
on both aspects of its performance (classification and explanation), including classifier
performance, global explanation evaluation, local explanation evaluation (correctness and
confidence), and user evaluation.
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Figure 2. The overall workflow of the development and evaluation of the proposed methodology.

2.1. Data and Image Processing

We trained and evaluated our network on data from the BraTS 2017 database [33–35].
The dataset contains 285 routine-acquired 3T multimodal clinical MRI scans from multiple
institutions, comprising 210 patients with pathologically confirmed HGG and 75 patients
with LGG. All images from the dataset were pre-processed by co-registration to the same
anatomical template, interpolation to the same resolution (1 mm3), and skull stripping [33].

Slices that contain gliomas were extracted from each patient’s MRI scan. Considering
the enhancing ring in post-contrast-enhanced T1-weighted (ceT1w) MR is an important
discriminating feature for accurate tumor diagnosis between HGG and LGG [6], in our
experiments, only ceT1w MR images were considered. The dataset was then partitioned
into a training dataset (70%) and a testing dataset (30%). A push dataset of 60 images was
randomly selected from the training dataset (30 images for each class).

All images were normalized by Z-score normalization and converted to PNG format,
and then the background pixels were cropped to focus feature learning on the brain areas
instead of the whole image. Moreover, the images were resized to 224 × 224 to fit the
model’s training configurations.
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2.2. Data Augmentation

To increase the size and variability of the training dataset, data augmentation methods
were performed, including twice rotating in the axial imaging plane by a random amount
between 20◦ left and 20◦ right, shearing by a random amount between 10◦ left and right
twice in the transverse direction, and skewing by tilting the images left/right by a random
amount (magnitude = 0.2) twice. In this way, the training dataset is augmented six-fold,
resulting in 6228 images (3546 HGG, 2682 LGG).

2.3. Interpretable Convolutional Neural Network

Figure 3 gives an overview of the proposed IMPA-Net, which consists of a feature
extractor, multi-part attention (MPA), and similarity-based classifier. Images are first propa-
gated into convolutional layers for feature extraction, with a structure selected from VGG16.
In the proposed classification model, we chose VGG16 as the feature extractor as it com-
bines simplicity, ease of implementation, and fine-tuning capability with adequate feature
extraction effectiveness and generalization ability. The pre-trained VGG16 model is suitable
for transfer learning or fine-tuning as a feature extractor for brain tumor classification
tasks [12]. A non-linear activation function ReLU is used for all convolutional layers. Then,
these convolutional layers are followed by a multi-part attention module for similarity
calculation between CNN outputs and the feature patterns pre-learned by the model. In
particular, our network tries to find evidence for an image (such as the pre-processed HGG
image in Figure 3) to be of class HGG by comparing its prototypical patches with learned
feature patterns of class HGG and LGG, as illustrated in the similarity correlation units.
This comparison produces a map of similarity scores of each feature pattern, which is
upsampled and superimposed on the input image to see which part of the input image is
activated by each feature pattern. The activation maps are then propagated into a max-
pooling layer, producing a single similarity score for each comparison. Finally, the model
classifies the input image based on the top 10 similarity scores. The output ScHGG denotes
the weighted sum of top-10 similarity scores generated by the multi-part attention module.
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Figure 3. Schematic diagram of the proposed IMPA-Net. It consists of three modules: a feature
extractor, a multi-part attention block, and a similarity-based classifier. The feature patterns within
the multi-part attention block are learned from the push dataset during the training phase.
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2.3.1. Feature Extractor

The architecture consists of a regular convolutional neural network for feature extrac-
tion with a structure selected from VGG16 (kernel size 3 × 3), followed by two additional
1 × 1 convolutional layers. All these convolutional layers ( f ) use a ReLU with a non-linear
activation function.

For a given pre-processed input image x (such as the HGG sample image in Figure 3),
the convolutional layers f extract useful features from x to use for prediction, whose output
cout = f (x) have spatial dimension D× 7× 7, where D is the number of the output channels
of the last convolutional layer.

2.3.2. Multi-Part Attention

In our experiments, we allocated a pre-determined number of feature patterns FP ={
f p

cj
i

}m

i=1
, m = 50 for each class, where cj (j ∈ {HGG, LGG}) represents the class identity

of the feature pattern and i is the index of that feature pattern among all feature patterns of
class cj. So that for each class, 50 feature patterns are learned and produced by the model
from a push dataset. This dataset consists of a pre-determined number of MRI images that
are randomly selected from the training dataset. The shape of each pattern is D × h × w,
where h × w < 7 × 7. In our experiments, h and w are set to 1. The depth of each feature
pattern is the same as that of cout but the height and width are smaller than those of the cout,
each feature pattern will be supposed to represent some representative activation pattern in
a patch of the convolutional output cout, which in turn will correspond to some prototypical
image patch in the original training image.

In our network, every feature patch can be considered as a representative pattern of
one image from the push dataset, and these feature patterns are supposed to direct attention
to enough medical semantic content for recognizing a class [36]. As a schematic illustration
of the multi-part attention for the HGG sample image in Figure 3, the first feature pattern
f pcHGG

1 corresponds to the necrotic tumor core of an HGG training image, and the fourth
feature pattern f pcHGG

4 enhancing tumor margin of an HGG training image, and the ninth
feature pattern f pcHGG

9 the edematous area of an HGG image.
The similarity correlation units SCU in a multi-part attention module computes the L2

distance between the CNN outputs and the feature patterns, as shown in Equation (1). The
ith similarity correlation unit SCU

cj
i of class cj calculates the squared Euclidean distances

between feature patterns f p
cj
i and each patch

∼
cout generated from the convolutional outputs

cout and then inverts the distances to similarity scores. Mathematically, the similarity
correlation unit SCU

cj
i calculates the following:

dist
( ∼

cout, f p
cj
i

)
=

∥∥∥ ∼
cout, f p

cj
i

∥∥∥
2
,

∼
cout ∈ patches(cout), (1)

sim
( ∼

cout, f p
cj
i

)
= log

dist
( ∼

cout, f p
cj
i

)2
+ 1

dist
( ∼

cout, f p
cj
i

)2
+ ε

, (2)

SCU
cj
i (cout) =

max
∼

cout ∈ patches (cout)
sim

( ∼
cout, f p

cj
i

)
, (3)

These similarity scores calculated by Equation (2) define an activation map, which
retains the spatial relation of the convolutional output cout. The activation map can be
unsampled to the size of the input image to visualize the part of the input image that looks
most similar to the feature pattern [36]. In Figure 3, the similarity score between the first
feature patterns f pcHGG

1 , a an HGG necrotic tumor core, and the most activated patch of the
input image of a an HGG is scHGG

1 . The similarity score between the fourth feature pattern
f pcHGG

4 , an HGG enhancing tumor margin, and the most activated patch of the input image
is scHGG

4 . The third feature pattern f pcHGG
9 , an HGG edematous area, activated mostly on the
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edematous tissue of the HGG sample image, with a similarity score of scHGG
9 . This shows

that our model finds that the necrotic tumor core of the HGG sample image has a stronger
presence than that of enhancing tumor margin in the input image.

Equation (2) indicates that the similarity is monotonically decreasing with respect
to the squared Euclidean distance, that is, the highest similarity score of the similarity
correlation unit SCU

cj
i comes when

∼
cout is the closest patch to f p

cj
i . In activation maps,

warmer values indicate higher similarity between the learned feature patterns and the
parts of the input image activated by the feature pattern, which is enclosed in the yellow
rectangles on the superimposed source images. Then, the activation maps produced by
similarity scores are max pooled to reduce to a single similarity score s

cj
i for each feature

pattern f p
cj
i . Hence, if the similarity score of the ith similarity correlation unit SCU

cj
i is high,

it indicates that there is a patch in the input image that is very similar to the ith feature
pattern of class cj in the latent space, and that the activated patch contains a similar pattern
to that represented in the ith feature pattern.

2.3.3. Similarity-Based Classifier

Finally, in the classifier block, the top 10 ranking similarity scores are multiplied by
the class-connection weight matrix ω

cj
i to produce the output logit to class cj. The matrix

ω
cj
i represents the relationship between feature patterns and the logit of the class. Higher

class-connection values refer to higher representability of the feature pattern to its class.

Scj = ∑10
i=1 ω

cj
i ·s

cj
i , j ∈ {HGG, LGG} (4)

2.4. Model Training

The training of the proposed model is divided into three stages: stochastic gradient
descent (SGD) of layers before the classifier layer, projection and optimization of feature
patterns, and optimization of class-connection weights.

2.4.1. Stochastic Gradient Descent (SGD) of Layers before the Classifier Layer

The architecture aims to learn meaningful and teak-relevant features that can be
used to distinguish between HGG and LGG, where the most important patches for the
classification task are clustered (in Euclidean distance) around similar feature patterns
of the ‘correct’ class and separated from feature patterns from a different class [36]. To
learn these features, an iterative algorithm SGD is used to simultaneously optimize the
parameters of the convolutional layers f ( fconv) in the feature extractor and the feature

pattern FP =
{

f p
cj
i

}m

i=1
in the multi-part attention module via back propagation. In this

step, the weight matrix (class connection values) ω
cj
i of the last layer in the classifier block

is frozen.
Formally, let X = {x1, x2, . . . , xn} be a set of training images, Y = {y1, y2, . . . , yn}

be the set of the corresponding labels. The optimization problem to be solved here is
to minimize the defined loss function that incorporates the cross-entropy loss (CELoss),
cluster loss (ClstLoss), and separation loss (SepLoss):

Loss =
1
n∑n

k=1 CELoss( f ◦ SCU ◦ f (xk), yk) + r1ClstLoss + r2SepLoss (5)

where ClstLoss and SepLoss are

ClstLoss =
1
n

n

∑
k=1

argmin
i : f p

cj
i ∈ FPyk

argmin
∼

f (xk) ∈ patches( f (xk))

∥∥∥∥ ∼
f (xk)− f p

cj
i

∥∥∥∥2

2
(6)

SepLoss = − 1
n

n

∑
k=1

argmin
i : f p

cj
i /∈ FPyk

argmin
∼

f (xk) ∈ patches( f (xk))

∥∥∥∥ ∼
f (xk)− f p

cj
i

∥∥∥∥2

2
, (7)
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The CELoss penalizes misclassification during the training process, and the aim is to
minimize CELoss to give better classifications. The ClstLoss is minimized to encourage the
prototypical parts to cluster around the correct class, see Equation (6), whereas the SepLoss
is minimized to separate the prototypical parts from the incorrect class; see Equation (7).

2.4.2. Projection of Feature Patterns

To visualize which parts of the training images from the push dataset are used as
feature patterns, the network projects every feature pattern f p

cj
i onto the closest patch of

the output f (xk
cj) that has the smallest distance from f p

cj
i , and the closest patch has the

same class cj as that of f p
cj
i [32]. The reason is that the patch of training image xk

cj that

corresponds to f p
cj
i should be the one that f p

cj
i activates most strongly on. We can visualize

the part of xk
cj on which f p

cj
i has the strongest activation by forwarding xk

cj through a
trained network. Mathematically, for feature pattern f p

cj
i of class cj (j ∈ {HGG, LGG}),

the network performs the following update:

f p
cj
i = argmin

patch,patch∈patches( f (xcj ))

∥ patch − f p
cj
i ∥2, yk = cj (8)

2.4.3. Optimization of Class-Connection Weights

In this stage, all the parameters from the convolutional layers and multi-part attention
blocks are frozen, and a convex optimization on the class-connection weight matrix ω

cj
i of

the last layer is performed. To rely only on positive connections between feature patterns
and logits, the negative connection ω

cj
i is set to 0 for all to reduce the reliance of the model

on a negative reasoning process of the form “this image is of class HGG because it is not of
class LGG.”. Mathematically, we perform this step to optimize

min
ω

cj
i

1
n

n

∑
k=1

CELoss( f ◦ SCU ◦ f (xk), yk) + λ ∑
cj : f p

cj
i /∈FPyk

∣∣∣∣ω(k,cj)

i

∣∣∣∣, (9)

2.5. Experimental Setup

All the experiments were conducted on a PC with an Intel Core i7-6700K 4.00 GHz
processor running Ubuntu 18.04.6 with one NVIDIA GeForce RTX 2060, using Python 3.9.7
and PyTorch 1.10.1.

The parameters of the convolutional layers from the VGG16 model were pre-trained on
ImageNet [37], and the parameters of the additional convolutional layers were initialized
with Kaiming uniform methods [38]. The parameters of the two additional convolutional
layers are trained and optimized with the learning rate 3 × 10−3 for 5 epochs, while the
pre-trained parameters and biases are fixed. In the following joint training stage, the
parameters of all convolutional layers are optimized from epoch 6, and the model performs
feature pattern projection every 20 epochs, that is, epochs 20, 40, 60, 80, and 100, and the
convex optimization of the last layer is performed after each feature pattern projection
process for 20 iterations with learning rate 10−4.

The other hyperparameters are learning rate for layers pre-trained on ImageNet: 10−4

and learning rate for feature pattern optimization: 3 × 10−3. For VGG16, we set D = 128 as
the number of channels in a similarity correlation unit.

3. Results
3.1. Global Explanation

Global explanation can be interpreted as the class-representative features the entire
model uses to distinguish two classes. Figure 4 shows six learned feature patterns and their
activation maps for each class. It can be seen that all feature patterns localize important
distinguishing features of both classes. The feature patterns of HGG that have higher
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responses in contrast-enhancing tumors as a classification feature agrees with the actual
imaging characteristics of HGG [6]; the feature patterns that focus on the necrotic tumor core
that present heterogeneous high signal and the edematous areas are also important disease-
representative features of HGG [6]; the feature patterns of LGG present higher responses
on the homogeneous tumor cores and the non-enhancing tumor margins [7–9]. It is worth
mentioning that those localized medical features can be understood and interpreted by
the users, and thus, our framework can help provide global explanations in a human-
understandable manner.
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Figure 4. Six learned feature patterns and activation maps of HGG (a) and LGG (b) selected to
represent different clinically relevant discriminative features of each class learned by the model.
Training image where feature pattern comes from (feature pattern in box); Activation map (warmer
colors indicate higher activation).

3.2. Local Explanation: Individual Predictions

The local explanation of individual predictions has to satisfy two conditions in order
for its prediction explanations to be considered trustworthy and reliable; that is, all feature
patterns that present the 10 highest similarity scores are from the class of the test image,
and the concept of each top-10 feature pattern is consistent with that of the activated
prototypical patch.

Figure 5 shows the reasoning process of our interpretable model in reaching a predic-
tion on a test image of an HGG. As shown in the activation maps, the highest responses
were found on the tumor core activated by the top and 2nd ranked feature patterns of
class HGG (with similarity scores 8.143 and 8.105, respectively), the 3rd ranked feature
pattern on the tumor enhancing margins, the 6th, 8th, and 9th ranked feature patterns on
the edematous tissues.

The network correctly classifies the tumor as an HGG according to the ground truth.
Furthermore, it provides the evidence of this prediction outcome with multi-part attention
between patches of the test image and feature patterns as the tumor is classified as an HGG
because prototypical patches of the test image, including its necrotic tumor core, enhancing
margins, and edematous tissue was found to have higher similarity (top 10) with feature
patterns from HGG class. The evidence is evaluated to be trustworthy according to the two
reliability criteria, that is, all top-10 feature patterns are from the HGG class, and the concept
of each top-10 feature pattern is consistent with that of the localized prototypical patch.
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Figure 5. The reasoning process of our network for deciding the grade of a tumor. There are ten
rows, split into two groups for ease of presentation: (a) top 1~#5th part attention between a patch of
the test image and feature pattern, (b) #6th~#10th part attention between a patch of the test image
and feature pattern. Each row is organized as follows: in the leftmost column a yellow rectangle
generated by the proposed model is superimposed on the test image, showing a part that looks like a
feature pattern; second column, an enlargement of the part of the test image considered by the model
to look similar to the feature pattern (shown in col. 4); third column: activation maps indicating
how similar each featured pattern resembles part of the test image, in which warmer color indicates
higher responses; fifth column: training images where feature pattern comes from; sixth column:
corresponding activation maps. The final columns quantify the result of the comparison. Column
7: similarity score between the localized prototypical part of the test image (col. 2) and the feature
pattern (col. 4). Column 8: class connection values generated by the proposed model correspond to
the class-connection weight connection between the feature patterns and the logit of class. Column 9:
weighted similarity scores between the localized prototypical patches of the test image with top-10
feature patterns.

Figure 6 shows the reasoning process for reaching a classification decision on a test
image of an LGG. As shown in the third column, the highest responses were found on the
tumor core of the LGG image activated by two ‘tumor core’ feature patterns (similarity
score of 7.420 and 7.332, respectively), the 3rd and 4th ranked feature patterns on the tumor
margins. The network correctly classifies the tumor as an LGG. The explanation is the
network classifies the tumor as an LGG because prototypical patches of the test image,
including its homogeneous tumor core and non-enhancing tumor margins, were found to
have higher similarity (top 10) with feature patterns from the LGG class. Those medical
feature patterns can be understood and interpreted by the users, and thus, our framework
can help provide global explanations in a human-understandable manner. The evidence
for the prediction is evaluated to be trustworthy according to the two reliability criteria.
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Figure 6. Example output showing the reasoning process of our network in deciding the grade of
an LGG tumor, (a) top 1~#5th part attention between a patch of the test image and feature pattern,
(b) #6th~#10th part attention between a patch of the test image and feature pattern.

4. Performance Evaluation
4.1. Classification Performance

Statistic metrics for classification performance, including accuracy (ACC), precision
(PRE), specificity (SPE), sensitivity (SEN), and F1-score, were calculated both for the in-
terpretable decision-aid system described in this work and the baseline model, whose
architecture consisted of the same convolutional layers without the intermediate multi-part
attention module and similarity-based classifier. Correct predictions were further evaluated
on their reliability based on local explanations to obtain reliable prediction accuracy to
assess the trustworthiness of the model.

Table 1 presents the comparison of the classification performance of our interpretable
model (before and after the exclusion of ‘background’ feature patterns) with the baseline
model trained on the same dataset. Results show that the interpretable model is slightly
less accurate than the baseline model and that the exclusion of the ‘background’ feature
patterns improved the classification accuracy by 6.53%.

Table 1. Comparison of the classification performance of our interpretable model with the baseline
model.

Model
Performance Metrics

ACC PRE SPE SEN F1 Score

Baseline model 97.30% 99.18% 98.96% 96.03% 0.9758
Our model before exclusion 85.59% 89.17% 86.46% 84.92% 0.8699
Our model after exclusion 92.12% 94.65% 93.23% 91.27% 0.9293

4.2. Explanation Performance
4.2.1. Global Explanation Evaluation

Once trained, the system provides global explanations in the form of a set of feature
patterns that identify image features characteristic of the classes to be predicted. Each
of the feature patterns learned by the system was evaluated on whether it corresponds
to a feature of the class (HGG or LGG) that it is supposed to represent and whether the
area with the highest response (red) is located within the tumor or tissue altered by the
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presence of the tumor. A feature pattern is considered invalid if its most activated area is
situated in the background regions, namely healthy tissue, ventricles, non-brain tissue, or
image background.

Within all feature patterns, two apparent duplicates were found of the LGG class.
Thirteen invalid ‘background’ feature patterns (6 HGG and 7 LGG) were found to have
higher responses in regions irrelevant to the classification task (e.g., low-signal ventricles
and high-intensity background areas). The accuracy of global explanation, defined as the
fraction of learned feature patterns that focus on task-relevant regions, was 86%. The initial
assessment process was conducted by one author (Y.T.X). In cases of ambiguity, feature
patterns were reviewed by other authors (F.Z, L.R), and the final evaluation was arrived
at by consensus. Considering the impact of invalid feature patterns on local explanation,
those ‘background’ feature patterns were excluded in the further local analysis process.

Figure 7 evaluates the representability of two feature patterns that have the largest
class connection weight of each class. The similarity score between the feature pattern (class
connection of 0.737 to HGG) and the prototypical patch from the tumor core of the first
HGG sample image ranks #2 with a similarity of 8.020 (max. 8.782) and #4 with a similarity
of 7.653 (max. 8.379) with the prototypical patch from the tumor core of the second sample
image, showing its high representativity of class HGG. The feature pattern of LGG with the
highest class-connection value (1.311) also shows high representativity of class LGG; the
similarity scores with the localized patches rank first among 10 feature patterns for two
LGG sample images.
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4.2.2. Local Explanation Evaluation

The reliability of an individual prediction was evaluated based on whether its local
explanation satisfies two basic reliability conditions, namely that the reasoning process
should be both confident and correct.

Confidence in the reasoning process. Confidence in the reasoning process can be evaluated
by examining the output of the local explanation. For each case in the test set, the number
of feature patterns corresponding to a correctly or incorrectly identified tumor type was
counted among those with the 10 highest similarity scores. The results were averaged and
summarized in Table 2. Results demonstrate that the inconsistency of the feature patterns
with the class of test images has a high impact on the classification performance of the
model (comparison between wrong predictions and correct predictions, mean 8.62, 0.34,
respectively) and a small impact on the reliability of the predictions (comparison between
correct predictions and unreliable predictions).

Table 2. Summary of the number of feature patterns (top 10) consistent or inconsistent with the
actual class of test images among all test cases, unreliable predictions, wrong predictions, and correct
predictions (TP and TN predictions), summarized as mean (standard deviation) of the fraction of
feature patterns among the top 10 that match or mismatch to the actual class of test images.

Class of
Feature Pattern

Class of Test Image

All Test Cases Unreliable Predictions 1 Wrong Predictions 2 Correct Predictions 3

HGG LGG HGG LGG HGG LGG HGG LGG

HGG 9.29 (2.27) 0.90 (2.26) 9.87 (0.41) 1.56 (1.17) 2.09 (1.27) 8.62 (1.26) 9.98 (0.17) 0.34 (0.84)
LGG 0.71 (2.27) 9.10 (2.26) 0.13 (0.41) 8.44 (1.17) 7.91 (1.27) 1.38 (1.26) 0.02 (0.17) 9.66 (0.84)

Note: 1 Unreliable predictions are cases among {TP, TN} predictions that are evaluated to be unreliable according
to the two identified reliability criteria. 2 Wrong predictions are {FP, FN}. 3 Correct predictions are {unreliable
predictions, reliable predictions}.

Correctness of the reasoning process. A correct reasoning process is defined as one in
which the concept of the activated prototypical patch is consistent with that of the feature
pattern. Table 3 summarizes the number of incorrectly activated background patches by
top 10 feature patterns among all test images, unreliable predictions, wrong predictions,
and correct predictions.

Table 3. The numbers of incorrectly activated background patches by the top 10 feature patterns
were given as mean (standard deviation) of the fraction of feature patterns among the top 10 that
mismatched the actual class of test images.

Concept of
Activated Patch

Class of Test Image

All Test Images Unreliable Predictions Wrong Predictions Correct Predictions

HGG LGG HGG LGG HGG LGG HGG LGG

Image
background area

0.33 (0.89) 0.46 (1.40) 1.37 (1.34) 1.85 (2.41) 1.46 (1.44) 1.23 (1.83) 0.23 (0.74) 0.40 (1.35)
0.39 (1.14) 1.61 (1.96) 1.37 (1.57) 0.30 (1.06)

Brain
background area

0.65 (1.55) 0.97 (3.19) 2.61 (2.07) 4.46 (3.67) 2.32 (2.30) 1.00 (0.71) 0.43 (1.28) 0.97 (2.51)
0.75 (11.96) 3.55 (3.11) 1.83 (1.96) 0.67 (1.93)

Wilcoxon Signed-Ranks tests were used to assess the effect of incorrectly activated back-
ground patches on the number of mismatched feature patterns among the top 10 ranked,
an indicator of prediction reliability, comparing image background areas and brain back-
ground (i.e., healthy tissue or CSF), for each classification class both separately and jointly.

Considering all test images, image background showed a significantly lower influence
(p-value < 0.05) on reliability compared to brain background (W = 1244.5, p-value < 0.001),
and the same pattern was repeated considering only the HGG test images (W = 411.0,
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p-value = 0.002) or the LGG test images (W = 214.0, p-value = 0.005). Dividing the test
images based on correct predictions (reliable predictions and unreliable predictions, HGG:
W = 171.5, p-value = 0.011; LGG: W = 114.5, p-value = 0.003), wrong predictions (HGG:
W = 53.5, p-value = 0.095 (p > 0.05), LGG: W = 17.5, p-value = 0.943 (p > 0.05)) and unreliable
predictions (same values as correct predictions), only in the second group did these two
sources of error show no difference in their effect.

Tables 2 and 3 indicate the necessity and importance of unboxing the inference process
of CNN models for brain tumor classification. This allows health workers to screen out
unreliable ‘correct’ predictions that might have been learned from irrelevant regions for
decision making.

5. Discussion

This work proposed an interpretable multi-part attention network for brain tumor
classification. In detail, the widely used VGG16 was built with a specific interpretable
architecture to ensure good enough classification performance for the BRATS 2017 dataset.
The model was evaluated in terms of both classification and explainability perspectives.
Results demonstrated the model produced accurate tumor classification, and the classifi-
cation accuracy is on par with some of the best-performing CNN models. Furthermore,
the proposed framework is able to provide higher quality explanations for HGG and LGG
classification, including global explanation and local explanation.

In detail, global explanation is interpreted as a set of feature patterns the model learns
from to classify HGG and LGG. The quality of the feature patterns in terms of their validity
and representativity was evaluated by radiologists to see if they were valid evidence
for decision aids. Results demonstrated the model learns from the class-representative
features of both classes for the classification task, and the HGG feature patterns have higher
responses in the contrast-enhancing tumor, necrotic tumor core, and the edematous areas
as classification evidence; this agrees with the actual imaging characteristics of HGG. The
LGG feature patterns present higher responses on the homogeneous tumor cores and the
non-enhancing tumor margins.

Another important advantage of the proposed model is the local explanation it presents
for individual predictions. Background areas, such as the ventricles, were found to be acti-
vated by the ‘tumor core’ feature patterns of the LGG class. These background patches are
not faithful features to the underlying lesion. Therefore, unboxing the reasoning process is
necessary; it allows the clinicians and patients to screen out ‘unreliable’ correct predictions.

The local explanation of individual explanations was also evaluated by radiologists
to see if it is reliable and acceptable for decision-making support. This form of reliability
evaluation and model tuning is not available in the development of “black box” networks
or the interpretable models mentioned above. According to the findings, the developed so-
lution provided positive outcomes regarding the brain tumor classification and explanation
targeted in this study.

Considering the limitations of the present study, these can be divided into methodolog-
ical limitations in the construction of the network and limitations in the contextualization
of the results.

It is reasonable to suppose that network construction limitations contribute to the
lower classification accuracy of the proposed interpretable model compared with the
baseline model. This discrepancy could be attributed to the model’s classification inference
process, which is greatly influenced by the feature patterns obtained from the randomly
generated push dataset. In future work, optimizing the selection of the push dataset
may help to improve the classification accuracy of the model. It is also possible that the
training data augmentation process could be optimized, as some recent evidence suggests
that, even though we used very widely used augmentation methods, the inclusion of
image orientations not found in the testing set does not improve the generalizing ability of
the model [39].
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Regarding interpretation of the results, we did not find other interpretable deep learn-
ing methods applied to brain tumor classification based on the same dataset, and we cannot
confirm the degree to which the 86% reliability obtained by the model would be considered
acceptable by the health workers. Further collaboration with medical practitioners is impor-
tant for the practical assessment of our model. Considering possible future developments
or our work, several possible extensions are clear. The data modalities could be extended to
incorporate a greater variety of structural images, such as T1w, T2w, and FLAIR, as well as
more targeted sequences, including amide proton transfer [40] and MR spectroscopy [41].
It is also important to consider whether findings in the BraTS2017 dataset carry over into
other datasets. For example, many clinical scanners continue to use lower field strengths.
Publicly available data sets such as MNIBITE [42] and the recent ReMIND [43] could be
leveraged to test IMPA-Net with 1.5-T data.

6. Conclusions

An interpretable classification model based on CNN was developed for brain tumor
classification to enhance the interpretability and trustworthiness of the model and the
health outcomes. The proposed model visualizes the features the model learns and uses
for the classification task. It unboxes the reasoning process of individual predictions and
explains the outcomes in a human-understandable manner, allowing clinicians and patients
to understand and evaluate the reliability of predictions.

In future investigations, alternative datasets encompassing a greater variety of se-
quences and settings, will be included to improve the classification performance and the
generality of the work. Further discussions on the quality of decision aids are also necessary
to determine whether they improved decision making and outcomes for patients facing
treatment or screening decisions and to explore the applicability of IMPA-Net in other
medical imaging tasks.
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