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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most common (90%) type of solid pan-
creatic neoplasm. Due to its late presentation and poor survival rate, early diagnosis and timely
treatment is of utmost importance for better clinical outcomes. Endoscopic ultrasound provides high-
resolution images of the pancreas and has excellent sensitivity in the diagnosis of even small (<2 cm)
pancreatic lesions. Apart from imaging, it also has an advantage of tissue acquisition (EUS fine-needle
aspiration, FNA; or fine-needle biopsy, FNB) for definitive diagnoses. EUS-guided tissue acquisition
plays a crucial role in genomic and molecular studies, which in today’s era of personalized medicine,
are likely to become important components of PDAC management. With the use of better needle
designs and technical advancements, EUS has now become an indispensable tool in the management
of PDAC. Lastly, artificial intelligence for the detection of pancreatic lesions and newer automated
needles for tissue acquisition will obviate observer dependency in the near future, resulting in the
wider dissemination and adoption of this technology for improved outcomes in patients with PDAC.

Keywords: PDAC; EUS; fine-needle aspiration (FNA); fine-needle biopsy (FNB); precision medicine;
pancreatic carcinoma

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of solid pancreatic
neoplasm comprising more than 90% of all solid pancreatic neoplasms [1]. Although
conventionally considered a disease of the elderly with the median age of detection being
71 years, recent data from the Surveillance Epidemiology and End Results Program (SEER)
and the Center for Disease Control (CDC) have revealed an increasing rate of pancreatic
cancer with a greater number of cases being detected among young individuals [2,3]. In
a large population-based study from the Cedars-Sinai Medical Center group, the age-
adjusted incidence rate (aIR) was found to be alarmingly increasing between 2001 and 2018
among young patients < 55 years old (more so in the group that was 15–34 years old) [2].
Further population-based cancer registry data show an increase in its annual incidence of
0.77%, 2.47%, and 4.34% in the age groups of 45–49 years, 30–34 years, and 25–29 years,
respectively, and it is projected to be the second most fatal cancer by 2030 [2–6]. Despite its
increasing incidence, pancreatic cancer remains one of the most fatal malignancies with a
grave 5-year survival rate of only 10–12% [2]. The major hindrance in improving patient
prognosis is the lack of clearly defined risk factors, lack of targeted surveillance protocols
or populations, and absence of specific symptoms or specific biomarkers. Due to these
factors, the clinical presentation of patients is delayed, and only 10–15% of patients are
in an operable stage at the time of presentation [3,7]. So, early diagnosis and treatment
are of utmost importance in improving the prognosis of PDAC. Since its introduction,
endoscopic ultrasound (EUS) has been used for the detection of pancreatic mass lesions
and their characterization. Initially, only B-mode imaging was available in EUS for the
characterization of lesions. However, with advancements in technology, various imaging
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modes like EUS elastography and contrast-enhanced EUS (CE EUS) are now available for
better lesion characterization. Similarly, since its introduction, EUS-guided fine-needle
aspiration (FNA) has become a cornerstone in tissue diagnoses of pancreatic mass lesions.
Various dedicated aspiration and biopsy needles have been developed over the last two
decades, providing a high diagnostic accuracy and high-quality histological core to perform
molecular studies. Apart from its diagnostic role, EUS has a therapeutic implication in the
management of various aliments associated with pancreatic carcinoma, like celiac plexus
neurolysis or RFA (radiofrequency ablation) for pain management, EUS-guided biliary
drainage (as a primary modality or rescue therapy), EUS-guided gastrojejunostomy for
the management of gastric outlet obstructions, and EUS-guided RFA for locally advanced
tumors [8,9]. In this dedicated review, we focus our discussion on the recent advances and
the current role of EUS in the diagnosis of PDAC.

2. EUS in the Detection of Tumors

EUS is now a well-established modality in the detection of pancreatic lesions. Due to
its proximity with the entire pancreatic parenchyma from the stomach to duodenum and
good spatial resolution, even small lesions can be detected with a high accuracy. Compared
to abdominal ultrasound, in which the entire pancreas might not be evaluated due to gas
artifacts or body habitus, EUS has a better accuracy in detecting pancreatic lesions by
obviating both these problems. Studies have shown that the sensitivity of EUS is higher
than that of transabdominal ultrasound and computed tomography (CT) scans (94% vs.
67% vs. 74%; p < 0.05) in the diagnosis of PDAC [10]. EUS is even more clinically useful in
the presence of small lesions (<2 cm), as it provides a higher detection accuracy compared
to that of CT or magnetic resonance imaging (MRI). In a study by Muller et al., EUS had
a better sensitivity compared to that of CT and MRI for the detection of small pancreatic
lesions < 30 mm (93% vs. 53% and 67%, respectively) [11]. Similarly, in another study by
Sakamoto et al., EUS proved to be superior to CT for lesions smaller than 20 mm with a
sensitivity of 94.4% (vs. 50%) [12]. Additionally, for lesions smaller than 10 mm, EUS has
shown a higher sensitivity compared to that of transabdominal ultrasound, CT, and PET
scans (sensitivity > 80%, 17–70%, 33–75%, and 50%, respectively) [13]. In a meta-analysis
involving 206 patients with suspected pancreatic masses but indeterminate CT scans, EUS
showed a pulled sensitivity, specificity, and accuracy of 85%, 58%, and 75%, respectively, in
the detection of pancreatic lesions. Pancreatic masses were diagnosed in 70% of patients
(42% were adenocarcinoma) with a mean tumor size of 21 ± 1.2 mm, which highlights
the impact of EUS for small lesions of the pancreas [14]. Similarly, EUS is more accurate
compared to MRI in the detection of solid pancreatic lesions (100% vs. 22%; p < 0.001) in
high-risk individuals during the surveillance period [15].

For B-mode EUS imaging, PDAC usually appears as a heterogenous, hypoechoic mass
lesion with irregular borders. There might be upstream parenchymal atrophy with or
without main pancreatic duct dilation [16]. Pancreatic in situ carcinoma might present
as just focal narrowing/stricture in the pancreatic duct with surrounding hypoechoic ar-
eas [17]. However, some lesions can also have atypical features, such as the presence of a
small amount of calcification, cystic areas, or isoechoic lesions, compared to surrounding
pancreatic parenchyma. Compared to this finding, pancreatic neuroendocrine tumors
usually present as well-circumscribed, homogenous, hypoechoic lesions with clearly reg-
ular borders. In comparison, autoimmune pancreatitis might have a homogenous lesion
that is hypoechoic in nature with parenchymal heterogenicity and bile duct wall thick-
ening [16]. However, these findings are not entirely specific to PDAC; other lesions like
mass-forming chronic pancreatitis, lymphoma, pancreatic tuberculosis, or metastatic tu-
mors in the pancreas can also produce similar findings. So, histological prediction is
difficult in some patients when it is only based on B-mode imaging, necessitating the need
for tissue acquisition from the same setting.
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3. Role of EUS in the Staging of Tumors

EUS is helpful in the locoregional staging of pancreatic adenocarcinoma in terms of
vascular involvement, lymph node metastases, the detection of small hepatic metastasie,
and the diagnosis of minimal ascites or peritoneal carcinomatosis. Studies have shown
that EUS is more accurate in the detection of vascular involvement compared to CT scans,
especially in the detection of venous involvement. The sensitivity and specificity of EUS
for the detection of tumor vascular invasion range from 42% to 91% and from 89% to
100%, respectively, in different studies [10]. In a meta-analysis involving 30 studies with
1554 patients, the pooled sensitivities of EUS and CT were 72% and 63%, respectively, and
the pooled specificities of EUS and CT were 89% and 92%, respectively. In a sub-group
analysis of nine studies in which EUS and CT were both performed, CT showed a lower
sensitivity compared to that of EUS (48% vs. 69%) [18]. Moreover, the sensitivity of EUS is
also higher for the detection of portal vein involvement compared to superior mesenteric
vein/artery or celiac artery involvement. This may be due to technical difficulties in
providing entire images of these vessels, due to obscuration by large tumors in the uncinate
or inferior portion of the pancreatic head [10]. Contrast-enhanced EUS (CE EUS) can be
also of value in detecting subtle portal venous involvement missed by conventional EUS
or CT [19,20]. There are four types of vascular involvement in pancreatic cancer: type
1, clear invasion with the encasement of a vessel by a tumor; type 2, a tumor that is in
contact with a vessel with the loss of the hyperechoic vessel layer with or without vessel
irregularity or luminal narrowing; type 3, a tumor that contacts a vessel without the loss
of the hyperechoic vessel layer; and type 4, clear non-invasion with distance between the
tumor and vessel [21]. Apart from that, tumor thrombus within the vessel or the presence
of collaterals surrounding the tumor can also be found [22] (Figure 1).
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with surrounding vessels. (b) Hypoechoic irregular mass lesion near pancreatic head that is abutting 
SMV; however, fat planes within the vessel are still patent (white arrow). (c) Heterogenous hypo-
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Hypoechoic mass lesion in pancreatic body completely encasing splenic artery. 

Figure 1. Pancreatic ductal adenocarcinoma on EUS examination with different degrees of vascular
involvement. (a) Hypoechoic irregular mass lesion in uncinate process that has clear non-invasion
with surrounding vessels. (b) Hypoechoic irregular mass lesion near pancreatic head that is abutting
SMV; however, fat planes within the vessel are still patent (white arrow). (c) Heterogenous hypo-
isoechoic mass lesion in pancreatic head with loss of fat planes with splenic-portal confluence.
(d) Hypoechoic mass lesion in pancreatic body completely encasing splenic artery.

For N staging, a meta-analysis has also shown that EUS has a better sensitivity (58%
vs. 24%) and a similar specificity (85% vs. 88%) to those of CT in detecting lymph node
involvement [23,24]. Malignant lymph nodes on EUS usually have a size > 10 mm, a round
shape, a sharply demarcated border, and are hypoechoic in nature [25].
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EUS also has a beneficial role in the diagnosis of small hepatic malignancies. In a
prospective study by Okasha HH et al., EUS could detect 7.9% of incremental focal liver
lesions and 5.8% of liver metastases that were missed by CT and MRI imaging, with the
median size of the hepatic lesions being 12 mm [26]. From another prospective study
by Singh P et al., EUS also showed a better sensitivity compared to that of CT in the
diagnosis of small liver lesions (40% vs. 19%; p = 0.008) [27]. EUS has a better accuracy in
detecting minimal ascites or omental thickening in pancreatic carcinoma, and sampling
can be performed withing the same session for the detection of metastases to avoid futile
surgeries [28,29]. Similarly, a diagnosis of perivascular cuffing suggestive of extravascular
migratory metastases (EVMMs) can be made via EUS. In a study by Rustogi T et al., EUS
could detect EVMMs that were initially missed by CT or MRI as perivascular cuffing
in an additional 28% of patients with PDAC. In that study, the disease was upstaged in
14 patients from resectable to unresectable after EUS-guided FNA of EVMMs [30]. Similarly,
in a recent meta-analysis involving 795 patients, EUS could identify unresectable disease
in 14% of patients in whom initial cross-sectional imaging showed resectable disease [31]
(Figure 2). So, EUS is an extremely valuable modality in patients with potentially resectable
disease for accurate T and N staging as well as the diagnosis of previously missed hepatic
metastases, ascites, or EVMMs, so that futile laparotomies can be avoided. However, being
operator-dependent, interobserver variability and the availability of a trained physician are
of utmost importance in providing optimal clinical results. The National Comprehensive
Cancer Network (NCCN) and European Society of Medical Oncology (ESMO) guidelines
also recommend EUS for equivocal pancreatic lesions that are iso-dense in CT and the
assessment of venous involvement. A biopsy may be obviated in resectable cases of patients
who are scheduled for direct surgery; however, tissue diagnosis is required for borderline
or locally advanced lesions before starting chemotherapy [32,33].
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Figure 2. (a) Peri-vascular cuffing surrounding celiac axis (4.1 mm; green arrow) in a case of
pancreatic adenocarcinoma. (b) Segment III hepatic lesion (green arrow) in a known case of pancreatic
adenocarcinoma which was undetected in pre-procedure CT scan.

4. Role of Contrast-Enhanced EUS

CE EUS allows for the characterization, differential diagnosis, and accurate staging
of pancreatic lesions. Typically, pancreatic carcinoma is hypo-enhancing, neuroendocrine
tumors are hyper-enhancing, and autoimmune pancreatitis/mass-forming pancreatitis is
iso-enhancing compared to surrounding pancreatic parenchyma on CE EUS [34] (Figure 3).
A recent meta-analysis has shown a pooled sensitivity and specificity of 91% and 86%,
respectively, in the diagnosis of pancreatic adenocarcinoma [35]. Apart from the qualitative
image, a quantitative analysis using a TIC (time-intensity curve) can be also of value in
evaluating CE EUS images. A TIC shows peak enhancement values, which help in the
differentiation of chronic pancreatitis from pancreatic carcinoma [36]. Moreover, the peak
enhancement value also shows a correlation with microvascular density in histological
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analyses [37]. CE EUS has also been shown to perform better compared to conventional
EUS in characterizing vascular invasion by mass lesions. After contrast injection, portal
vein borders can be delineated better, resulting in a higher accuracy compared to that of
conventional EUS or CT scans. In a single-center, retrospective study by Nakai A et al., the
diagnostic accuracy of CE EUS was better than that of B-mode EUS or CT for diagnosing
portal vein invasion (93.2%, 72.7%, and 81.8%, respectively; p < 0.05) [19]. In a similar
study by Imazu H et al., the accuracy of the T staging of CE EUS was better compared to
that of conventional EUS (92.4% vs. 69.2%; p < 0.05) [38]. Similarly, prospective studies
have also shown that the use of contrast-enhanced EUS (CE EUS) has a better sensitivity
compared to that of CT or EUS in detecting small liver lesions < 10 mm in size (93.3%
vs. 84.4% vs. 85.6%, respectively; p < 0.05) [39,40]. On CE EUS, lymph nodes can also be
examined for enhancement patterns, with malignant lymph nodes showing a heterogeneous
enhancement pattern compared to benign lymph nodes. In a study by Miyata T et al.,
the heterogenous enhancement pattern on CE EUS had better sensitivity compared to
conventional EUS for the assessment of lymph nodal metastases [41]. Apart from its
diagnostic role, CE EUS also helps in the selection of the target area for EUS-guided FNA.
In a recent meta-analysis involving six studies and 701 patients, the pooled sensitivity of CE
EUS-guided FNA was higher than that of EUS-guided FNA (84.6% vs. 75.3%; p < 0.001) [42].
However, in a recent randomized trial comparing CE EUS-guided FNB and conventional
FNB with fanning techniques, both arms had a similar diagnostic accuracy with similar
requirements for the median number of passes [43]. So, with the advent of newer EUS FNB
(fine-needle biopsy) needles, the routine use of CE EUS before EUS tissue acquisition (EUS
TA) remains questionable.
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Figure 3. Contrast-enhanced EUS using 4.8 mL of Sonozoid showing (a) early and iso-enhancement of
the lesion (blue arrow points towards lesion and white arrow points towards surrounding pancreatic
parenchyma) in a case of pancreatic neuroendocrine tumor. (b) Hypo-enhancement compared to
surrounding pancreatic parenchyma (blue arrow points towards lesion and white arrow points
towards surrounding pancreatic parenchyma) in a case of pancreatic adenocarcinoma.

5. EUS Elastography

Like CE EUS, EUS elastography has also been used for the better characterization of
pancreatic mass lesions. Two types of EUS elastography are strain elastography and shear
wave elastography. In strain elastography, interpretations can be both qualitative (using
a color pattern) or quantitative (using the strain ratio (SR) or strain histogram (SH)). On
qualitative examination, pancreatic malignant tumors are heterogeneous, predominantly
having a blue pattern (hard signal) with small green areas and a geographic appearance
compared to pancreatic neuroendocrine malignant lesions, which have a homogenous
blue pattern [44] (Figure 4). In a quantitative analysis, a SR greater than 10 represents
hard tissue (likely to be malignant) and <10 is intermediate (likely to be benign) [45]. A
SH mean < 50 indicates hard tissue suggestive of a malignancy, whereas a SH of 50–150
(intermediate) and >150 (intermediate-soft) indicate it is more likely to be benign [45].
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In a study among 86 consecutive patients with solid pancreatic lesions, the mean SR for
adenocarcinoma was 18.12 (95% CI 16.03–20.21) and for inflammatory masses was 3.28 (95%
CI 2.61–3.96), and both were significantly higher compared to those of a normal pancreas
(mean SR of 1.68) [45]. In a subsequent study, authors showed that for malignant pancreatic
tumors, at a cut-off of a SR >10 and a SH < 50, the sensitivity and specificity were 100%
and 92.3%, respectively [46]. In another study, the use of EUS elastography was superior to
dynamic CT and B-mode EUS with a higher sensitivity, specificity, and accuracy for staging
pancreatic carcinoma with a better delineation of vascular involvement [47]. Facciorusso A
et al. evaluated the utility of EUS-elastography-guided FNA for pancreatic lesions, and its
diagnostic accuracy, sensitivity, and specificity were favorable (94.4%, 93.4%, and 100%,
respectively) [48]. As it is a simple inbuilt procedure within the existing EUS system, no
extra cost is involved for the patient. In recent times, shear wave elastography (SWE) has
also been introduced into the EUS system; however, in the absence of prospective data and
standardization, its role in pancreatic carcinoma is yet to be explored [49].
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Figure 4. Strain elastography image showing (a) predominantly yellow-greenish hue (soft) with strain
ratio of 4.71 in a case of chronic pancreatitis; (b) heterogenous blue hue (hard) with strain ratio of 52.35
in a known case of pancreatic adenocarcinoma (‘A’ is selected as the largest circumference of target
lesion without involving intervening vessels and ‘B’ is selected as reference usually surrounding
gastrointestinal wall).

6. EUS-Guided Tissue Acquisition: Techniques and Variations

In recent years, the role of neoadjuvant chemotherapy has significantly expanded
to improve clinical outcomes in patients with borderline resectable and locally advanced
PDAC. Moreover, recently, neoadjuvant chemotherapy has also been explored in resectable
PDAC to improve clinical outcomes. Subsequently, the role of pre-operative tissue diag-
nosis for neo-adjuvant chemotherapy and precision medicine has also expanded in recent
times [32,50]. EUS tissue acquisition is a procedure in which tissue is procured from the
target lesion under endosonographic guidance using dedicated needles to establish a tissue
diagnosis. Apart from tissue acquisition from the primary tumor, EUS also offers a sampling
of locoregional and distant lymph nodes, concomitant liver lesions (suspicious metastases),
and minimal ascites, which have a seminal role in management decisions. Studies have
shown that EUS TA has a better accuracy compared to that of EUS- or CT-guided tissue
acquisition in patients with pancreatic lesions [51]. Moreover, in the last decade, EUS TA
has undergone a paradigm shift due to the availability of different needles, different modes
of suction, and sample handling techniques to yield a better tissue material equivalent to
the histological core [52].



Diagnostics 2024, 14, 78 7 of 27

6.1. EUS FNB and FNB Needles
6.1.1. EUS FNB Needles

Currently, a plethora of EUS FNB needles are available from various manufacturers
(for example, EZ Shot 3 Plus, Olympus; Echotip Ultra, Cook; Expect and Expect Slimline,
Boston Scientific) in different diameters, starting from the stiffer 19G needles to the more
flexible 20G, 22G, and 25G needles. Stiff 19G needles, despite their presumed superior
diagnostic accuracy, are difficult to maneuver, especially for head lesions, and can lead
to scope trauma and technical failures [53]. To obviate this problem, 19G Nitinol needles
were designed with better flexibility. Laquiere A et al. conducted a randomized trial
comparing the 19G nitinol needle with the 22G needle for a trans-duodenal puncture from
pancreatic solid lesions. The 19G needle had a lower technical success rate (86.4% vs. 100%;
p = 0.003), lower diagnostic accuracy (69.5% vs. 87.3%; p = 0.02), and inferior ergonomic
score (p < 0.001) compared to the 22G needle [54]. The 25G needle is more flexible, easily
maneuverable, has a lower risk of blood contamination and improved accessibility for
smaller and hypervascular lesions, and is preferred for sampling from difficult-to-access
sites like uncinate process lesions and from more fibrous solid lesions. Madhoun MF et al.
conducted a meta-analysis of eight studies involving 1292 subjects and the 25G needle had
a higher sensitivity compared to that of the 22G (93% vs. 85% respectively) with a similar
specificity (97% vs. 100%) [55]. However, two other meta-analyses have failed to show any
significant difference between the 22G and 25G EUS FNB needles [56,57]. Recent ESGE
Guidelines on EUS-guided tissue acquisition also recommend 22G or 25G needles for EUS
TA from pancreatic solid lesions [58].

6.1.2. EUS FNB Needles

Though EUS FNA needles can provide tissue for cytological yield, their diagnostic
accuracy is limited in the presence of pauci-cellular tumors or marked desmoplastic reac-
tions as well as in situations in which the examination of tissue stroma is essential, like in
lymphoma. EUS FNB has the advantage over FNA due to its ability to acquire a higher cell
count, maintain tissue architecture, and provide tissue for molecular profiling [59]. EUS
FNB needles have evolved significantly over the years in terms of their design and technical
modifications. EUS FNB needles can be divided into first-generation true-cut needles
(Quick core, 19G, Cook Endoscopy, Limerick, Ireland), second-generation reverse-bevel
needles (Echo Tip Procore needle (19, 22, and 25G) Cook Endoscopy, Limerick, Ireland), and
third-generation needles (fork-tip needle, e.g., shark core needle by Medtronic, Minneapolis,
MN, USA; Franseen tip needle, e.g., Acquire needle by Boston Scientific, Marlborough,
MA, United States; SonoTip TopGain needle by Medi-Globe, Achenmühle, Germany; and
the forward-facing bevel needle with core-trap technology, e.g., Procore needle by Cook
Medical, Limerick, Ireland) (Table 1). Though earlier studies on first-generation needles
showed equivalent diagnostic yields between EUS FNB and EUS FNB (although fewer
passes were required in the former group), subsequent high-quality prospective studies
and randomized controlled trials using second- and third-generation EUS FNB needles
show the superiority of EUS FNB over FNA [60]. In a multi-center RCT by Cheng et al.,
a subgroup analysis for patients with pancreatic masses showed the superior diagnostic
accuracy of the reverse-bevel EUS FNB needle over the 25G EUS FNB needle (93% vs. 82%,
respectively, p < 0.01) [61]. In a similar study by van Riet et al., the forward-bevel Procore
20G EUS FNB needle a showed superior diagnostic accuracy (87% vs. 78%, p = 0.002)
and histological tissue yield (77% vs. 44%, p < 0.001) compared to those when using EUS
FNB needles [62]. In a recent meta-analysis by Renelus BD et al. involving 19 studies
(1365 patients), FNB had a better diagnostic accuracy (87% vs. 81%; p = 0.005), better
cytopathological accuracy (87% vs. 81%; p = 0.005), and reduced number of passes required
(1.6 vs. 2.3; p < 0.001) with similar adverse event rates (1.8% vs. 2.3%; p = 0.64) compared
to FNA [63].
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Table 1. EUS tissue acquisition needles.

Type of Needle, Needle Design Proprietary Name, Needle Diameter Manufacturer

EUS FNA needle

Menghini type

Beacon EUS Delivery system with BNX FNA preloaded needle Beacon Endoscopic, Newton, MA, USA
BNX FNA needle (without sheath) Beacon Endoscopic, Newton, MA, USA

Expect 19, 22, 25G Boston Scientific, Marlborough, MA, USA
Expect Flex 19G Boston Scientific, Marlborough, MA, USA

Expect Slimline 19, 22, 25G Boston Scientific, Marlborough, MA, USA
Expect Slimline Flex 19G Boston Scientific, Marlborough, MA, USA

ClearView 19, 22, 25G Conmed, Billercia, MA, USA
ClearView Sheath Stabilizer 22, 25G Conmed, Billercia, MA, USA

ClearView Extended Bevel 22G Conmed, Billercia, MA, USA
SonoTip Pro Control 19, 22, 25G MediGlobe GmbH, Achenmühle, Germany

EchoTip Ultra 19, 22, 25G Cook Medical, Bloomington, IN, USA
EchoTip Ultra coil sheath 22G Cook Medical, Bloomington, IN, USA
EchoTip Ultra HD Access 19G Cook Medical, Bloomington, IN, USA

EZ shot 2 19, 22, 25G Olympus America, Center Valley, PA, USA
EZ shot 2 sideport 22G Olympus America, Center Valley, PA, USA
EZ shot 3 plus 19, 22G Olympus America, Center Valley, PA, USA

EUS Sonopsy CY™ 21G Hakko Co., Tokyo, Japan

EUS FNB needles

Forward-bevel Echotip Procore 20G Cook Medical, Bloomington, IN, USA
Reverse-bevel Echotip Procore 19, 22, 25G Cook Medical, Bloomington, IN, USA

Fork-tip SharkCore 19, 22, 25G Medtronic, Dublin, Ireland
Beacon EUS delivery system with SharkCore preloaded FNB

needle 19, 22, 25G Medtronic, Dublin, Ireland

Franseen Acquire 19, 22, 25G Boston Scientific, Marlborough, MA, USA
Sonotip Topgain 19, 22, 25G Mediglobe, Achenmühle, Germany

Abbreviations: EUS: Endoscopic ultrasound, FNA: Fine-needle aspiration; FNB: Fine-needle biopsy.

Regarding the various types of FNB needles, an RCT compared the 22G Franseen
needle (Acquire) with the 20G forward-bevel Procore needle, in which the Franseen needle
showed a significantly higher tissue length (mean length of 11.4 mm vs. 5.4 mm, p < 0.001)
and surface area (mean surface area of 3.5 mm2 vs. 1.8 mm2, p < 0.001) of the sample
compared to those of the 20G Procore needle. Higher diagnostic adequacy was obtained
with the Franseen needle (87% vs. 67%, p = 0.02) [64]. In other studies, in suspected
type 1 autoimmune pancreatitis patients, similar results were shown [65]. In randomized
trials, Franseen needles and fork-tip needles were similar in terms of diagnostic adequacy
(94.9–96% vs. 92–97.2%), and accuracy (92.3% vs. 94.4%) [66,67]. In a systematic review
and meta-analysis among patients with solid mass lesions, both fork-tip and Franseen
needles had similar diagnostic yields (92.8% vs. 92.7%, p = 0.98), with and without using
ROSE (95.9 vs. 93.7%; p = 0.25) and between ≤two and >two needle passes (90.6% vs.
93.3%; p = 0.56) [68]. In a recent network meta-analysis of 16 RCTs (n = 1934) comparing
different types of FNB needles in sampling pancreatic solid masses, Franseen and fork-tip
needles were the two best-performing EUS FNB needles with significant advantages over
reverse-bevel needles and EUS FNB needles for diagnostic accuracy and tissue adequacy.
However, no significant difference was found between Franseen and fork-tip needles.
Regarding diagnostic accuracy, both 22G Franseen and fork-tip needles were superior
to 22G reverse-bevel needles (RR, 1.22 (95% CI, 1.03–1.44) and 1.19 (95% CI, 1.03–1.38),
respectively). For sample adequacy, the 25G Franseen needle was superior to the 22G
reverse-bevel needle (RR, 1.12 (95%CI, 1.02–1.22)). The 22G Franseen needle was found to
be the best-performing EUS FNB needle regarding diagnostic accuracy, and the 22G and
25G Franseen needles followed by the 22G fork-tip needle were the two best-performing
needles regarding sample adequacy [69]. Moreover, apart from diagnostic accuracy, these
needles have also shown better performance in terms of the genetic profiling of tumors, the
detection of actionable molecular alterations, and microsatellite instability (MSI), which
have significant implications in personalized treatment as discussed below.

6.2. Technical Aspects in EUS TA

To maintain tissue integrity, improve the cellularity of the sample, and reduce blood
contamination, various suction and sampling techniques have been described in the lit-
erature, including dry suction, wet suction, capillary suction with the stylet slow-pull
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technique (CSSS), door knock, and fanning techniques. In the conventional suction method,
10 mL of negative pressure is usually used, though a higher negative pressure has shown
superior tissue adequacy in studies [70–72]. The wet suction technique was found to be su-
perior in terms of tissue adequacy and cellularity in prospective randomized studies [73–75].
In a systematic review and meta-analysis of six studies (n = 418) including three RCTs, the
wet suction technique was shown to be superior to the dry suction technique in terms of
sample adequacy (pooled OR of 3.18; 95% confidence interval (CI): 1.82–5.54; p = 0.001) with
no significant difference in blood contamination and histological diagnosis [76]. The stylet
slow-pull technique has shown comparable results to conventional suction techniques
with a mean of two passes for solid pancreatic lesions [77–79]. For cirrhotic patients and
in the presence of coagulopathy, suction is usually avoided as it increases contamination
in blood [80]. Keeping the stylet provides a few additional advantages by increasing the
stiffness of the needle and helping remove material obtained from gastrointestinal wall
punctures [80]. In a recent network meta-analysis of 16 studies (n = 2048), these tech-
niques were compared (including no suctioning and the wet suction, dry suction, and
stylet slow-pull techniques), and no difference among the various suction techniques was
found in terms of their tissue adequacy, diagnostic accuracy, and moderate-to-high lev-
els of cellularity. When adjusted for the effect of the type of needle used, no difference
was found among these techniques in terms of the bloodiness of the sample [81]. So, the
decision to use suctioning and the type of suctioning should be made using more of an
individualized approach, depending on the type of lesion, presence of comorbidities, and
operator experience.

Regarding the different techniques of EUS TA, the fanning technique and door-knock
technique are the most used techniques during the needle pass. In the fanning technique,
the elevator and big wheel of the scope are used to change the trajectory of the needle to
improve diagnostic accuracy by sampling from different areas of the lesion. In a randomized
trial by Bang JY et al., the fanning technique was found to require a fewer number of passes
for diagnosis (median of 1 (interquartile range 1–3) vs. 1 (1–1); p = 0.02) and had higher
accuracy of diagnosis after the first pass (57.7% vs. 85.7%; p = 0.02) compared to the
standard technique [82]. In a prospective study, the slow-pull plus fanning technique has
been shown to have a superior diagnostic accuracy (88% vs. 71%, p = 0.044) and less blood
contamination (77% vs. 56%, p = 0.041) compared to the standard suction technique [83]. In
the door-knock technique, the needle hits the handle after a sharp smart movement into
the target, which produces a knocking sound. In a multicenter prospective cross-over trial,
the tissue acquisition rate of the door-knock technique was found to be similar to that of
the conventional method; however, the tissue acquired from the door-knock technique
had high levels of cellularity compared to those acquired from the conventional method
(54.9% vs. 41.5%, p = 0.03) [84].

Regarding the required optimum number of passes and actuation during EUS TA,
Uehara et al. conducted a retrospective study in which they showed the optimum number
of passes required for lesions in the head of the pancreas with a size less than 15 mm was
three. For a lesion in the head region that is >15 mm in size or a lesion in the body/tail
that is < 15 mm in size, the optimum number of passes was two, and for a lesion in the
body or tail region >15 mm in size, only one pass was adequate. The overall sensitivity was
93% using this approach [85]. Recently Paik WH et al., did a randomized trial comparing
various suction methods and actuation per pass for pancreatic solid mass. In that study,
15 actuation per pass had better diagnostic accuracy compared to 10 actuations with non-
suction techniques. However, when using suction or CSSS, diagnostic accuracy between
10 and 15 actuation was similar [86]. However, both these studies were performed using
FNA needles. Zhou W et al. conducted a randomized trial using the 22G FNB needle for
the sampling of pancreatic solid lesions. The authors recommended at least three passes
using suctioning or four passes without suctioning for the optimal diagnostic accuracy
in patients with solid pancreatic lesions [87]. Takahashi K et al. performed a multicentric
randomized trial comparing three vs. twelve to-and-fro (TAF) movements in patients
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with solid pancreatic tumors using the FNB needle. In that study, the diagnostic accuracy
of three TAFs was not inferior to that of twelve TAFs (88.6% vs 89.5%) with less blood
contamination with three TAFs compared to twelve TAFs [88].

6.3. Role of On-Site Evaluation of the Sample (ROSE and MOSE)
6.3.1. ROSE in EUS TA

The presence of on-site cytopathologists increases the likelihood of adequate tissue
sampling and helps in real-time diagnoses to deter endosonologists from taking unnec-
essary extra samples. However, they have limited availability, especially in resource-
constrained settings with an added cost that might not be justifiable in routine clinical
practice. In an initial study by Wani et al., the addition of ROSE (rapid on-site evalua-
tion) was associated with fewer passes (the median number of passes was four vs. seven,
p < 0.0001) with a similar diagnostic accuracy, procedure time, number of adverse events,
and cost when compared to those of EUS FNB without a cytopathologist [89]. Subsequently,
in a randomized non-inferiority trial, seven passes without an on-site pathologist were
shown to be non-inferior to EUS FNB with an on-site pathologist (the absolute difference
was 0.2%) [90]. Recently, Crino SF et al. conducted a multi-center randomized trial compar-
ing EUS FNB with or without ROSE in patients with solid pancreatic lesions. Both arms
showed a similar diagnostic accuracy (96.4% vs. 97.4%; p = 0.396). EUS FNB without ROSE
had a higher tissue core rate (70.7% vs. 78.0%; p = 0.021) and a reduced procedure time
compared to EUS FNB with ROSE [91]. Similarly, Chen YI conducted a multicentric trial
comparing EUS FNB with EUS FNB+ROSE in patients with pancreatic lesions. Both arms
had a similar diagnostic accuracy (92.2% vs. 93.3%; p = 0.72) with a lower number of passes
required in the EUS FNB group (2.3 vs. 3.0; p < 0.001) compared to the EUS FNB + ROSE
group [92]. These studies show that the routine use of ROSE in the presence of newer
generations of FNB needles is limited.

6.3.2. MOSE in EUS TA

Macroscopic on-site evaluation (MOSE) was first introduced by Iwashita et al., who
described the macroscopic visible core (MVC) as whitish or yellowish bulky tissue frag-
ments in the absence of liquid and paste-like material. In that study, the investigators
used the 19G EUS FNB needle and found that an MVC > 4mm indicates sample adequacy
and can improve diagnostic adequacy. In their multivariate analysis, pancreatic lesions
(OR 2.92, 95% CI: 1.06–9.09, p = 0.03) and an MVC ≤ 4mm (OR 15.12, 95% CI: 5.81–45.02,
p < 0.0001) had higher false negative results [93] (Figure 5). In a prospective study among
204 patients using the 22G Franseen tip EUS FNB needle for sampling solid pancreatic
lesions, the authors found a high accuracy at an MVC cut-off length of ≥3 mm, especially
when scheduled for next-generation sequencing (NGS) [94]. In a multicentric randomized
trial, involving lesions more than 2 cm in size, EUS TA with MOSE had a similar diagnostic
accuracy (92.6% vs. 89.3%, p = 0.37) to that of conventional EUS TA with fewer passes
required (two vs. three; p < 0.001) [95] (Table 2).
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Figure 5. Showing macroscopic visible core (MVC) (whitish bulky tissue fragments) (blue arrow)
with individual fragment >4 mm in size and total segment size of 3.2 cm (obtained using 22G
Acquire needle).
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Table 2. Summary of recent meta-analysis of diagnostic EUS in pancreatic cancer.

SRMA
(Author, year)

Number of
Studies and

Total Number
of Patients (n)

Modality/Comparison Type of Lesion Main Outcome
Measure Sensitivity (%) Specificity (%) PPV NPV Adequacy (%) Accuracy (%) Contamination (%) Other Parameters

(%)
Adverse Events

(%)

Role of Diagnostic EUS

Rahman MIO
et al., 2020 [96] 2 studies, n = 77 EUS vs. CECT in

pancreatic protocol

Neoplastic
pancreatic

lesions

Diagnostic
accuracy for
pancreatic

cancer
resectability

87 63 - - - - - Similar diagnostic
OR (p > 0.05) -

Krishna SG
et al., 2017 [14] 4 studies

EUS after an
indeterminate

MDCT

Suspected
pancreatic

malignancies

Diagnostic
performance for

detection of
pancreatic

malignancies

85 58 77 66 - 75 - - -

Li Y et al.,
2019 [97]

16 studies,
n = 1325

CE EUS for
pancreatic masses

Pancreatic
masses

Diagnostic
performance of
CE EUS for the
differentiation
of pancreatic

masses

93 84 - - - - -
LR+ 5.58
LR− 0.09

DOR 72.5%
-

Yamashita Y
et al., 2019 [98]

9 studies,
n = 887 CE EUS Pancreatic

cancer

Diagnostic
performance for

diagnosing
pancreatic

cancer

93 80 - - - - -
LR+ 4.56
LR− 0.09

DOR 59.89
-

Shin CM et al.,
2023 [99]

6 studies,
n = 430

Combined CE EUS
and EUS

elastography in
solid pancreatic

lesions

Solid pancreatic
lesions

Diagnostic
performance in

detecting
pancreatic

malignancies

84 85 - - - - -
LR+ 5.31
LR− 0.15

DOR 67.72
-

Facciorusso A
et al., 2021 [100]

6 studies,
n = 701

CE EUS-guided vs.
standard EUS FNA

in pancreatic
masses

Solid pancreatic
lesions

Diagnostic
outcome

84.6 vs. 75.3
(p < 0.001) 100% both - - 95.1 vs. 89.4

(p = 0.02)
88.8 vs. 83.6

(p = 0.05) -

Histological core
procurement

p = 0.08, number of
needle passes

p = 0.29

-

EUS tissue acquisition (EUS TA)

Banafea O et al.,
2016 [101]

20 studies,
n = 2761 EUS FNB Pancreatic mass Diagnsotic

accuracy 90.8 96.5 - - - 91 -
LR+ 14.8
LR− 0.12

DOR 142.47

35 of
1760 patients in

15 studies

Guedes HG
et al., 2018 [56]

4 studies,
n = 504

22G versus 25G
needles in EUS
FNB for solid

pancreatic mass
Solid pancreatic

masses
Diagnostic

performance
91 vs. 93
p>0.05

83 vs. 87
p>0.05 - - - - -

LR+ 4.26 vs. 4.57
LR− 0.13 vs. 0.08

p > 0.05
-

Xu MM
et al. [102]

11 studies,
n = 837

22G vs. 25G EUS
FNA needle

Solid pancreatic
lesions

Diagnostic
performance

88 vs. 92
p = 0.046

100 vs. 100
p = 0.842 - - - - -

LR+ 12.61 vs. 8.44
LR− 0.16 vs. 0.13

AUSROC
0.97 vs. 0.96

-

Tian G et al.,
2018 [103]

16 studies,
n = 1824

22G vs. 25G EUS
FNA needle

Masses with
suspicion of
pancreatic

cancer

Diagnostic yield
for the detection

of pancreatic
cancer

89 vs. 90
p = 0.02

100 vs. 99
p = 0.15 - - - - -

LR+
485.28 vs. 59.53

LR− 0.11 vs. 0.10
AUROC 0.97

for both

-
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Table 2. Cont.

SRMA
(Author, year)

Number of
Studies and

Total Number
of Patients (n)

Modality/Comparison Type of Lesion Main Outcome
Measure Sensitivity (%) Specificity (%) PPV NPV Adequacy (%) Accuracy (%) Contamination (%) Other Parameters

(%)
Adverse Events

(%)

Yang Y et al.,
2016 [104]

16 studies,
n = 828 EUS FNB

Solid malignant
pancreatic

lesions

Diagnostic
accuracy 84 98

LR+ 8
LR− 0.17
DOR 64

AUROC 0.96
-

Reneleus et al.,
2021
[63]

11 studies,
n = 1365 EUS FNB vs. FNA Solid pancreatic

lesions

Diagnostic
accuracy and

safety
- - - - -

Diagnostic
accuracy of 87

vs. 81 (p = 0.005).
Cytopathological

accuracy of
89 vs. 82
(p = 0.04).

Histological
accuracy of

81 vs. 74
(p = 0.39)

-

Mean TSR was 99%
in both.

Mean needle
passes required for

adequate tissue
was 2.3 vs. 1.6

(mean difference
was 0.71)

(p < 0.0001)

2.3 vs. 1.8
(p = 0.64)

van Riet PA
et al., 2021 [62]

18 RCTs,
n = 2695

EUS FNB vs. FNA
for sampling

Solid pancreatic
and

non-pancreatic
lesions

Diagnostic
accuracy,
adequacy,
number of

passes, presence
of tissue cores,
and adverse

events

- - - - 90 vs. 88
(p = 0.76)

85 vs. 80
(p = 0.03)

High-quality
studies 82 vs. 74

(p = 0.002)

-

Mean number of
passes was lower

in FNB (mean
difference −0.54)

p = 0.03.
Presence of tissue

cores: 79 vs. 63
(p = 0.11)

0.8 vs. 1.0
(p = 0.8)

Hassan GM
et al., 2022 [105] 9 RCTs, n NA EUS FNB vs. EUS

FNA
Solid pancreatic

masses

Diagnostic
accuracy for the

diagnosis of
pancreatic

cancer

- - - - -

FNB had a
superior
accuracy

compared to
FNA (OR 1.87)

- - -

Bang JY et al.,
2016 [106]

9 studies,
n = 576

Procore vs.
standard EUS FNA

needle in solid
lesions

All solid lesions

Diagnostic
adequacy,
diagnostic
accuracy,

acquisition of
histological core

tissue, and
mean number of

passes

- - - - 75.2 vs. 89.0; OR
0.39 (p = 0.23)

85.8 vs. 86.2; OR
0.88 (p = 0.53) -

Rate of histological
core specimen

acquisition
(77.7% vs. 76.5%;
OR 0.94, p = 0.85).

Lower mean
number of passes

required for
diagnosis with the

ProCore needle
(SMD—1.2,
p < 0.001).

-

Li Z et al.,
2022 [107]

18 studies,
n = 2718

EUS FNB vs. EUS
FNB

Pancreatic and
non-pancreatic

solid lesions
(only solid
pancreatic
lesions are

mentioned in
the subgroup

analysis)

Diagnostic
accuracy,

number of
needle passes,

adequacy,
presence of

tissue cores, and
adverse events

- - - -

FNB had a
higher adequacy

(RR = 0.93)
p = 0.004

Similar pooled
accuracy

(RR = 0.97)
p = 0.13

-

Fewer number of
passes for

adequate sampling
in FNB group (MD

0.57) p < 0.00001.
Presence of tissue
core was similar
(RR 0.60) p = 0.16

Similar (RR 1.27)
p = 0.97
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Table 2. Cont.

SRMA
(Author, year)

Number of
Studies and

Total Number
of Patients (n)

Modality/Comparison Type of Lesion Main Outcome
Measure Sensitivity (%) Specificity (%) PPV NPV Adequacy (%) Accuracy (%) Contamination (%) Other Parameters

(%)
Adverse Events

(%)

Facciorusso A
et al., 2020 [108]

11 trials,
833 patients

22G FNB vs. 22G
FNA needle

Solid pancre-
atic lesions

Diagnostic
outcome and

tissue adequacy
93.1 vs. 90.4 100 in both - -

Slightly in
favour of FNB

(p = 0.61)
- -

No difference in
histological core

procurement
(p = 0.86).

Similar number of
passes in FNB (MD

-0.32, p = 0.07)

Six adverse
events in FNA
group and one
in FNB group

reported

Gkolfakis P
et al., 2022 [69] RCT 16, n = 1934 Different

FNB needles
Solid pancre-
atic masses

Diagnostic
accuracy
(network

meta-analysis)

94.6% with
Franseen needle,

93.9% with
Fork-tip needle,

90.4% with
Menghini-tip
needle, 82%

with
reverse-bevel
needle, and

87.4% with FNA
needle

Pooled
specificity 100%
with all needles

tested

- -

Franseen needle
was better than

FNA and
reverse-beveled

needles.
Fork-tip needles
were superior to
reverse-beveled

needle.
None was

superior when
compared to

FNA with ROSE.
Both 22G and
25G Franseen

needles
followed by the

22G fork-tip
needle showed

the highest
SUCRA scores

concerning
sample

adequacy

Franseen needle
was better than

FNA and
reverse-beveled

needles.
Fork-tip needles
were superior to
reverse-beveled

needle.
None was

superior when
compared to

FNA with ROSE.
The 22G

Franseen needle
ranked as the

best FNB needle
in terms of
diagnostic
accuracy

(SUCRA score
of 0.81)

- -

Pooled rate was
2.7% with

Franseen needle;
2% with

Fork-tip needle;
1.3% with

Menghini-tip
needle; 0.8%

with
reverse-bevel
needle, and

1.9% with the
FNA needle.

Facciorusso A
et al., 2019 [109]

24 studies,
n = 6641

Franseen vs.
fork-tip EUS FNB

needles

Pancreatic and
non-pancreatic

solid lesions
(only solid
pancreatic
lesions are

mentioned in
the subgroup

analysis)

Sample
adequacy

Similar
sensitivity

(95.3 vs. 93.4)

Similar
specificity [100] - - 97 vs. 92.6

(p = 0.006)
96.8 vs. 95.2

(p = 0.8) -

Histological core
procurement was

94 vs. 93.1 (p = 0.7).
Fewer number of
passes compared
to standard FNA

needles
(MD for Franseen
was -0.44 and for

Fork-tip
was −1.82)

-

Facciorusso A
et al., 2022 [110]

8 studies,
n = 2147

EUS FNB with and
without ROSE

Solid pancreatic
lesions

Sample
adequacy 94.3 vs. 91.5 - - -

EUS FNB with
ROSE is not

superior to EUS
FNB alone (95.5
vs. 88.9, p = 0.07)
especially when

end-cutting
needles

(compared to
reverse-bevel
needles) are

used

Superior in the
EUS FNB +

ROSE group
(OR = 2.49,

p = 0.03)

Number of needle
passes needed to
obtain diagnostic
samples was not

significantly different
(mean difference 0.07;

p = 0.62)

-
Only one study

reported
(Crino et al.)
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Table 2. Cont.

SRMA
(Author, year)

Number of
Studies and

Total Number
of Patients (n)

Modality/Comparison Type of Lesion Main Outcome
Measure Sensitivity (%) Specificity (%) PPV NPV Adequacy (%) Accuracy (%) Contamination (%) Other Parameters

(%)
Adverse Events

(%)

Kong F et al.,
2016 [111]

7 studies,
n = 1299

EUS FNB with
ROSE vs. EUS FNB

without ROSE
Pancreatic

masses

Diagnostic
adequacy, yield,

number of
needle passes,

pooled
sensitivity, and

specificity

91 vs. 85 100 in both - -

No significant
difference in
cytological
adequacy

No significant
difference in

diagnostic yield
-

LR+ 28.15 vs. 29.08
LR− 0.1 vs. 0.16.

Fewer needle
passes in ROSE
group (4 vs. 7,

p < 0.0001)

-

Lisotti A et al.,
2020 [112]

12 studies,
n = 505

Repeat EUS FNB
for the diagnosis of

solid pancreatic
masses

Solid pancreatic
masses

Diagnostic
performance of
repeat EUS FNB

in case of
negative or

inconclusive
first FNA

77 (83% with
ROSE) 98 99 61 - - - LR+ 38.9

LR− 0.23 -

Han S et al.,
2021 [113]

26 studies,
n = 3398 (in

primary NMA)
Various EUS
TA needles

Solid pancreatic
masses

Diagnostic
accuracy

compared to
22G Echotip
(Cook) EUS
FNA needle

(NMA)

- - - - -

Performance
score-wise:

22 G SharkCore
FNB needle

(Medtronic) >
22G EZ Shot 3

FNB needle
(Olympus) >
22G Acquire
FNB needle

(Boston
Scientific)

-

Diagnostic
accuracy was not

significantly
different between
needles with or
without suction
except 20G FNB

needle with
suction which

performed
significantly worse
than the 22G FNA

needle with
suction

-

Suction Techniques in EUS TA

Facciorusso A
et al., 2023 [42] 9 RCTs, n = 756 Various EUS FNB

techniques
Solid pancreatic

masses

Rates of sample
adequacy, blood
contamination,

and tissue
integrity (NMA)

Modified wet
suction was

most sensitive
(SUCRA score,
0.85) followed
by slow-pull

techniques and
no stylet

technique
(SUCRA scores,

0.66 and 0.48,
respectively)

- - -

Modified
wet-suction

technique was
best for

adequacy
(SUCRA score

of 0.90)
followed by

dry-suction and
slow-pull

techniques
(SUCRA scores
of 0.59 and 0.50,

respectively)

-

Higher level of blood
contamination seen

with dry-suction than
slow-pull technique;
no-suction technique

ranked as the best
strategy (SUCRA

score of 0.99)
followed by the

slow-pull technique
(SUCRA score of 0.65).
Modified wet-suction
(SUCRA score of 0.32)

and dry-suction
(SUCRA score of 0.12)

techniques showed
poor performance in

terms of blood
contamination of the

sample

Regarding tissue
integrity, modified

wet-suction
technique was

ranked as the best
strategy (SUCRA

score of 0.89)
followed by

slow-pull (SUCRA
score of 0.66) and

no-suction
(SUCRA score of
0.42) techniques

Uncommon and
usually mild,

without
significant
impact on

patient
outcomes

(abdominal pain
and bleeding)
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Table 2. Cont.

SRMA
(Author, year)

Number of
Studies and

Total Number
of Patients (n)

Modality/Comparison Type of Lesion Main Outcome
Measure Sensitivity (%) Specificity (%) PPV NPV Adequacy (%) Accuracy (%) Contamination (%) Other Parameters

(%)
Adverse Events

(%)

Ramai D et al.,
2021 [76]

6 studies,
n = 418

Wet vs. dry
suction techniques

Solid pancreatic
masses

Adequacy,
sample

contamination,
and histological

accuracy

- - - -

Wet-suction
technique has
superior tissue

adequacy
(pooled

adequacy rate of
91.9 vs. 77.32

(OR 3.18,
p < 0.001))

Wet-suction
technique is
superior in
histological

diagnosis (OR
of 3.68, pooled
rate of 84.06 vs.
68.87, p < 0.001).
Wet suction has
superior sample

quality, and
accuracy

Wet-suction
technique has

comparable blood
contamination (OR of
1.18, contamination

rate of 58.33 and 54.6,
p = 0.256)

- -

Giri S et al.,
2023 [81]

7 studies,
n = 2048

Various suction
techniques in

EUS TA

Solid pancreatic
and

non-pancreatic
lesions

Compare the
diagnostic

yields during
EUS TA (NMA)

- - - -

There was no
difference

between the
various

modalities. For
the SUCRA

analysis, WS >
SSP > DS > NS

No significant
difference in

ORs of
adequacy when

adjusted for
either of the
needle types.

For the SUCRA
analysis, WS >
NS > DS > SSP

When adjusting for
FNA needle, there
was no difference

between the
interventions

No significant
difference between

the studies with
respect to

moderate-to-high
cellularity of

samples

-

EUS TA in Presence of Biliary Stents

Facciorusso A
et al., 2023 [114]

7 studies,
n = 2458

EUS TA in
presence and

absence of
biliary stent

Solid pancreatic
head masses

Diagnostic
accuracy before
and after biliary

stenting in
jaundiced

patients with
pancreatic head

masses

Overall
diagnostic

sensitivity lower
in biliary stent

group
(82.9 vs. 87.5;

OR 0.59;
p < 0.001); in

SEMS subgroup
(p = 0.006) but
not in plastic
stent group
(p = 0.12)

- - -

No significant
difference in

adequacy
(p = 0.81)

No overall
significant
difference

85.4 vs. 88.1
(p = 0.07).

No significant
difference in

plastic stent vs.
no stent

(p = 0.67).
Significant

difference in
SEMS vs. no

SEMS (p = 0.05)

-

No significant
difference in

number of needle
passes (p = 0.38)

No significant
difference
(p = 0.75)

Giri S
et al., 2023 [115]

9 studies,
n = 3257

EUS TA in
presence and

absence of
biliary stent

Pancreatic
masses

undergoing
EUS TA

Diagnostic
accuracy of EUS
TA in presence
and absence of

biliary stent

79 vs. 88; Using
non-strict
criteria in

patients with
stents, the

sensitivity was
lower with
metal stents

than with
plastic stents
(83% vs. 90%)

- - -

Comparable in
stent vs.

non-stent
groups and in

plastic and
SEMS group

Lower accuracy
with stent (OR

of 0.58)
using non-strict

criteria and
comparable
sensitivity

between metal
stents and

plastic stents

-

Patients with
stents required

greater number of
passes (MD = 0.31)

-
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Table 2. Cont.

SRMA
(Author, year)

Number of
Studies and

Total Number
of Patients (n)

Modality/Comparison Type of Lesion Main Outcome
Measure Sensitivity (%) Specificity (%) PPV NPV Adequacy (%) Accuracy (%) Contamination (%) Other Parameters

(%)
Adverse Events

(%)

Advances of EUS

Chandan S et al.,
2020 [116]

9 studies,
n = 1308

EUS-guided
precipitation-

based LBC
conventional

smear

Solid pancre-
atic masses

Diagnostic yield
of EUS-guided
conventional

smear vs. LBC

Precipitation
based LBC

higher
sensitivity

(85.2 vs. 79.7)

Precipitation
based LBC
comparable
specificity

(99.5 vs. 99.4)

Precipitation
based LBC
compara-
ble PPV

(99.5
in both)

NPV was
found to
be higher

with
filtration-

based LBC
technique
(50.9%) as
compared
with CS
(46.2%)

and
precipitation-
based LBC
techniques

(35.4%).

-

Precipitation-
based LBC had

a higher
accuracy

- - -

Prasoppokakorn
T et al.,

2021 [117]

8 studies,
n = 870

AI-assisted
diagnosis of PDAC

by EUS
Pancreatic mass

AI-assisted
B-mode EUS

sensitivity and
specificity 90%,

91% respectively.
AI-assisted CE
EUS sensitivity
and specificity

95%, 95%
respectively.

AI-assisted EUS
elastography

sensitivity and
specificity 88%,

83%
respectively.

AI-assisted
EUS 91%

AI-assisted
B-mode

EUS 91%

AI-assisted
EUS 90%

AI-assisted
B-mode

EUS 90%

AI-
assisted
B-mode

EUS 94%

AI-
assisted
B-mode

EUS 84%
- - - - -

Dhali A et al.,
2023 [118] 21 studies

AI-assisted vs.
conventional EUS

for detection of
pancreatic SoLs

Diagnostic
performance

Higher accuracy
of AI-assisted

EUS for
detection and
differentiation

93.9 93.1 91.6 93.6 - 93.6 - - -

Abbreviations: PDAC—Pancreatic ductal adenocarcinoma; EUS—Endoscopic ultrasound; CE EUS—Contrast-enhanced EUS; EUS TA—EUS-guided tissue acquisition; FNA—Fine-needle
aspiration; FNB—Fine-needle biopsy; LBC—Liquid-based cytology; CS—Conventional smear; ROSE—Rapid on-site cytology evaluation; MOSE—Macroscopic on-site cytology
evaluation; SEMS—Self-expanding metal stent; WS—Wet-suction method; SSP—Stylate slow-pull method; DS—Dry-suction method; AI: Artificial intelligence; PPV—Positive predictive
value; NPV—Negative predictive value; OR—Odd’s ratio; RR—Relative risk; AUROC—Area under receiver operating curve; NMA—Network meta-analysis; LR—Likelihood ratio.
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6.4. Role of Repeat EUS TA

Although EUS TA (especially EUS FNB) has shown excellent sensitivity and diagnostic
accuracy, studies have shown that 5–10% of cases might have inconclusive results for which
the role of repeat EUS TA has been explored. In retrospective studies, repeat EUS FNB in
solid pancreatic lesions has been shown to reveal diagnoses in three-fourths of cases with
second EUS FNB showing a sensitivity of 80% [119]. In another study, the location of the
lesion, number of needle passes, type of needle used, diameter of the needle, and use of
suction were found to influence the performance of a repeat EUS TA. In this study, body
or tail lesions (vs. head, p = 0.005), ≥four passes (vs. ≤three passes, p = 0.011), the FNB
needle (vs. FNA needle; p = 0.004), the 22G needle (vs. 19/20G needle; p = 0.014), and the
use of suctioning (vs. other methods; p = 0.020) have been shown to improve the diagnostic
yield in solid pancreatic lesions in a multivariate analysis [120].

6.5. Effect of Biliary Drainage on EUS TA

There is no clear consensus to date regarding the appropriate chronology of EUS TA
and ERCP for extrahepatic biliary obstructions [121,122]. EUS TA has its limitations when
there is a biliary stent in situ (plastic or metal). This is due to stent-related artefacts, stent-
induced local inflammation, acoustic reverberations, and shadowing [123,124]. Studies
have reported there is a risk of understaging periampullary lesions resulting in unjustified
laparotomies due to the presence of biliary stents [125]. In a recent meta-analysis of nine
studies, EUS TA was shown to have lower diagnostic accuracy (for reportedly confirmed
malignancies; OR of 0.58; 95% CI, 0.46–0.74; I2 = 0.0%) and comparable tissue inadequacy
(OR of 1.12; 95% CI, 0.76–1.65; I2 = 0.0%) in groups in the presence of a stent compared the
absence of a stent [115].

6.6. Complications of EUS TA and Risk of Needle Tract Seeding (NTS)

EUS TA is minimally invasive and the risk of complications is minimal, which includes
abdominal pain, pancreatitis, bleeding, perforation, infection, and needle track seeding
(NTS) with an overall frequency ranging from 0 to 3% [80,126]. The majority of complica-
tions are mild and can be managed conservatively. NTS is an anticipated risk of EUS TA
especially for body and tail lesions of the pancreas when sampled through the trans-gastric
route. Park J S et al. conducted a retrospective study of 528 patients with distal pancreatic
cancer who underwent distal pancreatectomies. Among these, 193 patients had undergone
EUS FNB before surgery, and 335 had not. After resectioning, the recurrence rates were
comparable amongst both groups (EUS FNB: 72.7%; non-EUS FNB: 75%; p = 0.58) at a
median follow-up of 21.7 months and there was an equal cancer-free survival rate across
both the groups (p = 0.58) [127]. In a retrospective study by Yane et al., the 5-year cumula-
tive risk of NTS was shown to be 3.8% (95% CI 1.6–7.8%) without significantly affecting
overall survival and median recurrence-free survival rates [128]. In a recent meta-analysis
involving 10 studies (13,238 patients), the pooled rate of NTS was 0.3%. There was no
difference in terms of metachronous peritoneal dissemination observed between patients
who underwent EUS TA and non-sampled patients [42]. So, NTS after EUS TA remains an
important parameter to consider before performing EUS TA; however, it is not associated
with reduced cancer-free or overall survival.

In the authors’ personal experience, EUS TA starts initially with an optimum B-mode
image examination, the localization of masses and their vascular involvement, and the
confirmation of the presence or absence of local lymphadenopathy. For EUS TA, a 22G
Franseen needle is most commonly used, with the 25G needle reserved for lesions at
difficult locations like in the uncinate process. All attempts are made to perform EUS
TA from the duodenal station rather than from the gastric station to avoid needle track
seeding. During the needle pass, the fanning technique and wet-suction technique are
routinely used. Three passes with a macroscopic examination of the sampled tissue for
material adequacy are routinely performed. ROSE is usually reserved in case of previous
inconclusive results during a repeat EUS TA.
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7. Recent Advancement in EUS TA in Pancreatic Carcinoma
7.1. Role of EUS TA in the Era of Precision Medicine

In oncology, precision medicine comprises diagnoses as well as targeted therapies
based on genetic profiles, host factors, and environmental factors. In PDAC, precision
medicine is rapidly evolving, and in the era of next-generation sequencing (NGS), in which
a relatively limited amount of tissue sample can be successfully analyzed for the detection
of genetic alterations, EUS TA plays a major role. Such actionable molecular changes can be
seen in about one-fourth of PDAC which can be targeted with precision medicine [129]. The
detection of actionable molecular alterations has led to the development of various drugs
acting on one or multiple molecular pathways, like the KRAS and DNA mismatch repair
(MMR) pathway, and studies have shown better overall survival when patients are treated
with matched therapy (n = 143; 2.58 years vs. 1.51 years; hazard ratio (HR) of 0.42 (95%CI:
0.26–0.68), p < 0.001) [130]. Furthermore, other biomarker-based therapeutic agents are also
showing promising results in clinical trials (e.g., Pembrolizumab in refractory PDAC with
MSH-H/dMMR or TMB—high status) [131]. Thus, the role of adequate tissue acquisition
has expanded like never before, reemphasizing the various factors affecting diagnostic
adequacy. In a study by Bang JY et al., EUS FNB with a 22G Franseen needle produces a
better histological core with the maintenance of tissue architecture for molecular profiling
compared to an EUS FNB needle [132]. In a retrospective study, EUS FNB with a 22G
Franseen needle is shown to be superior to FNA for tissue adequacy to assess microsatellite
instability (88.9% vs. 35.7%, p = 0.03) [133]. In a recent randomized trial among 33 patients
using a 22G Franseen needle with the fanning technique and stylet pull maneuver, no
significant difference was found in terms of diagnostic adequacy, blood contamination,
adequacy, and concentration of extracted DNA and RNA when the patients were ran-
domized into two passes vs. three passes [134]. Recent NCCN guidelines recommend
germline testing in all cases of PDAC and molecular analyses for locally advanced and
metastatic cases [32]. Similarly, the American Society of Clinical Oncology (ASCO) also
encourages early biomarker testing in PDAC patients who are likely to be candidates for
precision-medicine-based targeted therapy after first-line chemotherapy [131]. Several
other targets are underway for the development of new therapeutics. In the near future, the
role of EUS FNB in precision medicine will be further explored, not only for tissue diagnosis
but also for molecular profiling to improve overall survival in patients with PDAC.

7.2. Role of Artificial Intelligence in EUS for Pancreatic Carcinoma

Although artificial intelligence (AI) has an expanding horizon in the field of gastroin-
testinal endoscopy, its role in pancreatic EUS is still primitive with limited studies for the
early detection of pancreatic cancer. The introduction of neural networks in AI algorithms
has led to significant improvements in AI-based diagnoses of pancreatic cancer. Convolu-
tional neural networks (CNNs) have proven to be superior over traditional neural network
models like support vector machines (SVMs) due to their better discriminative function,
and they are being developed for the regional recognition and classification of images for
the detection of pancreatic cancer. Several studies have evaluated the role of AI in EUS
for the detection of PDAC, differentiating PDAC from chronic pancreatitis (especially in
complex cases in which both entities co-exist), differentiating PDAC from autoimmune
pancreatitis (AIP), and the role of AI in EUS TA. For the detection of PDAC, retrospec-
tive studies have used SVMs and CAD (computer-aided design) models and have shown
promising results (with a diagnostic accuracy, sensitivity, and specificity of 98%, 94.3%,
and 99.5% for SVMs, and 87.5, 83.3, and 93.3% for CAD models, respectively) [135,136].
In a systematic review of 11 studies (n = 2292) using various AI-assisted EUS models,
the overall diagnostic accuracy, sensitivity, and specificity were 80–97.5%, 83–100%, and
53–99%, respectively [137]. For differentiating PDAC from CP, several models like ANN-
based digital image analyses, extended neural network (ENN)-based EUS-elastography,
CAD, self-learning ANN models, and SVM predictive models have shown promising
results, though most of these studies are small. In larger, multicentric prospective studies,
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ANN-assisted EUS-elastography models have shown an 84.3% testing accuracy and more
than 90% training accuracy [138]. High values of sensitivity, specificity, and PPV were
shown to differentiate PDAC from CP in another prospective study using an ANN-based
model with contrast-enhanced EUS [36]. In a recent systematic review and meta-analysis,
various algorithms were used for the detection of pancreatic cancer, like deep learning
(DL) and artificial neural networks (ANNs). Among the five high-quality studies included
in this meta-analysis, the pooled sensitivity and specificity for the AI-assisted detection
of pancreatic cancer were 93% and 92%, respectively [139]. In another recent systematic
review and meta-analysis of 10 studies (n = 1871), AI had promising results (with sensitivity,
specificity, AUROC, and diagnostic OR values of 92%, 90%, 0.95, and 128.9, respectively)
for the detection of pancreatic carcinoma. In this study, both ANNs and CNNs had a high
diagnostic accuracy, but CNNs were not the best for the detection of pancreatic cancer [140].
More large prospective studies are needed to evaluate the role of EUS in differentiating
PDAC from AIP. There are noteworthy limitations of AI-based models, like the lack of
standardization for the quality of data; information bias arising due to a lack of diversity of
data sources; poor-quality studies with methodological flaws; and the lack of transparent
reporting. Apart from these, there are always concerns related to ethical issues and the
‘black box’ problem, in which the reasoning of the algorithm used by AI is not clear to
clinicians. Despite these concerns, the use of AI as an adjunctive tool with EUS for diagnosis
of PDAC, in form of detection of lesion, and AI-guided TA is likely to expand in near future.
However, more large multicentric high-quality trials are needed. Until then, AI should
serve as a ‘second set of eyes’ for endo-sonologists [141].

7.3. Role of Organoid Technology in the Diagnosis of PDAC

As PDAC is a phenotypically and genomically heterogeneous tumor, it is difficult
to study the tumor behavior and treatment response ex vivo. EUS TA-derived samples
have been used for developing pre-clinical models for human PDAC, which are as fol-
lows: patient-derived cells (PDCs), patient-derived tumor xenografts (PDTXs), and patient-
derived organoids (PDOs) [142]. The results of PDTXs were not encouraging due to
the lack of availability of a sufficient number of cells or tissue; additionally, they were
more time-consuming and economically challenging. On the other hand, organoids are
three-dimensional reconstructed patient-derived cancer cells that retain the genomic and
transcriptomic profile of the primary tumor and can be maintained in vitro. Organoid
technology has recently revolutionized the area of cancer research due to its fascinating
ability to retain the genetic and phenotypic characteristics of the tumor or the primary
organ, thus functionally resembling them. This makes the identification of the PDAC
phenotype and therapeutic response to an anticancer drug possible in a controlled labora-
tory setting. Studies have demonstrated that the response to chemotherapeutic agents in
organoids can successfully predict their response in patients [143,144]. This efficacy of the
organoid system seems to be dependent upon the composition of the organoid [145]. In
a recent feasibility study, authors were able to establish a co-culture using PDOs from a
small amount of EUS FNB samples and cancer-associated fibroblasts (CAFs). Limitations
like a high risk of contamination (blood as well as benign cells), compromising the yield of
tissue available, the suboptimal number of needle passes, and unknown histopathological
diagnoses before EUS TA can be obviated in future studies to improve the success rate [146].

7.4. Role of Liquid-Based Cytology

Traditionally, smears with a cytological examination, cell block test, and histopatho-
logical examination are used for sample preparation. Liquid-based cytology (LBC) has an
advantage over conventional smear cytology because of several reasons, like uts higher
cellularity, clearer background with fewer artifacts caused by extracellular elements like
mucin and necrotic debris, and lower false negative results. Furthermore, LBC can be used
for immunohistochemistry (IHC), which can be used for differentiating benign from malig-
nant lesions, understanding tumor biology, and increasing specificity. In a meta-analysis,
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the EUS-guided conventional smear (CS) technique and LBC technique were compared
and nine studies were included for analysis (n = 1308). LBC was analyzed separately based
on the method used, i.e., filtration-based and precipitation-based methods. In the absence
of ROSE, the precipitation-based LBC technique was found to have a higher accuracy
(85.2% vs. 79.7%) and sensitivity (83.6% vs. 79.2%) compared to those of conventional
techniques [116]. However, more studies are required before one can advocate LBC for
routine clinical use.

7.5. Automated Needles for EUS TA

Most recently, an automated motorized cutting needle was devised by Limaca Medi-
cals (Precision-GITM) for more precise, quicker, and less traumatic tissue acquisition with
less tissue fragmentation and blood contamination. A pilot study comparing this auto-
mated needle with a fork-tip needle has shown that the motorized needle is associated with
a shorter sampling time (p = 0.001) and higher average histologic score (p = 0.002) [147].

8. Conclusions

EUS is currently an indispensable tool in the management of PDAC from detection and
tissue diagnosis to the management of various aliments associated with PDAC. Apart from
detection, with wider adoption of neo-adjuvant therapies, tissue acquisition for definitive
diagnoses has become a part of routine clinical care. The tissue acquisition of histological
tumor cores is likely to be a game changer due to the tremendous opportunity afforded by
genomic profiling and molecular analyses to deliver precision medicine with better clinical
outcomes in the near future.
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