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Abstract: Accurate differentiation of benign and malignant cervical lymph nodes is important for
prognosis and treatment planning in patients with head and neck squamous cell carcinoma. We
evaluated the diagnostic performance of magnetic resonance image (MRI) texture analysis and tradi-
tional 18F-deoxyglucose positron emission tomography (FDG-PET) features. This retrospective study
included 21 patients with head and neck squamous cell carcinoma. We used texture analysis of MRI
and FDG-PET features to evaluate 109 histologically confirmed cervical lymph nodes (41 metastatic,
68 benign). Predictive models were evaluated using area under the curve (AUC). Significant dif-
ferences were observed between benign and malignant cervical lymph nodes for 36 of 41 texture
features (p < 0.05). A combination of 22 MRI texture features discriminated benign and malignant
nodal disease with AUC, sensitivity, and specificity of 0.952, 92.7%, and 86.7%, which was comparable
to maximum short-axis diameter, lymph node morphology, and maximum standard uptake value
(SUVmax). The addition of MRI texture features to traditional FDG-PET features differentiated these
groups with the greatest AUC, sensitivity, and specificity (0.989, 97.5%, and 94.1%). The addition
of the MRI texture feature to lymph node morphology improved nodal assessment specificity from
70.6% to 88.2% among FDG-PET indeterminate lymph nodes. Texture features are useful for differen-
tiating benign and malignant cervical lymph nodes in patients with head and neck squamous cell
carcinoma. Lymph node morphology and SUVmax remain accurate tools. Specificity is improved by
the addition of MRI texture features among FDG-PET indeterminate lymph nodes. This approach is
useful for differentiating benign and malignant cervical lymph nodes.

Keywords: texture analysis; cervical lymphadenopathy; PET-MRI; squamous cell carcinoma;
machine learning

1. Introduction

Head and neck cancer accounts for about 4% of all cancers in the United States. When
evaluating patients with head and neck cancer, it is important to consider the prognostic
and therapeutic implications of nodal metastases. In patients with head and neck squamous
cell carcinoma (HNSCC), a single lymph node metastasis results in a 5-year survival rate
of 50%, while an additional contralateral nodal metastasis reduces survival to 33% [1].
Since prognosis is highly associated with the presence or absence of nodal disease, accurate
assessment is imperative for treatment planning.

The radiologic evaluation for malignant lymphadenopathy is challenging, as multiple
imaging features are used to distinguish pathologic from normal or reactive lymph nodes.
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Common features include lymph node size, morphology, contour, internal heterogeneity,
and maximum standardized uptake value (SUVmax) [2,3]. Nodal size, morphology, and
SUVmax are some of the more clinically relevant parameters, although size often lacks
sensitivity, and SUVmax can be misleading, especially in subcentimeter lymph nodes [3,4].

Medical imaging has evolved into a pivotal diagnostic tool, offering clinicians detailed
insights into anatomical structures and pathological conditions. Beyond the visual repre-
sentations of tissues and organs, the microscopic intricacies within these images hold in-
valuable information often concealed from the naked eye. Texture analysis pathologies [5,6]
emerge as a sophisticated computational approach, venturing beyond conventional image
interpretation to decode the intricate patterns and nuances embedded within medical
images. Texture, an amalgamation of spatial variations in pixel intensities, delineates
the complex interplay of tissues’ microarchitecture, providing a deeper understanding of
their composition and organization. Texture analysis delves into this inherent complexity,
quantifying and characterizing these subtle variations. It scrutinizes patterns, contrasts,
and spatial relationships among pixels, unveiling hidden information pertaining to tis-
sue homogeneity, heterogeneity, and structural nuances. Numerous studies have shown
that texture analysis can be helpful for predicting various endpoints, including patient
prognosis, response to treatment, and even tumor molecular features [7–11].

Several studies have previously evaluated the use of texture analysis for characterizing
malignant cervical lymphadenopathy in patients with HNSCC [12–17]. Park et al. [12] used
multi-shot EPI-based DWI to distinguish benign and malignant cervical lymphadenopathy
by applying texture analysis to the ADC data. Forghani et al. [13] and Seidler et al. [14]
also recently showed how dual-energy CT can be used with machine learning for the
characterization and evaluation of nodal status in patients with HNSCC. Additionally,
Kuno et al. [15] used CT texture features from contrast-enhanced FDG-PET/CT to distin-
guish nodal metastases from disease-specific nodal reactivity in HIV-positive patients with
HNSCC. MRI texture features have been used to predict extracapsular nodal spread in
patients with oral cavity cancer [16] and response to chemo-radiotherapy [17].

The aim of this study is to evaluate the use of magnetic resonance texture analysis
(MRTA) for distinguishing benign and malignant cervical lymph nodes in patients with
HNSCC undergoing FDG-PET/MR imaging. Our study combined traditional imaging
features derived from hybrid PET/MR technology, such as lymph node size, morphology,
and SUVmax with MRTA to improve nodal assessment.

2. Materials and Methods

Patient Population: The requirement for informed consent was waived in this institu-
tional review board-approved retrospective study. A search of the Stony Brook Medicine
database for medical records from September 2016 to February 2020 was performed to find
patients with HNSCC who had undergone pre-treatment evaluation with FDG-PET/MR
imaging. Inclusion criteria were (a) age of 18 years or older, (b) diagnosis of histologically
confirmed HNSCC, (c) pre-treatment FDG-PET/MR imaging of the neck, (d) histologically
confirmed or unequivocally metastatic cervical lymphadenopathy, (e) no prior head and
neck cancer treatment, (f) adequate image quality. Twenty-one patients met the criteria.
There are no exclusion criteria.

Imaging Protocol: All patients were imaged using a dedicated head and neck PET/MR
protocol. The patients fasted for 6 h prior to obtaining approximately 9 mCi (333 MBq) of
FDG intravenously with weight-adjusted dose modification. All patients had serum glucose
levels of 140 mg/dL or lower. PET and MRI were acquired simultaneously, with dedicated
neck and body imaging at 60 and 90 min. Intravenous gadolinium-based gadobutrol was
given during the neck sequences at 0.1 mmol/kg.

All images were acquired on a dedicated PET/MR hybrid camera (Biograph mMRI,
Siemens Healthcare). The MR unit was equipped with a 3 Tesla magnet. PET and MRI data
were acquired using a 12-channel head matrix frequency coil for the neck images and a
body frequency coil for body imaging. For MR attenuation correction maps, a dual-echo
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T1-weighted gradient-recalled echo sequence was performed based on a Dixon segmenta-
tion. For the PET neck images, the matrix size was 344 × 344 × 127 with a transaxial FOV of
59.4 × 59.4 cm and an axial FOV of 25.8 × 25.8 cm. The voxel size was 1.39 × 1.39 × 16 mm
with a 2 mm slice thickness.

Dedicated neck MR sequences included axial and coronal STIR [TR 3200 ms, TE 37 ms,
TI 220 ms, slice thickness 4.0 mm, matrix 320 × 320], axial T2-weighted turbo spin echo,
coronal 3D T1-weighted SPACE, and pre- and post-contrast axial 3D T1-weighted ra-
dial volumetric interpolated breath-hold sequence (VIBE) with fat suppression. Whole
body imaging from the top of the head to mid-thigh included axial T2-weighted HASTE,
axial T1-weighted radial VIBE, and sagittal T1-weighted turbo spin echo Dixon with fat
suppression sequences.

Image and Texture Analysis: Each patient’s FDG-PET/MR images were independently
reviewed by an experienced neuroradiologist (L.B.) and an experienced nuclear medicine
physician (R.M.) who were blinded to the clinical findings and histopathologic results.
The maximum short-axis diameter and morphology of all measurable lymph nodes were
determined by each reviewer and recorded by laterality and nodal level. Lymph node
morphology was considered abnormal by visualization of either a rounded shape, central
necrosis, or loss of the normal fatty hilum. The SUVmax values of all measured lymph
nodes were calculated and recorded after free-hand volume-of-interest segmentation using
the attenuation-corrected images (version 6.5, MIM Software, Cleveland, OH, USA).

Texture analysis of all recorded lymph nodes was then performed using LIFEx software
(version 3.74, www.lifexsoft.org, Property of CEA). This was accomplished by manually
segmenting regions of interest (ROIs) along the cortex of all measurable lymph nodes
visualized on at least two consecutive axial STIR images. Areas of necrosis and normal
fatty hila were excluded from the segmented ROIs, as our goal was to evaluate the texture
of non-necrotic nodal parenchyma. Lymph nodes smaller than 64 voxels were excluded
from texture analysis, as the software is unable to calculate second-order features using
less than 64 voxels. A total of 41 texture features were extracted, including 9 first-order pa-
rameters, 7 texture features from the Gray-Level Co-occurrence Matrix (GLCM), 11 texture
features from the Gray-Level Run-Length Matrix (GLRLM), 3 texture features from the
Neighborhood Gray-Level Different Matrix (NGLDM), and 11 texture features from the
Gray-Level Zone-Length Matrix (GLZLM).

After texture analysis was completed, we carefully correlated each patient’s recorded
lymph nodes by laterality and nodal level with surgical reports and histopathologic analysis
to establish our ground truth of benign and malignant lymph nodes. Lymph nodes that
could not be correlated with histology were excluded to maintain accuracy.

Statistical Analysis: The variables were presented as mean ± standard deviations.
Lymph nodes were classified as malignant if they had confirmed histology or if they demon-
strated abnormal morphology and SUVmax > 8 (thus termed unequivocally metastatic) in
the absence of histologic confirmation. Texture features were compared between benign
and malignant lymph nodes using the unpaired Student’s t-test or chi square test, as appro-
priate. Traditional imaging features, including maximum short-axis diameter, morphology,
and SUVmax, were also compared between groups.

To determine whether texture and traditional imaging features could predict ground
truth in these lymph nodes, we dichotomized our variable of ground truth to positive (1)
and negative (0). Feature selection was performed with k-fold cross-validation using
the Elastic Net regularization method with an alpha of 0.6 and 10-fold cross-validation
in MATLAB (R2019a, MathWorks, Natick, MA, USA). Feature ranking was performed
to identify the individual and combined parameters best predictive for differentiating
these groups. The models selected were of minimum cross-validated mean squared error.
Predictive models were obtained using the top features.

Standard receiver operating characteristic (ROC) curve analysis was performed to
evaluate the performance of the predictive models. ROC analysis included area under
the curve (AUC), sensitivity, specificity, and accuracy. Maximization of the Youden Index
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was used to determine the optimal cut-off point (R2019a, MathWorks, Natick, MA, USA).
A p-value of <0.05 was considered to indicate a statistically significant difference.

3. Results

Patient and Clinical Characteristics: Among the 21 patients with HNSCC (mean age
65 ± 12 years; age range, 47–87 years, 10 females), there were 10 with oral cavity SCC,
8 with oropharyngeal SCC, 2 with occult primary SCC with suspected head and neck
origin, and 1 with parotid SCC. Of the 21 patients, 15 underwent neck dissection, and
5 underwent ultrasound-guided biopsy of suspicious lymph nodes. One patient did not
have a histologic correlation, and their nodal status was determined using imaging features
alone. These characteristics are displayed in Table 1.

Table 1. Patient and Clinical Characteristics.

Characteristic Value

Age (y) 65 ± 12 (47–87) *

No. of men 11 (52%)

Primary Mass Location:

Oral Cavity 10 (48%)

Oral Pharynx 8 (38%)

Occult, suspected head and neck origin 2 (9%)

Parotid 1 (5%)

Tissue sampling method:

Modified radical neck dissection 15 (71%)

Ultrasound-guided biopsy 5 (24%)
Note—data are number of patients, with percentages in parentheses. * data are mean ± standard deviation,
with range in parentheses.

STIR Texture Analysis: The results of the STIR texture analysis of benign and malignant
cervical lymph nodes are summarized in Table S1. In total, 36 of 41 STIR texture features
showed significant differences between benign and malignant cervical lymph nodes. Of
the first-order features, 4 of 9 showed significant differences between these groups, while
all 32 s-order features showed significant differences, respectively (p < 0.05 for all). After
feature ranking, shape volume (mL), GLRLM run-length non-uniformity, GLZLM zone-
length non-uniformity, and GLCM Entropy log10 were selected as independent parameters
for differentiating benign and malignant lymph nodes.

Traditional FDG-PET/MR Features: There were 109 lymph nodes assessed from the
pre-operative FDG-PET/MR studies in patients being evaluated for HNSCC. Among these
lymph nodes, 41 were confirmed as malignant (neck dissection, n = 29; ultrasound-guided
biopsy, n = 5; unequivocally metastatic, n = 7), while 68 were confirmed as benign. The
maximum short-axis diameters were 5.3 ± 1.3 mm (range 3–10 mm) for benign lymph
nodes and 10.8 ± 3.8 mm (range 5–20 mm) for malignant nodes (p < 0.0001). Abnormal
morphology was observed in 5 of 68 benign lymph nodes, while 40 of 41 malignant lymph
nodes demonstrated abnormal morphology (p < 0.0001). Physiologic data from FDG-PET
also demonstrated significant differences between benign and malignant cervical lymph
nodes. Among benign nodes, SUVmax was 3.0 ± 1.2 (range 1.4–7.3) compared to 12.6 ± 8.3
(range 4–39.4) for malignant nodes (p < 0.0001).

Prediction of Malignant Nodal Disease with Texture Analysis and FDG-PET/MR Features:
The results of the ROC analysis are shown in Table 2. The best individual texture features for
distinguishing these groups of lymph nodes were shape volume (mL), GLRLM run-length
non-uniformity, GLZLM zone-length non-uniformity, and GLCM Entropy log10. These
texture features demonstrated AUCs, sensitivity, and specificity ranging from 0.876–0.912,
65.8–82.9%, and 85.3–95.6%, respectively. Combinations of texture features improved



Diagnostics 2024, 14, 71 5 of 12

diagnostic accuracy, with the greatest AUC, sensitivity, and specificity achieved using a
combination of 22 texture features (AUC 0.952, sensitivity 92.7%, specificity 86.7%).

Table 2. ROC analysis of STIR texture features and traditional FDG-PET/MR features for differentiat-
ing benign and malignant cervical lymph nodes in patients with HNSCC.

Parameter AUC Threshold Sensitivity (%) Specificity (%)

GLCM Entropy log10 0.876 2.308 65.8 95.6

GLZLM ZLNU 0.898 90.25 75.6 88.2

GLRLM RLNU 0.902 150.88 78.1 85.3

Shape Volume (mL) 0.912 0.439 82.9 86.7

Combination of 22 TFs 0.952 92.7 86.7

Size (mm) 0.935 7 87.8 86.7

Morphology 0.951 97.5 92.6

SUVmax 0.983 4.6 97.5 92.6

Combination of 7 TFs, Size,
Morphology, and SUVmax 0.989 97.5 94.1

Note—Threshold value is for identifying malignant nodes. 22 TFs, Histogram Skewness, Histogram Entropy
log10, Histogram Entropy log2, Histogram Energy, Shape Volume (mL), Shape Sphericity, GLCM Entropy log10,
GLCM Entropy log2, GLRLM SRE, GLRLM HGRE, GLRLM LRLGE, GLRLM LRHGE, GLRLM RLNU, GLRLM
RP, NGLDM Contrast, NGLDM Busyness, GLZLM SZE, GLZLM LGZE, GLZLM LZLGE, GLZLM GLNU, GLZLM
ZLNU, GLZLM ZP; 7 TFs, Shape Sphericity, GLCM Correlation, GLRLM SRE, GLRLM LGRE, GLRLM LRLGE,
GLRLM LRHGE, NGLDM Coarseness.

ROC analysis of traditional FDG-PET/MR features was also performed and is shown
in Table 2. Maximum short-axis diameter differentiated these groups with an AUC of 0.935,
a sensitivity of 87.8%, and a specificity of 86.7% at 7 mm. At 10 mm, sensitivity and
specificity were 63.4% and 98.5% while at 15 mm, they were 17% and 100%, respectively.
Lymph node morphology, classified as either normal or abnormal, yielded an AUC of 0.951,
a sensitivity of 97.5%, and a specificity of 92.6%. Analysis of SUVmax was also useful
for differentiating benign and malignant nodes. At SUVmax 4.6, the AUC, sensitivity,
and specificity were 0.983, 97.5%, and 92.6%, respectively. There were no malignant
lymph nodes with SUVmax below 4 in our dataset. SUVmax values of 3, 3.5, and 3.7 all
yielded 100% sensitivity with specificity of 58.8%, 75%, and 77.9%, respectively.

MRTA of individual texture features performed comparably to lymph node size,
morphology, and SUVmax alone for nodal assessment. However, a combination of 7 STIR
texture features, lymph node size, morphology, and SUVmax yielded the greatest results,
with an AUC, a sensitivity, and a specificity of 0.989, 97.5%, and 94.1%, respectively.

Analysis of FDG-PET Indeterminate Nodes: Analysis of lymph nodes with SUVmax
ranging from 3.5 to 7.5 was also performed, as accurate interpretation of these lymph
nodes is clinically challenging. There were 29 lymph nodes in this subset, 17 benign
and 12 malignant. Among the traditional imaging features, maximum short axis diameter
did not demonstrate a significant difference between these groups, while morphology
and SUVmax showed significant differences. The maximum short axis diameters were
6.4 ± 1.6 mm (range 4–10 mm) for benign nodes compared to 7.3 ± 2.2 mm (range 5–12 mm)
for malignant nodes (p = 0.2). Among the 17 benign nodes, 5 demonstrated abnormal mor-
phology, while 11 of 12 malignant lymph nodes were considered abnormal (p = 0.01).
SUVmax was 4.7 ± 1.2 (range 3.5–7.3) among benign lymph nodes compared to 5.6 ± 1.0
(range 4–7.4) among malignant lymph nodes (p = 0.04). There were no significant differ-
ences for any individual texture features between benign and malignant lymph nodes in
this subset. ROC analysis demonstrated an AUC, a sensitivity, and a specificity of 0.811,
91.7%, and 70.6% for differentiating these groups using morphology alone, while the addi-
tion of 6 texture features to this assessment increased the AUC, sensitivity, and specificity
to 0.912, 91.7%, and 88.2%, respectively.
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The ROC curves are shown in Figures 1 and 2. Examples of benign and malignant
cervical lymph nodes are shown in Figures 3 and 4.
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Figure 1. ROC curves of the best individual texture features for distinguishing benign and malignant cer-
vical lymph nodes in patients with HNSCC. HNSCC, head and neck squamous cell carcinoma; GLCM,
Gray-Level Co-Occurrence Matrix; GLZLM, Gray-Level Zone-Length Matrix; GLRLM, Gray-Level
Run-Length Matrix; ZLNU, zone-length non-uniformity; RLNU, run-length non-uniformity.
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features; SAD, short-axis diameter; SUVmax, maximum standardized uptake value.
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Figure 3. Example of a histologically confirmed benign reactive FDG-avid cervical lymph node. 
FDG-PET/MR evaluation of a patient with HNSCC. (A) attenuation-corrected FDG-PET, (B) fused 
axial STIR, (C) axial STIR, and (D) segmented axial STIR images. There is a right level 2A FDG-avid 
lymph node (SUVmax 6.6) that measured 7 mm in short-axis diameter and demonstrated normal 
morphology. Texture analysis was performed within the visualized region of interest in image (D). 
This node was histologically confirmed as benign reactive after neck dissection. 

Figure 3. Example of a histologically confirmed benign reactive FDG-avid cervical lymph node.
FDG-PET/MR evaluation of a patient with HNSCC. (A) attenuation-corrected FDG-PET, (B) fused
axial STIR, (C) axial STIR, and (D) segmented axial STIR images. There is a right level 2A FDG-avid
lymph node (SUVmax 6.6) that measured 7 mm in short-axis diameter and demonstrated normal
morphology. Texture analysis was performed within the visualized region of interest in image (D).
This node was histologically confirmed as benign reactive after neck dissection.
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STIR, and (D) segmented axial STIR images. There is a left level 2B FDG-avid lymph node (SUVmax 
9) that measured 7 mm in short-axis diameter and demonstrated abnormal morphology. Texture 
analysis was performed within the visualized region of interest in image (D). This node was histo-
logically confirmed as malignant after neck dissection. Mild hypermetabolic activity is also visual-
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Figure 4. Example of a histologically confirmed malignant cervical lymph node. FDG-PET/MR
evaluation of a patient with HNSCC. (A) attenuation-corrected FDG-PET, (B) fused axial STIR,
(C) axial STIR, and (D) segmented axial STIR images. There is a left level 2B FDG-avid lymph node
(SUVmax 9) that measured 7 mm in short-axis diameter and demonstrated abnormal morphology.
Texture analysis was performed within the visualized region of interest in image (D). This node was
histologically confirmed as malignant after neck dissection. Mild hypermetabolic activity is also
visualized in the musculature of the neck, likely related to muscle strain.

4. Discussion

Our results demonstrate that STIR texture features derived from hybrid PET/MR
technology can differentiate benign and malignant cervical lymph nodes in patients with
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HNSCC, with sensitivity and specificity comparable to maximum short-axis diameter,
lymph node morphology, and SUVmax. Lymph node morphology and SUVmax remain
accurate tools for discriminating benign and malignant nodal disease in these patients,
although specificity is improved by the addition of STIR texture features, especially among
FDG-PET indeterminate lymph nodes. To the best of our knowledge, the use of MRTA to
improve nodal assessment specificity in HNSCC patients, especially among those with
FDG-PET indeterminate nodes, has not been previously reported.

Our study adds to a large body of work showing how MRTA derived from
FDG-PET/MRI can be used in conjunction with lymph node size, morphology, and
SUVmax to distinguish benign and malignant lymph nodes more accurately in patients
with HNSCC. With this technique, we differentiated benign and malignant cervical lymph
nodes with sensitivity and specificity of 97.5% and 94.1%, which is improved compared
to previously reported values of 85% and 92% using traditional FDG-PET/MR features
alone [17,18]. While the addition of MRTA to lymph node morphology and SUVmax re-
sulted in only a marginal improvement in specificity among all nodes in our study, its effect
was more pronounced among FDG-PET indeterminate nodes, where specificity increased
from 70.6% to 88.2% after the addition of MRTA. It is among these FDG-PET indeterminate
nodes, that is, those with SUVmax ranging from 3.5 to 7.5, that we believe MRTA adds the
greatest value. Reasons for this are not entirely clear, but we hypothesize that increased
STIR textural coarseness among malignant nodes, resulting from increased proton richness,
edema, and necrosis from tumoral infiltration of lymph node parenchyma [19,20], helped
discriminate benign reactive FDG-avid nodes from truly malignant lymph nodes. Since
textural coarseness has been associated with an elevated risk of recurrent disease in patients
with rectal cancer and a poor prognosis among patients with ovarian cancer [21–23], STIR
textural coarseness may also serve as a biomarker for malignant nodal disease in patients
with HNSCC.

There is disagreement in the literature regarding the optimal SUVmax threshold for
distinguishing benign and malignant nodal disease among HNSCC patients undergoing
PET imaging. Payabvash et al. distinguished benign and malignant cervical lymph nodes in
patients with head and neck cancer with 100% sensitivity and 100% specificity at SUVmax
thresholds ≥2.5 and ≥5.5 using FDG-PET/CT, respectively [24]. Nakagawa et al. found
that reactive lymph nodes in oral cancer had SUVmax ranging from 1.34 to 4.53, suggesting
an optimal cut-off of SUVmax 3.5 [25]. Many studies looking at quantification of FDG
uptake on PET imaging for HNSCC refrain from establishing strict thresholds in part
due to inherent problems associated with different scanner types, imaging time, blood
glucose levels, and histological characteristics [26,27]. In our study, there were no malignant
lymph nodes with SUVmax < 4, while several false-positive lymph nodes had SUVmax 5.9,
6.6, and 7.3.

Our work suggests that SUVmax may be used to stratify lymph nodes as benign,
indeterminate, or malignant. Based on our data, lymph nodes with SUVmax < 3.5 can be
classified as benign (100% sensitivity), while those with SUVmax > 7.5 can be classified
as malignant (100% specificity). Lymph nodes with SUVmax ranging from 3.5 to 7.5
remain indeterminate, as only 41% of nodes in this group were identified as malignant
in our dataset. We found that among these FDG-PET indeterminate nodes, morphology
alone and combinations of STIR texture features with or without morphology were useful
for differentiating benign from malignant disease. These suggest a two-step approach
utilizing FDG-PET for SUVmax and MRI for node morphology to accurately differentiate
indeterminate nodal disease in patients with HNSCC. When these steps were applied to our
data, there was a 94.5% diagnostic accuracy (103/109 lymph nodes correctively identified),
with 5 false positives and only 1 false negative.

Prior texture analysis studies of head and neck lymph nodes have reported using ultra-
sound, MRI, CT, and PET-FDG (REF), with few that combined multiple methods. Kim et al.
evaluated the potential role of PET/MRI for imaging metastatic lymph nodes in head and
neck cancer for prediction of response to chemo-radiotherapy [17]. Safakish et al. [28]
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predicted head and neck cancer treatment outcomes with pre-treatment quantitative
ultrasound texture features and optimized machine learning classifiers with texture-of-
texture features. Zhang et al. [29] developed a pre-treatment CT-based radiomic model
of lymph node response to induction chemotherapy in locally advanced HNSCC pa-
tients. Masuda et al. [30] applied machine learning to identify lymph node metastasis
from thyroid cancer in patients undergoing contrast-enhanced CT studies. Yuan et al. [31]
applied machine learning-based MRI texture analysis to predict occult lymph node metas-
tasis in early-stage oral tongue squamous cell carcinoma. Baba et al. studied the pre-
treatment MRI predictor of high-grade malignant parotid gland cancer using texture
analysis. Sarioglu et al. [32] evaluated MRI features of parotid masses and investigated the
added role of texture analysis in the differentiation of parotid tumors. Scalco et al. [21] in-
vestigated the potential of a multi-modal characterization (combination of CT, T2-weighted
MRI, and diffusion-weighted MRI) at baseline and at mid-treatment, based on texture
analysis, for the early prediction of LNs response to chemo-radiotherapy. In addition, deep
learning analysis has also been applied to study lymph nodes in the breast [33–36].

The process of MRTA has inherent limitations that are relevant to our study. Firstly,
due to its relatively low incidence, the small size of lymph nodes themselves presents a
challenge to the process of MRTA, as second-order texture features cannot be calculated
with small ROIs. Additionally, previous studies have demonstrated that texture feature
values can vary with MR acquisition parameters [37]; thus, it is difficult to compare ROC
analysis thresholds between studies, as is more easily accomplished with Hounsfield
units or ADC values. A standardized process of ROI segmentation and analysis would
improve MRTA reproducibility, potentially allowing for greater clinical utility [38]. An
additional limitation was the small number of patients undergoing staging with FDG-
PET/MR, as a larger sample size would increase the power of the study and address these
limitations. Texture analysis and machine learning, in general, can also be applied to digital
pathology slides [39,40].

5. Conclusions

STIR texture features derived from hybrid PET/MR technology can differentiate
benign and malignant cervical lymph nodes among patients with HNSCC with accuracy
comparable to lymph node size, morphology, and SUVmax. Lymph node morphology and
SUVmax remain accurate tools for discriminating benign and malignant nodal disease in
these patients, although specificity is improved by the addition of STIR texture features,
especially among FDG-PET indeterminate lymph nodes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14010071/s1, Table S1: Comparison of STIR tex-
ture features between all benign and malignant lymph nodes. Note—All values expressed as
mean ± standard deviation. The significance threshold for difference was set at a p value of less than
0.05, according to an independent t-test. * indicates statistically significant.
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