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Abstract: Copy number variation (CNV) is a primary source of structural variation in the human
genome, leading to several disorders. Therefore, analyzing neonatal CNVs is crucial for managing
CNV-related chromosomal disabilities. However, genomic waves can hinder accurate CNV analysis.
To mitigate the influences of the waves, we adopted a machine learning approach and developed a
new method that uses a modified log R ratio instead of the commonly used log R ratio. Validation
results using samples with known CNVs demonstrated the superior performance of our method.
We analyzed a total of 16,046 Korean newborn samples using the new method and identified CNVs
related to 39 genetic disorders were identified in 342 cases. The most frequently detected CNV-
related disorder was Joubert syndrome 4. The accuracy of our method was further confirmed by
analyzing a subset of the detected results using NGS and comparing them with our results. The
utilization of a genome-wide single nucleotide polymorphism array with wave offset was shown
to be a powerful method for identifying CNVs in neonatal cases. The accurate screening and the
ability to identify various disease susceptibilities offered by our new method could facilitate the
identification of CNV-associated chromosomal disease etiologies.

Keywords: CNV; genome-wide SNP array; Korean newborn; machine learning; genomic wave

1. Introduction

Developmental disabilities can impact a range of domains, including perception, cog-
nition, movement, and language. The disabilities predominantly arise from chromosomal
abnormalities, such as copy number variations (CNVs). CNVs refer to large deletions or
duplications of genomic material that are greater than 1 kilobase (kb) in size [1]. Although
most CNVs are functionally benign, they are a common source of genomic structural
variation [2–4], and some of the variations are associated with various diseases, such as
intellectual disability, autism, schizophrenia, and developmental disorders [5–9]. Therefore,
early and accurate detection of CNVs is essential for providing appropriate interventions
and support to individuals and families affected by the CNVs.

Numerous methods exist for detecting chromosomal abnormalities, encompassing
conventional techniques such as karyotyping, fluorescence in situ hybridization (FISH) [10],
and multiplex ligation-dependent probe amplification [11], as well as contemporary ap-
proaches like chromosomal microarray analysis (CMA) [12]. These tests can be used to
diagnose genetic disorders, including Down syndrome, Turner syndrome, and some forms
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of cancer. In particular, chromosomal tests are also applicable for carrier screening, prenatal
testing, and newborn screening [13,14].

Similar to whole genome sequencing (WGS) analysis, CMA is a high-resolution tech-
nique to screen the entire genome and identify CNVs [15]. While WGS can identify CNVs,
SNPs, and other genetic variations, providing all-encompassing information of the entire
genome, the cost and time requirements of WGS surpass those of microarray analysis, mak-
ing it less feasible for regular clinical testing purposes [16,17]. Using an array with probes
designed to selectively bind with DNA extracted from a sample, CMA demonstrates the
capability to detect CNVs as small as 50–100 kb in size. Notably, this ability enables CMA
to detect difficult-to-identify diseases, including developmental disorders and multiple
congenital anomalies, with a detection rate of 15–20% [18–20].

CMA allows for the simultaneous detection of both CNVs and rare mutations in a
single run [21]. For example, the Illumina Infinium Global Screening Array (GSA) is able to
scan approximately 750,000 SNPs across the entire human genome [22]. By utilizing the
log R ratio (LRR), a normalized signal intensity value for individual SNP markers, and
B allele frequency (BAF), a normalized allelic intensity value for two alleles, data from
the microarray, CNVs, and rare mutations can be detected [23]. This approach facilitates
comprehensive genetic screening and analysis across diverse populations.

During the analysis of CNVs using microarrays, the presence of wave-like patterns
characterized by genome-wide spatial autocorrelation has been noted [24–26]. The patterns
were observed at the chromosomal level rather than in narrow subregions. Moreover, those
were evident even when copy numbers were normal, attributed to the high variability of
LRR. This phenomenon, referred to as a genomic wave, is speculated to be caused by varia-
tions in both quantity and quality of DNA. The pattern, observed across all chromosomes
and varying between samples, is known to have negative impacts on the accuracy of CNV
detection [24].

Since the identification of genomic waves, various methods have been developed
and utilized to improve the accuracy of CNV detection in the presence of these waves.
These methods include the utilization of Loess [27] and the Genomic Imbalance Map
algorithm [28], in addition to the correlation with the guanine-cytosine content of the
genome sequence [24]. These strategies serve to alleviate the impact of genomic waves on
CNV detection.

In this study, a new method using machine learning models was employed to mitigate
the effect of the genomic waves on CNV analysis. Among the different machine learning
methods available, k-means [29,30] and k-nearest neighbor (k-NN) [31,32] were selected
due to their simplicity and strong performance. Using the approaches, we obtained a
new LRR value called modified LRR (mLRR). The effectiveness of the new method on
CNV analysis was validated by comparing the results of analyzing samples with known
CNVs, and the results from next-generation sequencing (NGS) were utilized to confirm the
accuracy of our method. As a result of the validation, the new method showed a greater
performance than the original one.

2. Materials and Methods
2.1. Subjects and Sample Preparation

This study was performed in accordance with the 2021 Guidelines for using health
data by the Ministry of Health and Welfare of Korea. We analyzed the DNA CNVs in
16,046 peripheral or cord blood samples collected from newborn Korean babies. Each
blood sample (0.1 mL) was placed into a BD Microtainer tube with K2EDTA (BD, Franklin
Lakes, NJ, USA) and analyzed at clinical centers for genetic analysis between February
2018 and May 2021. The blood samples were transported at room temperature to the
laboratory, where genomic DNA was extracted from the blood using a Chemagic DNA
Blood 200 Kit (Perkin Elmer, Waltham, MA, USA) according to the manufacturer’s protocol.
Before performing the microarray assay, the genomic DNA concentration and purity were
measured using an EpochTM microplate spectrophotometer (BioTek, Winooski, VT, USA).
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Genomic DNA (200 ng) was used to generate targets for the Illumina Infinium HTS assay
protocol, and NGS was performed using 500 ng of genomic DNA.

2.2. Subjects and Sample Preparation

We custom-engineered the Illumina Infinium GSA BeadChip (version 2, Illumina, San
Diego, CA, USA) to include 742,759 SNP markers capable of detecting 138 CNV-related
chromosomal disorders (Figure 1). Procedures for DNA amplification, fragmentation,
hybridization, and staining were performed according to the Illumina Infinium HTS assay
protocol (Illumina). Image and data files were obtained using the iScan control and Genome
Studio software packages (v2.0.4) from Illumina.
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Figure 1. Schematic overview of 138 CNV-related chromosomal disorders. Red, blue, and black
arrows indicate microdeletions, duplications, and tetrasomy, respectively. Green bars indicate Joubert
syndrome types.
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2.3. Preparation of Positive CNV Control Samples for Analytical Validation

The SNP array analysis was validated using 22 human cell line DNA samples provided
by the Coriell Institute for Medical Research. Each analysis was repeated 2 or 3 times for
reproducibility and accuracy. All experimental methods used in association with the human
cell lines were performed in the same manner as those performed for newborn specimens.

2.4. Data Processing and CNV Analysis

Raw data from each sample were processed using in-house tools to generate the signal
intensities (expressed as LRR) and allelic intensity ratios (expressed as BAF) of all SNPs.
To ensure data quality, only markers with call rates of ≥0.98 and LRR SDs of ≤0.2 were
selected.

The PennCNV [33] and QuantiSNP [34] were performed to identify copy number
deletions and duplications using population frequencies of the B allele, which were calcu-
lated based on the BAF of each marker in 1100 samples. Subsequently, adjacent CNVs that
were <200 kb apart were merged and filtered out based on the SNP number (>10), CNV
length (>50 kb), and confidence score (>50), all of which were generated using PennCNV
and QuaintiSNP. The CNVs detected by each program were compared against our custom
database, which contains positional data related to 138 chromosomal disorders associated
with CNVs. Following this comparison, only the CNVs that corresponded to each specific
disease were selected for further analysis. The results obtained from the programs were
merged to reduce false negatives. The final result of the analysis was either the detection of
a CNV (if the condition was met) or normal status (if the condition was not met) (Figure 2).
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Figure 2. Key steps involved in Copy Number Variation (CNV) analysis using machine learning
techniques. Reference samples indicate the clinical samples for clustering genomic waves. Golden
brown arrows represent the clustering process, the green color indicates the classification process of
the “Test sample”, and the navy color indicates the CNV analysis process after “mLRR calculation”.

2.5. Clustering Genomic Waves from 5399 Clinical Samples Using GSA

The genomic waves in the results of the GSA chip were identified using 5399 clinical
samples. Autosomal chromosomes were divided into 1 Mb bins, and the LRR means, and
SDs of markers within the region were calculated. Bins with no markers or LRR SDs of
≤0.05 were excluded from the analysis because small SDs result in even distribution and
are not useful for analysis. As such, 238 domains were created, and the LRR mean was
used as the feature for analysis.

To cluster the waves into patterns, it was necessary to determine the optimal number
of clusters. This was achieved by calculating the sum of distances between the cluster
center and its members while incrementally increasing the number of clusters from 2 to 20.
The ‘elbow point’ of the value, as determined using the elbow method [35], indicated that



Diagnostics 2024, 14, 84 5 of 16

the decrease of k-means becomes smaller after 6 clusters. As a result, 6 was chosen as the
optimal number of clusters.

In total, 5399 samples were clustered using the k-means method with the optimal
value of 6. The 6 clusters represented distinct wave patterns and consisted of 768, 1202,
1241, 743, 788, and 657 samples, respectively. To determine the clustered LRR pattern, each
sample was divided into 1 Mb portions, and the mean LRR of the included markers was
calculated. For samples in the same cluster, the mean LRR mean was calculated between
them. The resulting clustered data were subjected to dimension reduction analysis methods,
specifically t-distributed stochastic neighbor embedding and principal component analysis.
Subsequent plots and comparisons with the k-means clusters were conducted. In both
analyses, the samples were effectively categorized into the 6 clusters (Figure 3).
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2.6. Cluster Matching of Analytical Samples and Calculation of Modified LRR Values

The LRR mean of 238 regions used for k-means analysis was calculated and classified
using k-NN. The LRR data for matched cluster samples were normalized into Z-scores
using the following formula:

Zi =
Xi − Xi

Si

where X represents the LRR value in the sample, X represents the mean, and S represents
the standard deviation (SD) calculated for the samples within the group.

Due to the differences in the range of normalized values compared to the original LRR,
adjustment to the original range was required. This involved resizing the original LRR SD
and Z-score SD to a similar value, resulting in the creation of a new LRR value referred
to as the modified LRR (mLRR). The offset effect was verified at the chromosome level: a
wave was observed in the results using the LRR, while no wave was observed in the results
of the mLRR (Figure 4a). This phenomenon was particularly pronounced at each end of the
chromosomes (Figure 4b).
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2.7. NGS Sequencing for Accuracy Validation

To confirm the accuracy of our method using NGS, all genomic DNA passing our
QC criteria (OD260/OD280 ≥ 1.8; 1.9 ≤ OD260/OD230 ≤ 2.2) were prepared for library
construction. Briefly, 30 ng of genomic DNA was sheared into small fragments (170–200 bp)
using a focused M220 ultrasonicator (Covaris, Woburn, MA, USA). Following end repair,
the addition of an A overhang, and adapter ligation, all ligated fragments were cleaned up
using Hiaccubead magnetic beads (Accugene, Incheon, Korea). Libraries were prepared
using the Accel-NGS 2S Plus DNA Library Kit (Swift Biosciences, Ann Arbor, MI, USA)
according to the manufacturer’s protocols. The size distribution of each library was assessed
using a 4200 Tapestation system (Agilent Technologies, Palo Alto, CA, USA). The libraries
were sequenced using an Illumina NextSeq platform with paired-end sequencing (36 × 2)
following the manufacturer’s protocols.

The Ion Torrent Proton platform from Thermo Fisher Scientific was also used as
follows. Libraries were prepared using an Ion AmpliSeq Library Kit 2.0 (Thermo Fisher
Scientific, Waltham, MA, USA). Adapter ligation, end repair, PCR amplification, and
barcoding were performed using an Ion Xpress Adapter 1–96 Kit (Thermo Fisher Scientific).
An Ion Chef system was used to complete emulsion PCR and enrichment steps according
to the manufacturer’s protocol. The resulting libraries were sequenced using an Ion Torrent
Proton system with an Ion PI Chip Kit V3 (Thermo Fisher Scientific).

The sequencing data were aligned to the hg 19 human reference genome using
Burrows-Wheeler Aligner (ver. 0.7.15) [36]. Using in-house software, duplicated reads were
removed, and read depths and z-scores for each position were calculated.

3. Results
3.1. Enhancing CNV Analysis Accuracy through Customized Machine Learning Model

To address the issue of wave patterns that can impede accurate CNV analysis using
an array, we developed a customized machine-learning analysis. This involved three
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processes: (1) clustering wave patterns with k-means, (2) classifying samples into their
nearest cluster using k-NN, and (3) utilizing the original LRR standard deviation (SD),
mean values, and Z-score SD values. These approaches enabled us to normalize and offset
waves, thereby improving the accuracy of the array analysis. Modified log R ratio (mLRR)
values, which would serve as input parameters for the CNV analysis tool, were obtained.

3.2. Analytical Validation Using Known Positive CNV Control DNA Samples

A total of 22 samples from the Coriell cell line repository with defined chromosomal
abnormalities were analyzed using LRR and mLRR values to assess performance for the
detection of CNVs between the two values. To confirm reproducibility and evaluate the
accurate performance, the analysis was repeated 2 or 3 times for each sample (Figure 5 and
Table S1).
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Figure 5. The results of CNV detection from Coriell cell line repository. The vertical axis represents
the ratio of detected length to known CNV length. The horizontal axis indicates the number of
repeats for each analysis. The green color indicates the results of the analysis using LRR, and the
orange color represents the results of the analysis using mLRR. If the result is not detected, no bar is
displayed. Asterisks (*) indicate cell lines that have two CNV regions. Please refer to Table S1 for
more information.

As a result, the utilization of mLRR yielded a more powerful detection performance
than the original one. All the known CNV regions were detected with our new method
from the 67 analyses, whereas some regions were missed in the analysis based on the
standard LRR values (Figure 5 and Table S1). Among the 67 repeats, 7 (10.45%) were not
detected in the standard LRR analysis. The length of the detected CNV was higher or
the same as that of mLRR in all analyses, except for cases where it was not detected. For
example, in the case of GM08039 with a known CNV spanning 22,723,028 bp associated
with Trisomy 16, the mLRR method detected 99.977%, 95.508%, and 99.977% of the CNV
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region in three repeats, respectively. In contrast, when LRR was employed, CNV was
not detected in 2 analyses out of 3 repeats, and only 0.404% was detected in one case. In
the analysis of GM05876, which harbors a 1,435,491 bp CNV associated with DiGeorge
syndrome, the CNV was detected in all analyses using LRR and mLRR. However, when
LRR was employed, only 8.792%, 46.376%, and 24.800% were detected in three repeated
analyses, respectively. In contrast, the method using mLRR exhibited high detection rates
of 83.205%, 83.205%, and 99.843% (Figure 5 and Table S1).

3.3. CNV Analysis Using 16,046 Neonate Samples from South Korea

From February 2018 to May 2021, we collected 16,046 neonate samples from the clinical
centers located in South Korea. We utilized the mLRR values, whose performance had been
validated, to analyze the samples and attempted to detect 138 CNV-related chromosomal
disorders (Figure 1) using a customized GSA BeadChip.

As a result of the screening, the genome-wide SNP array chip targeting 138 CNV-
related chromosomal disorders identified 342 cases of 39 CNV-associated chromosomal
disorders (Figure 6 and Table S2).
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Figure 6. The number of identified chromosomal disorders from the screening of the 16,046 neonate
samples. The numbers next to each bar represent the detected number, and bars of the same height
represent the same number. Please refer to Table S2 for more information.
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The most frequently detected disorder was Joubert syndrome 4 in the 2q13 region (66
of 342 cases). The 2q13 microdeletion encompasses genes encoding a MAL-like protein and
nephrocystin 1 (NPHP1). A homozygous deletion of NPHP1 on chromosome region 2q13 is
known to cause a rare genetic disorder, Joubert syndrome 4 [37,38]. The syndrome shows a
condition in which parts of the brain do not develop properly. All the 66 cases of 2q13 deletions
were identified as heterogeneous deletions [arr[hg19] 2q13 (110,852,875–110,983,320) × 1].
The detected cases were presumed to be carriers of the Joubert syndrome 4.

The second most commonly detected chromosomal abnormalities (55 cases) were
located in the 15q11.2 region. The 15q11.2 microdeletion pertains to a characteristic 500 kb
(0.5 Mb) deleted segment situated between breakpoint 1 (BP1) and breakpoint 2 (BP2).
Approximately 8–10% of the individuals with 15q11.2 deletions exhibit characteristics such
as developmental delays in motor and language skills [39]. Disruptions of genes within the
15q11.2 region result in an autosomal dominant form of disability with low penetrance. It
might offer a plausible explanation for the higher-than-normal frequency in the population.
The prevalence of this relatively high frequency is corroborated by a study carried out by
the University of Kansas Medical Center [40], which highlights that CNVs at the 15q11.2
BP1-BP2 microdeletion region are estimated to be present in 0.5% to 1.0% of the population.

The third and fourth most frequently detected CNV-related disorders were the 22q11.2
duplication syndrome and the 17p13.3 telomeric duplication syndrome, which were
detected in 47 and 33 cases, respectively. The features of the 22q11.2 duplication syn-
drome, which is caused by an extra copy of a piece of chromosome 22 containing about
30–40 genes, are known to be varied even among family members (i.e., intrafamilial vari-
ability exists) [41]. Some with the duplicated gene exhibit intellectual or learning disabilities
in addition to developmental delay, slow growth, and weak muscle tone (hypotonia) [42].
Duplications involving one or more genes on chromosome 17p13.3 are associated with
split-hand/foot malformation and long-bone deficiency-3 (SHFLD3), with the duplica-
tion of the basic helix-loop-helix transcription factor of the A9 (BHLHA9) gene especially
associated with limb defects. SHFLD3 is a relatively rare autosomal dominant skeletal
disease with a penetration rate of <50% and features a broad spectrum of intraindividual
variability [43,44]. The following genetic disorders involving CNVs were found in 11–15 of
16,046 cases: 2p16.3 deletion, DiGeorge, 1q21.1 microdeletion, and Klinefelter syndromes
(Table S2).

To verify the accuracy of our GSA array–based approach in a clinical setting, a com-
parison was performed with the results obtained using next-generation sequencing (NGS).
From the results of the 16,046 samples, we selected CNV-associated chromosomal disor-
ders that were frequently detected in this study, as well as those known to be rare, for
comparison (Figure 7 and Figure S1).

The same DNA samples, analyzed with the custom-engineered chip, were analyzed
using NGS. Read depths for each position were computed using reads aligned to hg19, the
human reference genome. Subsequently, z-scores were calculated for all positions based
on these read depths. Our analysis revealed a distinctive variation in z-score within the
genomic region where the GSA-identified CNV was located, distinguishing it from adjacent
positions.

Comparing the NGS results with the genome-wide SNP array analysis demonstrated
complete consistency, achieving a 100% match. The CNVs identified through the array
analysis were precisely mirrored in the NGS findings. This underlines the high consistency
and robustness of our method in accurately detecting various CNVs, showcasing its strong
performance and reliability.
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Figure 7. Validation results analyzing the same samples with a GSA array–based approach and NGS.
A total of 8 chromosomal disorders are shown. The title displays the chromosome number along with
the start and end positions of the detected region. The upper panel illustrates analysis results using the
signal intensity patterns (B allele frequency, BAF) and modified log R ratio (mLRR). The vertical axis
represents BAF and mLRR values, and each blue dot represents each value. The light blue color indicates
the detected regions from the GSA. The lower panels represent the results from NGS analysis. The light
pink regions represent the detected regions from the NGS. The vertical axis represents the z-score values,
and the horizontal axis represents the positions: (a) Joubert syndrome 4; (b) 15q11.2 deletion syndrome;
(c) 22q11.2 duplication syndrome; (d) 17q13.3 telomeric duplication syndrome; (e) Down syndrome;
(f) Duchenne muscular dystrophy; (g) 1q21.1 deletion syndrome; (h) Williams syndrome (deletion).
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4. Discussion

CNVs are associated with many neurodevelopmental disorders, such as autism spec-
trum disorders, schizophrenia, intellectual disability, attention deficit hyperactivity dis-
order, developmental delay, and epilepsy [45–47]. As the variations often span several
mega-base pairs that encompass multiple genes [48,49], the rarity and dose-sensitive nature
of individual CNV genes must be accurately determined. For instance, altering the copy
number of a dose-sensitive gene like BHLHA9 can be detrimental to disease pathogenesis,
whereas changing the copy number of dose-insensitive genes is unlikely to cause harm [50].
Even within the same chromosomal region, CNVs may be associated with different phe-
notypes, ranges of severity, and incomplete penetration [51]. In the present study, among
39 detected cases of chromosomal abnormalities, 8 CNV-related chromosomal disorders
were known to have complete penetrance: DiGeorge, Klinefelter, Down, Triple-X, Turner,
Williams (duplication and deletion), and Prader–Willi/Angelman syndromes. For example,
Duchenne muscular dystrophy (OMIM#310200), an X-linked recessive myopathy caused
by a mutation in the dystrophin gene located at Xp21, has a penetration rate of 100% in
males [52]. Charcot–Marie–Tooth syndrome type 1A (CMT1A), which was detected in four
cases in our study, exhibits varying penetration rates depending on the parent. Fathers
with X-linked dominant CMT1A have a 100% risk of having an affected daughter, whereas
their sons face no such risk; conversely, both sons and daughters of mothers with X-linked
dominant CMT1A have a 50% chance of being affected by the syndrome [53]. Joubert
syndrome 4, the most frequently detected CNV-related chromosomal abnormality in our
study, is a rare autosomal recessive disorder involving a ~290 kb homozygous deletion
containing NPHP1 in 2q13. All Joubert syndrome 4 cases identified in our screening were
heterogeneous deletions at 2q13; thus, the individuals were assumed to be carriers of
the disorder in all cases. Other chromosomal disorders (i.e., 15q11.2 deletion, 22q11.2
duplication, 17p13.3 telomeric duplication, and 2p15.2 deletion syndromes, among others)
detected in this study represent syndromes with various penetration rates. Additionally,
while disorders involving visual and hearing impairments are often detected early, e.g.,
before the age of three, invisible autism, as well as emotional and behavioral disorders,
are more likely to occur after the age of three [54]. Thus, it is very important to detect
chromosomal abnormalities early and accurately in order to minimize the symptoms of the
disease and slow its progression.

As a comprehensive and universal screening tool, the GSA method can detect various
genetic abnormalities with high accuracy, making it a reliable option for large-population
screening compared to other screening methods. The array offers a resolution level that is
more than 10 times higher than conventional karyotyping or FISH analysis, allowing for
the detection of micro-chromosomal abnormalities that are larger than 100 kb in size with
higher confidence levels [55–57].

However, it is crucial to acknowledge the limitations of genotyping arrays; they are
unable to detect translocations and inversions [58]. Recent studies have highlighted that
low-pass genome sequencing technology surpasses microarray technology in terms of
detection rate, resolution, and cost-effectiveness [59–62]. Nonetheless, the GSA method
continues to be extensively utilized in diagnostic and research due to its relatively low cost
and sample requirement.

Our study was focused on mitigating the disruptive influence of genomic waves—
recurring wave-like patterns pervasive across the genome—which significantly impair
the accuracy of detecting copy number variations (CNVs). By addressing these inherent
challenges posed by genomic waves, our aim was to develop methodologies or techniques
that improve the precision and reliability of CNV detection within genetic data analysis. To
address this, we specifically employed k-means and k-NNs for clustering wave patterns
and classifying samples, considering their simplicity and interpretability crucial when
handling high-dimensional microarray data with hundreds of thousands of probes.

While these methods proved effective, the evolving realm of machine learning holds
the potential for achieving even higher CNV detection accuracy in a neonatal setting. Recent
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advances in machine learning, particularly in deep learning and ensemble methods such as
convolutional neural networks (CNN) and random forest, have demonstrated exceptional
classification performance in medical imaging and molecular diagnosis applications [63,64].
CNNs, known as powerful tools for image recognition, could be instrumental in identifying
CNVs in abnormal chromosomes by extracting key features like edges and specific banding
patterns, which are crucial for detecting small chromosomal deletions and duplications.
Nevertheless, the utilization of intricate machine learning models alongside high-quality
data brings about trade-offs, including escalated costs, risks of overfitting, and challenges
in interpretability, necessitating careful consideration in future research endeavors.

The utilization of machine learning methods extends far beyond the scope of this
study, encompassing widely employed techniques such as k-means and k-NNs, which
have significant applications in the diagnosis and exploration of diseases such as Autism
Spectrum Disorder (ASD) [65,66]. These methods play a crucial role in analyzing complex
datasets and aiding in the understanding and identification of patterns associated with ASD
and other medical conditions. Furthermore, a variety of other machine learning approaches
are utilized to analyze microarray data, highlighting the diverse array of methods employed
in medical research [67,68].

Our approach involved employing customized machine learning models alongside
the newly obtained mLRR values. Through validation, we demonstrated the capability
to detect CNVs that remained undetected using existing LRR values, especially in detect-
ing chromosomal disorders associated with CNVs. Furthermore, its accuracy was also
confirmed through comparison with NGS data.

In typical microarray analysis, the log ratio is generally computed as the logarithm
of the ratio of expression levels between two distinct samples. The concept of log ratios is
extended and modified in the context of genotyping arrays, particularly when assessing
copy number variations (CNVs). Notably, the log-R ratio demonstrates a correlation with
gene expression levels [69]. Recent research determined gene expression levels by analyzing
microarray images using log ratio [70,71].

We anticipate that our newly introduced mLRR value harbors extensive potential for
versatile applications, extending its utility beyond genotyping to include the assessment of
expression levels. This innovative metric holds promise for yielding more precise results
compared to existing methods, thereby offering prospects for enhanced precision and
comprehensive analyses.

Our study lacked continuous clinical observation to evaluate the long-term accuracy
in predicting developmental disabilities among tested newborns. However, considering
our success in minimizing the impact of genomic waves and obtaining accurate detection
results, our method utilizing whole-genome SNP arrays could be considered one of the
most effective approaches for screening chromosomal abnormalities in newborns.

5. Conclusions

Comprehensive CNV screening using new methods has the potential to significantly
improve the screening process for patients with developmental disabilities and congenital
malformations due to rare mutations and CNV-related chromosomal disorders. Validation
of CNV detection provides strong evidence of its effectiveness in identifying a wide range
of genetic abnormalities inherited or newly acquired during pregnancy. Therefore, the
newly developed genotyping analysis presented in this study shows promise as a routine
clinical screening tool for newborns and individuals at high risk of genetic diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics14010084/s1, Figure S1: Examples of next-generation
sequencing validation of CNV-related chromosomal disorders; Table S1: CNV analysis results with
LRR and mLRR of Coriell cell lines.; Table S2: The number of detected chromosomal disorders from
the 16,046 Korean neonate samples.
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