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Abstract: Several studies have demonstrated a critical association between cardiovascular disease
(CVD) and mental health, revealing that approximately one-third of individuals with CVD also
experience depression. This comorbidity significantly increases the risk of cardiac complications
and mortality, a risk that persists regardless of traditional factors. Addressing this issue, our study
pioneers a straightforward, explainable, and data-driven pipeline for predicting depression in CVD
patients. Methods: Our study was conducted at a cardiac surgical intensive care unit. A total of
224 participants who were scheduled for elective coronary artery bypass graft surgery (CABG) were
enrolled in the study. Prior to surgery, each patient underwent psychiatric evaluation to identify
major depressive disorder (MDD) based on the DSM-5 criteria. An advanced data curation workflow
was applied to eliminate outliers and inconsistencies and improve data quality. An explainable
AI-empowered pipeline was developed, where sophisticated machine learning techniques, including
the AdaBoost, random forest, and XGBoost algorithms, were trained and tested on the curated
data based on a stratified cross-validation approach. Results: Our findings identified a significant
correlation between the biomarker “sRAGE” and depression (r = 0.32, p = 0.038). Among the applied
models, the random forest classifier demonstrated superior accuracy in predicting depression, with
notable scores in accuracy (0.62), sensitivity (0.71), specificity (0.53), and area under the curve (0.67).
Conclusions: This study provides compelling evidence that depression in CVD patients, particularly
those with elevated “sRAGE” levels, can be predicted with a 62% accuracy rate. Our AI-driven
approach offers a promising way for early identification and intervention, potentially revolutionizing
care strategies in this vulnerable population.

Keywords: depression; cardiovascular disease; prediction; explainable artificial intelligence (AI)

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide [1]. In the case
of multivessel coronary artery disease (CAD), coronary artery bypass graft (CABG) is one
of the options for revascularization. In parallel, depression is the third leading cause of
nonfatal health loss globally [2]. It has been reported that depression and CVD present a
bidirectional relationship in which a CVD patient is more likely to be depressive and vice
versa [3,4]. The more severe the depression condition, the higher the risk of mortality and
other cardiovascular events [5].

Regardless of the shared risk factors, such as age, inflammation, and oxidative
stress [6], the link between CVD and depression remains unclear. Extensive research
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has been performed to better understand such mechanism(s), and new advances may
explain, at least in part, why depression and CVD are so closely linked. For example, the
association between high levels of inflammatory molecules, including interleukin 6 (IL-6)
and C-reactive protein (CRP), and the risk of CVD development has been found [7]. These
molecules and their inflammatory pathways are also involved in the pathophysiology of
depressive disorder [8]. Another candidate molecule that may play a role in both CVD
and depression development is the soluble receptor for advanced glycation end products
(sRAGE), which is the immune receptor for proinflammatory mediators [9]. Of note, elderly
patients with CVD, especially those with concomitant depressive episodes and/or cogni-
tive impairment, are at risk of delirium. Delirium syndrome may develop at any point of
hospitalization; however, it is most frequently two to five days after surgery. Postoperative
delirium substantially worsens patients’ prognosis and contributes to higher mortality
rates [10].

Artificial intelligence (AI) refers to computer systems designed to imitate and enhance
intelligent human behavior [11]. Intelligent computer programs have been implemented to
solve complex problems in almost every field of life, including medicine [12]. AI, with its
ability to analyze big data in healthcare, make predictions, and learn from patterns [13], has
the potential to revolutionize the field of medicine by improving the quality of care, pro-
viding diagnosis at an earlier stage of diseases more accurately, reducing costs, predicting
the most appropriate course of action for a patient, and reducing the number of medical
errors [14,15]. In recent years, machine-learning-based methodologies have been developed
to predict depression due to the increased availability of data. For example, depression
was predicted with 86.20% accuracy by employing the random forest (RF) classifier and
using data from 6588 patients, including hundreds of items relating to sociodemographic
characteristics, health status, status of economic activity, residence, pension, insurance,
living expenses, annual family income, whole fortune, debt, living condition, lifestyle, basic
living allowance, use of welfare services, subjective satisfaction, family relationship, and
mental health [16]. RF also presented the highest accuracy in another study focused on a
geriatric population. In that case, the predictive model had 91% accuracy applied to an
external validation dataset [17]. In a similar way, many other studies have been presented
with the general aim of diagnosis or prediction of depression under different populations
or pathological conditions [18–21].

In this work, we aimed to predict both depression and postoperative delirium among
patients who underwent CABG. To this purpose, data from 224 patients were collected,
and an expert psychiatrist performed neuropsychiatric assessment before and after the
CABG procedure. An AI-empowered pipeline was developed to classify patients at higher
risk for depression and delirium, employing and testing three classifiers: AdaBoost, RF,
and XGBoost. The novelties of this work are that, for the first time, we predicted the
depressive episodes in a particular group of patients who had received CABG treatment
and considered confounding factors (cognitive status assessed with the use of the Mini-
Mental State Examination (MMSE)) and anemia (hemoglobin concentration <10 mg/dL
for female and <12 mg/dL for male)). Moreover, our results are explainable through the
following AI pipeline.

2. Materials and Methods
2.1. Dataset

A total of 224 adult patients who were qualified for isolated CABG surgery or CABG
surgery with cardiac valve repair or replacement (CVR) in the Department of Cardiac
Surgery at the Central Clinical Hospital of the Medical University of Lodz, Poland, were
eligible for the study. The exclusion criteria were as follows: unstable general condition of
the patient, diagnosis of dementia before surgery, delirium diagnosed in the week preceding
the procedure, surgery other than CABG or CABG with CVR, chronic inflammatory or
autoimmune diseases, use of corticosteroids, cytokine/anticytokine treatment 6 months
before surgery, patients on dietary supplements, active alcohol or other substance addiction
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(abstinence period shorter than 3 months), severely impaired hearing or vision, illiteracy,
and death during surgery or in the first five days after surgery. All subjects signed their
informed consent for inclusion before participating in the study. The study was conducted
in accordance with the Declaration of Helsinki, and the protocol was approved by the
Ethics Committee of the Medical University of Lodz, Poland (RNN/95/17/KE 14.03.2017).
The study population was examined by a psychiatrist the day prior to the scheduled
operation, and a diagnosis of MDD and anxiety disorders was established on the basis
of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria [22]. The
MMSE and the clock drawing test (CDT) were performed to evaluate the global cognitive
status. The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) and the
Memorial Delirium Assessment Scale (MDAS) (cut-off of 10) were used in parallel to assess
the presence of delirium after surgery [23–25].

The CAM-ICU is a short test for the diagnosis of delirium. It is characterized by no
requirement for verbal communication from the patient, allowing it to be administered
in patients undergoing invasive mechanical ventilation and orotracheal intubation [23].
The MDAS is a 10-item, 4-point clinician-rated scale (possible range 0–30) designed to
quantify the severity of delirium in medically ill patients. Scale items assess disturbances in
arousal and level of consciousness as well as memory, attention, orientation, disturbances
in thinking, and psychomotor activity [25]. Patients were assessed by a psychiatrist once
a day within the first 5 days after cardiac surgery. Before each examination, the level of
sedation/arousal was assessed using the Richmond Agitation Sedation Scale (RASS) [26].
If the RASS was above −4 (−3 through to +4), the assessment with CAM-ICU was ad-
ministered. However, if the patient scored −4 or −5 on the RAAS during the assessment,
which corresponds to deep sedation, the evaluation was stopped and repeated later. In
the course of the diagnostic process, nurses and doctors were interviewed and/or clinical
notes were interrogated for mention of delirium diagnosis or delirium symptoms. If there
was an inconsistency between the diagnostic tools regarding the delirium diagnosis, the
final consensus was established within the study team physicians by collecting information
from all available sources.

The venous blood samples were taken from the patients twice during the study: the
day before the surgery and the first day after the operation between 07:00 and 09:00 a.m.
The samples were centrifuged at 7000 rpm for 10 min, and the serum was frozen at −80 ◦C
until biochemical parameters were determined. The levels of sRAGE, MCP-1, and hsCRP
were measured in serum with an ELISA kit (BioVendor, Brno, Czech Republic, for sRAGE;
R&D, Boston, MA, USA, for MCP-1; and DRG International, Springfield Township, NJ,
USA, for hsCRP), and the antioxidant activity was measured with an antioxidant assay kit
(Cayman Chemical, Ann Arbor, MI, USA).

The protein concentration of the collected samples was determined using the standard
curve and the Stat-Matic Plate Washer II from Sigma-Aldrich, St. Louis, MO, USA. The
absorbance was read using the VICTORTM X4 multifunctional microplate reader from
Perkin Elmer, Waltham, MA, USA. The immunoenzymatic ELISA test results were analyzed
using the WorkOut 2.5 software. The mean concentration of protein per mL was determined
by referring to the four-parameter logistic (4-PL) curve. To assess the antioxidant activity,
the lag time by antioxidants was measured against the myoglobin-induced oxidation of
2,2′-azino-di(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) with H2O2. The assay relies
on the ability of antioxidants in the sample to inhibit the oxidation of ABTS to ABTS+ by
metmyoglobin. The absorbance at 405 nm can be used to measure the amount of ABTS+
produced. During the reaction, the antioxidants in the sample reduced the absorbance at
405 nm proportionally to their concentration. The capacity of the sample’s antioxidants to
prevent ABT oxidation was compared to that of Trolox, a water-soluble tocopherol analog,
and was measured in millimolar Trolox equivalents.

The laboratory determinations were conducted by laboratory diagnosticians who were
blinded to clinical data.
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2.2. Proposed Workflow of Depression and Delirium Prediction

The proposed workflow of depression and delirium prediction is depicted in Figure 1.
It consists of five stages, namely, (i) the data quality assessment stage, (ii) the class imbalance
handling stage, (iii) the ML model initialization stage, (iv) the hyperparameter optimization
stage, and (v) the validation stage. The raw input dataset was the clinical and laboratory
dataset from the Central Clinical Hospital of the Medical University of Lodz in Poland,
which was described in the previous section. In the data quality assessment stage, any
outliers and duplicated fields were automatically removed from the data. The quality of
the features was categorized into three states, and kNN-based imputation was applied
where applicable. Confound-based random downsampling with replacement was applied
to the majority class (patients without depression) to produce a subset of equally sized
control and target populations where the confound factors remained stable. Three different
boosting and bagging machine learning algorithms (AdaBoost, XGBoost, and random
forest) were then initialized and trained on the extracted subset upon the estimation
of the optimal hyperparameters through a GridSearch cross-validation approach. The
optimal hyperparameters (i.e., those yielding the highest classification accuracy towards
the classification of depression across the 3 folds) were fed into the models, and a stratified
10-fold cross-validation process was finally applied to estimate the accuracy, sensitivity,
specificity, and area under the ROC curve (AUC). Stages 2–5 were applied 10 times to
reduce biases. The output of the proposed workflow was a robust classification model for
the presence of depression along with interpretable risk factors.
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2.2.1. Data Quality Assessment (Data Curation) Stage

An advanced data curation pipeline presented in a previous study [27] was applied
to automatically remove outliers and duplicated fields and impute missing values where
necessary. The Spearman rank-order correlation coefficient was calculated for each pair of
feature values, and the Levenshtein distance was computed for each pair of feature labels
to identify features with the same lexical and contextual similarity. The local outlier factor
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(LOF) [28] was used to identify areas with increased density across the feature distribution,
implying potential outliers. The isolation forest (IF) algorithm [29] was also trained on the
nonmissing data without any outliers to identify contaminated features. The quality of the
features was classified as “good” (no missing values), “fair” (less than 30% missing values),
and “bad” (more than 30% missing values). The kNN imputer [30] was applied only for
features with a “fair” quality state.

2.2.2. Class Imbalance Handling Stage

Random downsampling with replacement was applied to the majority population
to yield an equally balanced control and target population for the training process. The
outcome was set to depression (with “0” denoting the absence of depression and “1” in-
dicating the presence of depression). The downsampling process was repeated 10 times.
In each round, the randomly sampled controls were matched with the target population
according to the MMSE (Mini-Mental State Examination) and anemia (hemoglobin concen-
tration < 10 mg/dL) using either the nonparametric Wilcoxon rank-sum test in the case of
continuous features (a Shapiro–Wilk test was first applied to evaluate the normality of the
data; in the case of a normal distribution, the Student’s t-test was applied instead) or the
chi-square/Fisher’s exact test in the case of discrete features.

2.2.3. ML Model Initialization Stage

Boosting and bagging supervised machine learning algorithms, including AdaBoost
(adaptive boosting) [31], XGBoost (extreme gradient boosting) [32], and random forest
(RF) [33], were deployed for the development of a binary classification model for the
presence of depression.

The gradient boosting algorithm [32] combines a set of weak learners into a stronger
classifier, where on each boosting round, the algorithm minimizes the gradient of a loss
function to optimize the overall performance of the classifier. At step i, the gradient
boosting classifier seeks a weak learner, say fi(d), so that

Fi(d) = Fi−1(d) + fi(d). (1)

Assuming that ỹ is the predicted value at step i, the goal is to minimize the cost
function:

Fi(d) = Fi−1(d) + argmin f

(
n

∑
j=1

L
(
ỹj, Fi−1

(
dj
)
+ fi

(
dj
))

+ r

)
, (2)

where ỹj is the predicted value for the input sample dj, L(.) is the error loss function, n is
the number of samples, and r is a regularization term that is used to avoid overfitting. In
the case of tree learners, the regularization term is defined as follows:

r = γM +
1
2

λ
J

∑
j=1

wj
2, (3)

where γ and λ are scalars, M is the number of leaves in each tree learner, and w is the
weight on the leaves. The implementation was performed in Python 3.6.3 using XGBoost.

The AdaBoost (adaptive boosting) classifier combines a set of N-weak learners in a
sequential error reduction fashion, where the final output of the classifier is a weighted
sum of the weak classifiers. The final classifier can be expressed as follows:

FN(d) =
N

∑
i=1

fi(d), (4)

where d is the input vector, FN(d) is the final classifier, and N is the number of boost-
ing rounds.
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The random forest (RF) algorithm adopts a bagging strategy according to which a
voting approach is used to combine the decisions across a set of individual decision trees,
which are trained on randomly selected subsets of the original dataset to reduce further
biases introduced by the conventional decision tree models and provide more accurate
classification outcomes.

2.2.4. Hyperparameter Optimization Stage

The following set of hyperparameters were evaluated for each boosting classifier under
a 3-fold cross-validation process using the GridSearch approach: (i) CatBoost: number of
trees (50–200), learning rate (0.001–0.3), and tree depth (3–10); (ii) XGBoost: learning rate
(0.01–0.3), maximum depth (3–10), and subsample ratio (0.7–1); and (iii) AdaBoost: number
of base estimators (50–200), algorithm (SAMME or SAMME.R), and learning rate (0.01–0.3).

2.2.5. Validation Stage

The best hyperparameters from the previous section were introduced into the boosting
classifiers. A stratified 10-fold cross-validation was then applied in each successful down-
sampling iteration to evaluate the classification performance of the boosting schemas by
estimating the accuracy, sensitivity, area under the ROC curve (AUC), and specificity scores.

3. Results

The demographic characteristics of the study group are presented in Table 1. Sta-
tistical analysis was initially performed to identify possible correlations between serum
biomarkers and depression among CABG individuals. Table 2 presents the correlations
between biomarkers.

Table 1. Demographics and clinical characteristics of the population.

Characteristic Mean or N SD or %

Age (years) 66.66 7.06
Gender (Male) 171 80%

Education (years) 11.53 3.37
Weight (kg) 81.69 12.38
Height (cm) 170.22 8.20

Presence of anxiety disorders 14 7%
Alcohol addiction 17 8%

Diabetes 74 34%
Hypertension 176 82%

Peripheral arterial disease 31 14%
Vascular diseases of the CNS 24 11%

Other diseases of the CNS (epilepsy or head injuries) 8 4%
Asthma 7 3%

Chronic obstructive pulmonary disease 14 7%
Smoking tobacco 94 44%

Anemia (Hb 10 mg/dL for female; 12 mg/dL for male) 32 15%
Creatinine > 1.2 mg/dL 31 14%

Atrial fibrillation 28 13%
Pacemaker 4 2%

Significant ventricular arrhythmias 2 1%
Ejection fraction % 51.61 10%

CCS score 2.39 0.74
NYHA grade 2.17 0.70

Clock drawing test (points) 5.79 2.40
Mini-Mental State Examination (points) 27.60 2.10

Antioxidant activity (mM) before surgery 2.30 1.12
Superoxide dismutase (U/mL) before surgery 3.00 1.58

sRAGE (ng/mL) before surgery 1.02 0.74
MPO (ng/mL) before surgery 321.54 238.98

MCP-1 (ng/mL) before surgery 423.17 184.46



Diagnostics 2024, 14, 67 7 of 14

Table 1. Cont.

Characteristic Mean or N SD or %

hsCRP (ug/mL) before surgery 10.67 23.14
Urea (mmol/L) before surgery 6.81 2.07

Creatinine (mcmol/L) before surgery 88.55 23.80
Intraoperative circulatory support 57 27%

Intraoperative resuscitation 3 1%
Intraoperative steroid use 2 1%

Postoperatively (pCO2 ≥45 mmHg) 50 23%
Postoperatively (pO2 ≤ 60 mmHg) 31 14%

Postoperative hyperthermia 23 11%
Massive postoperative transfusion (>4 units) 11 5%

Plasma transfusion (≥1 unit) 35 16%
Reoperation 13 6%

Urgent postoperative angioplasty 1 0%
Length of stay in the ICU (days) 3.71 2.24

Hospitalization time (days) 12.83 6.98
ECC; in case of no (surgery OPCAB) 165 77%

The highest MDAS score 7.72 4.59
Delirium diagnosis 61 34%

Day after surgery at which delirium was diagnosed 28 13%
Presence of depression 34 16%

CNS: central nervous system, CCS: Canadian Cardiovascular Society class grading of angina pectoris, NYHA: New
York Heart Association, sRAGE: soluble receptor for advanced glycation end products, MPO: myeloperoxidase,
MCP-1: monocyte chemoattractant protein-1, hsCRP: high-sensitivity C-reactive protein, pCO2: partial pressure of
carbon dioxide, pO2: partial pressure of oxygen, ICU: intensive care unit, ECC: extracorporeal circulation, OPCAB:
off-pump coronary artery bypass, MDAS: Memorial Delirium Assessment Scale, Hb: hemoglobin concentration.

Table 2. Correlation between preoperative biomarkers and depression.

Biomarker Correlation Coefficient p-Value

MPO (ng/mL) 0.14 0.29
Antioxidant activity (mM) −0.11 0.40

Superoxide dismutase (U/mL) −0.11 0.25
sRAGE (ng/mL) 0.32 0.04
MCP-1 (ng/mL) 0.06 0.62
hsCRP (ug/mL) 0.08 0.54

MPO: myeloperoxidase, sRAGE: soluble receptor for advanced glycation end products, MCP-1: monocyte
chemoattractant protein-1, hsCRP: high-sensitivity C-reactive protein.

The random forest classifier and gradient boosted tree (GBT) presented the highest
performance in relation to depression diagnosis and delirium prediction, respectively
(Table 3).

Table 3. Detection of depression and delirium with the use of different classifiers.

Classifier Accuracy Sensitivity Specificity AUC

Depression

RF 0.614 0.701 0.528 0.671
GBT 0.565 0.598 0.532 0.571

XGBoost 0.558 0.610 0.505 0.582
AdaBoost 0.542 0.715 0.367 0.599

Delirium

GBT 0.722 0.719 0.723 0.781
RF 0.709 0.757 0.657 0.787

XGBoost 0.669 0.670 0.664 0.744
AdaBoost 0.583 0.920 0.245 0.727

The ROC curve analysis of the iterative runs using RF is presented in Figure 2, where
the variations among different runs were insignificant.
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Feature importance has been calculated for the detection of depression among patients
scheduled for CABG (Figure 3) and postoperative delirium prediction (Figure 4). It has
been found that preoperative sRAGE is the most significant feature in depression predic-
tion. Other factors that contribute to the outcome were cognitive status (CDT score) and
diabetes. Advanced age and increased preoperative MCP-1 levels are the most important
in delirium prognosis.
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Figure 4. Feature importance values in delirium prediction. CCS: Canadian Cardiovascular Society
class grading of angina pectoris, sRAGE: soluble receptor for advanced glycation end products,
MPO: myeloperoxidase, MCP-1: monocyte chemoattractant protein-1, hsCRP: high-sensitivity C-
reactive protein, ECC: extracorporeal circulation, AO: Peripheral artery.

4. Discussion

In this work, for the first time, we present an AI-empowered pipeline to detect patients
with a diagnosis of depression and delirium in a group of individuals scheduled for CABG.
For this purpose, 224 patients were included in the current study. Blood samples were
collected for sRAGE, MCP, hsCRP, antioxidant capacity, and SOD, and psychiatric assess-
ment was performed before and after CABG. Employing the RF classifier, CABG patients
with depression could be detected with 62% accuracy (AUC = 0.67) on the basis of the
preoperative sRAGE levels, whereas the use of GBT predicted delirium with 72% accuracy.

Advanced glycation end products (AGEs) are heterogeneous groups of irreversible
adducts formed from the nonenzymatic glycation and glycoxidation of proteins and nucleic
acid with reducing sugars [34]. The interaction between AGEs and their cell-bound receptor
for advanced glycation end products (RAGE) plays a vital role in oxidative stress and the
innate immune response. RAGE may stimulate proinflammatory processes that contribute
to atherosclerosis by reducing nitric oxide (NO) levels. NO protects blood vessels through
vasodilatation, decreased platelet aggregation and activation, and increased production
of reactive oxygen species (ROS) [35–38]. ROS activates nuclear factor kappa-B (NF-kB),
which then activates numerous proinflammatory genes of cytokines, such as tumor necrosis
factor-α (TNF-α) and interleukin (IL)-1, IL-2, IL-6, IL-8, and IL-9 [39,40]. The leading cause
of CVD is atherosclerosis, in which plaques are raised by molecular changes induced by
cytokines, hormones, growth factors, and oxidative species, mainly due to the interaction
between endothelial cells, LDLs, and macrophages [41].

Studies conducted so far indicate the relationship between oxidative stress and the
pathogenesis of depression and CVD [42–44]. A meta-analysis published in 2015 found that
oxidative stress, measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG) and F2-isoprostanes,
increased in depression [44].

Oxidative stress is defined as an early causative factor of CVD. The influence of
ROS on underlying endothelial molecules, which can promote apoptosis, necrosis, and
therefore thrombosis of atherosclerotic plaques, makes oxidative stress a crucial hallmark
of CVD [45].
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It has been observed that both depression and postoperative delirium are common
among CAD (coronary artery disease) patients, which may indicate a correlation between
the two. In addition, our previous study on the development of delirium revealed that
patients with major depressive disorder (MDD) and higher levels of cortisol before surgery
are more vulnerable to postoperative delirium [46]. However, it should be noted that only
about half of the patients with depression have increased cortisol levels [47].

Therefore, we decided to investigate other potential mechanisms that may explain the
link between MDD and delirium.

The role of the soluble receptor for advanced glycation end products is still unclear.
sRAGE is found to be negatively associated with inflammation by binding RAGE lig-
ands and thus blocking their interaction with membrane-bound RAGE [48]. Exogenous
administration of soluble RAGE has been shown to reduce oxidative stress markers in
animal models of vascular dysfunction [49,50]. Low levels of plasma sRAGE in nondiabetic
patients with coronary artery disease compared to control subjects have been reported [51].
However, elevated sRAGE levels were observed in patients with type 1 and type 2 diabetes
and patients with renal failure and were associated with ischemic incidents in CVD individ-
uals [52,53]. Despite the high level of sRAGE, which is supposed to be protective through
its anti-inflammatory effects, atherosclerosis develops in diabetic patients [54].

A rise in sRAGE levels has also been linked to a higher mortality risk in hemodial-
ysis and peritoneal dialysis patients [55]. Significantly lower levels of sRAGE have been
described in patients with hypercholesterolemia, hypertension, chronic obstructive pul-
monary disease, Alzheimer’s disease, and vascular dementia [56–59].

In the current study conducted in a population scheduled for CABG, which means with
advanced cardiovascular dysfunction, the sRAGE expression before surgery was higher in
the group of participants with depression than those without a diagnosis of MDD. This may
reflect the protective mechanisms of sRAGE, according to which overexpression of sRAGE
regulates inflammation and reduces cell damage related to oxidative stress among patients
with CVD and concomitant diagnosis of depression. The differences in sRAGE levels
depending on the medical condition diagnosed may result from different pathogenesis
of specific disorders. For instance, in conditions with RAGE-mediated inflammation and
oxidation, higher sRAGE concentration may constitute a protective factor, whereas in
diseases with proinflammatory mechanisms and pathophysiology unrelated to RAGE or in
the case of ineffective protective processes, the sRAGE levels are lower.

Our previous study dedicated to the pathogenesis of delirium revealed that patients
with MDD and increased levels of cortisol prior to surgery were more likely to develop
postoperative delirium [46]. Elevated cortisol values have been reported in both depressed
and CVD patients as a consequence of increased hypothalamic–pituitary–adrenal (HPA)
axis reactivity [47,60]. These correlations suggest that oxidative stress and inflammation
promote depression and CVD, giving a feasible common link between them.

Depression is associated with complications for optimal CVD management, including
low adherence to a healthy lifestyle and to taking medications in accordance with medical
recommendations [61]. MDD increases mortality, disability, and healthcare expenditure
and reduces quality of life among patients with CVD [62,63]. Unfortunately, strategies
for screening and treating depression are poorly implemented in patients with CVD. The
inclusion of sRAGE testing in standardized screening pathways for depression in CVD
patients would offer the possibility of early and more precise identification and optimal
treatment of depression to improve health outcomes.

The present analysis also revealed the variables with the highest significance in delir-
ium prognosis. Advanced age, higher MCP-1 concentration, and lower antioxidant activity
had the highest accuracy in predicting the development of postoperative delirium. More
advanced age is consistently reported as an unmodifiable risk factor for delirium [64]. In
addition, both increased MCP-1 level and decreased antioxidant capacity were associated
with delirium development in our previous study using regression modeling as the main
statistical method [65].
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Only selected confounders were included in the statistical analysis, which can be
assumed to be a potential limitation of the present study. However, the novel statistical
approach used in the current analysis provided valid results, even with the limited number
of potential confounders considered. Furthermore, the sRAGE levels were evaluated only
once, not at different time points, and were not compared to individuals with depression
resolution. This issue could be the aim of further studies in the field.

5. Conclusions

This study marks a significant advancement in the field of cardiology and mental
health, presenting, for the first time, an AI-empowered pipeline for detecting depression in
patients undergoing coronary artery bypass graft (CABG) surgery. By analyzing a cohort
of 224 patients, we identified key biomarkers, including sRAGE, MCP, hsCRP, antioxidant
capacity, and SOD, that can be coupled with psychiatric assessments to assess the risk
of depression and delirium pre- and post-CABG. Our findings highlight the potential of
sRAGE as a biomarker for depression in this patient group, with the random forest classifier
achieving a 62% accuracy rate (AUC = 0.67) in predicting depression based on preoperative
sRAGE levels. Concurrently, the gradient boosted tree (GBT) model effectively predicted
delirium with 72% accuracy. The study underlines the intricate relationship between
oxidative stress, inflammation, and the pathogenesis of both depression and cardiovascular
disease (CVD). sRAGE emerges as an indicator of protective anti-inflammatory mechanisms
in some contexts while being associated with increased disease severity and mortality risk
in others. This duality underscores the complexity of CVD and depression pathogenesis
and the necessity of nuanced approaches in their management. The implications of this
research are profound, suggesting that incorporating sRAGE testing into standardized
depression screening for CVD patients could significantly enhance the early detection
and treatment of depression, potentially improving patient outcomes. Furthermore, the
study sheds light on factors influencing postoperative delirium, with advanced age, MCP-1
concentration, and antioxidant activity being critical predictors. In the future, it would be
useful to determine the level of sRAGE at different time points to examine its dynamics.
This would help establish whether there is a relationship between sRAGE levels and the
severity of depressive symptoms. Additionally, it would be interesting to observe whether
sRAGE levels return to normal after achieving remission in depression and how long this
takes. Establishing such a relationship would help improve the monitoring of patients with
MDD and CVD, a vulnerable group requiring special attention. These patients often have
comorbidities and are on multiple medications, increasing the risk of drug interactions.
The use of AI to diagnose and monitor patients can significantly enhance and facilitate
medical care, reducing the number of medical errors.

While the study presents groundbreaking findings, it also acknowledges limitations,
including the singular evaluation of sRAGE levels and the exclusion of certain confounders.
Future research could expand upon these findings, exploring the dynamics of sRAGE levels
over time and in patients experiencing depression resolution. In conclusion, this study
offers a promising step towards a more integrated and precise approach to diagnosing
and managing depression in patients with CVD, potentially paving the way for improved
clinical outcomes and patient care.
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