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Abstract: (1) Background: The intent of this survey was to investigate the quality of the alveolar
bone by revealing the different phases for calcified tissues independent of the medical history of the
patient in relation to periodontal disease by means of Raman spectroscopy and then to correlate the
results by suggesting a possible mechanism for the medical impairment; (2) Methods: The investiga-
tion was mainly based on Raman spectroscopy that was performed in vivo during surgery for the
selected group of patients. The targeted peaks for the Raman spectra were according to the reference
compounds (e.g., calcium phosphates, other phosphates); (3) Results: The variation in the intensity of
the spectrum correlated to the specific bone constituents’ concentrations highlights the bone quality,
while some compounds (such as pyrophosphate, PPi) are strongly related to the patient’s medical
status, and they provide information regarding a physiological process that occurred in the calcified
tissues. Moreover, bone sample fluorescence is related to the collagen (Col) content, enabling a com-
plete evaluation of bone quality, revealing the importance of collagen matrix acting as a load-bearing
element for Calcium phosphate (CaP) deposition during the complex bone mineralization process;
(4) Conclusions: We highlight that Raman spectroscopy can be considered a viable investigative
method for in vivo and rapid bone quality valuation through oral health monitoring.

Keywords: Raman spectroscopy; octacalcium phosphate (OCP); hydroxyapatite (HAP); pyrophos-
phate (PPi); periodontal disease

1. Introduction

Nowadays, there is a focused interest for periodontal disease because it depicts a
significant haleness provocation. The genesis of human research makes efforts in peri-
odontology to understand the mechanism involved in the development of calcified tissues
(implicating calcium phosphate compounds, phosphates and different enzymes), with the
final goal to completely rebuild the lost tissues with a structure and functionality similar to
the original one, which were lost due to the disease progression or to prevent or limit the
disease progression [1–5]. In order to achieve this final goal, the bone tissue evaluation and
investigation are necessary. An easy-to-use, fast and comprehensive method is Raman spec-
troscopy. It is rapidly arising as a bright device for biomedical investigations and clinical
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diagnosis, such as the detection of early-stage cancer, and it has been validated in countless
ex vivo studies [4–6]. Recently, Raman spectroscopy has been applied to the investigation
of bone quality in bioimplants [7]. Timchenko and his team performed a comparative
analysis of the surfaces of mineralized and demineralized bone bioimplants. The bones
were sourced from cadaveric and in vivo (resected) samples. The two-dimensional analysis
showed that carbonate concentration in the resected bone was higher than in cadaveric
bone, which induced higher resistance to demineralization for the resected bone. There are
few spectroscopic studies on bones [8,9], and the literature is even scarce for spectroscopic
data on alveolar bone.

The periodontal regeneration process is defined as the formation of new cementum,
alveolar bone and a functional periodontal ligament on a previously diseased root surface.
Our other studies have focused on connecting the Raman spectra of the mineral and
organic phases of the bone with histology/histomorphometry [10] and establishing a
connection between periodontal disease and bone phenotype with Raman spectra of
calcium phosphate compounds [3]. In this study, we focus only on spectral characterization
of the alveolar bone; its investigation led us to suggest a possible mechanism regarding
amorphous Ca-phosphate (ACP) compound starting with octacalcium phosphate (OCP)
final transformation into hydroxyapatite (HA).

Some studies were performed recently regarding the quality of dental enamel [11] and
using human teeth for evaluation for calcium phosphate (CaP) deposition during bone min-
eralization that starts with the aggregation of Posner’s clusters Ca9(PO4)6 into amorphous
Ca-phosphate (ACP). An important role is played by the alkaline phosphatase (ALP), which
releases phosphate ions for mineralization [12]. Octacalcium phosphate (OCP), a bone
substitute material, is considered a precursor of the biological bone apatite. The two-layered
structure of OCP contains the apatitic and hydrated layers and is intensively involved in
ion-exchange surface reactions, which results in OCP hydrolysis to hydroxyapatite (HA)
and adsorption of ions or molecular groups presented in the environment as motion species
((HPO4)2−, Ca2+, OH1−). The composition of the solution and environmental structure
(collagen matrix) affects the degree and rate of OCP hydrolysis, its surface reactivity and
further in vitro and in vivo properties [13].

In the present study, we attempted to carry out an in vivo characterization of miner-
alization processes by Raman spectroscopy in patients with or without periodontitis. By
doing so, we try to analyze the mineralization products, with an emphasis on pyrophos-
phate, and to provide some insight into the related mechanism [14,15]. Our attempt is
another step toward developing and bringing the Raman spectroscopy method to the
clinics as the end or final users.

2. Materials and Methods

For the present study, a group selection of ten (10) patients was made. All patients
were under medical surveillance and had a very clear clinical status reported either as
healthy, previous periodontal or periodontal. The bone pieces harvested were part of
standard clinical care, and details regarding the group of patients are listed in the table
below (Table 1). The patients come to the clinic for maxillary/mandibular dentures. During
clinical examination and subsequent surgical interventions, bone samples were removed
with a micro drill (from a physio dispenser), and their clinical status was determined
(permanent dentures can only be fixed on healthy bone; the patients who exhibited disease
symptoms underwent treatment before surgical interventions)—Figure 1. According to
a medical valuation of the patients and their medical status achieved, a color code was
labeled to each one as follows: green (• healthy), blue (• previous periodontal) and red
(• periodontal). For every patient, a surgical procedure was indicated on an edentulous
alveolar ridge site. As a starting point for our study, the Raman spectroscopy technique
was involved primarily in patients’ oral sites of interest for in vivo evaluation [5]. The ex
vivo experimental assembly is presented elsewhere (Figure 1a in [10]).
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Table 1. Listed patients involved in the study, including details regarding their clinical status and
bone type. For each case, color-coding was used: (• healthy), (• previous periodontal), (• currently
periodontal).

Patient
Number Age (Years) and Gender Clinical Status Bone Phenotype/Bone Type

#1 58M Previously periodontal Thick/more cortical

#2 70M Healthy Thick/more cortical

#3 64M Previously periodontal Thin/more cortical

#4 50F Previously periodontal Thick/more cortical

#5 70M Previously periodontal Thin/more cortical

#6 35M Healthy Thin/more cortical

#7 62F Currently periodontal Thin/more cancellous

#8 37F Previously periodontal Thin/cortical–cancellous

#9 45F Healthy on the lower jaw, but previously
periodontal on the upper jaw Thin/more cortical

#10 43M Currently periodontal Thick/more cortical
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The maxillary sinus floor elevation oral surgery is a relatively common procedure
usually used in conjunction with implantology for patients with periodontal disease. The
principal steps of the abovementioned procedure are presented in Figure 1.

Raman spectroscopy was performed after the first step (Figure 1a) using a replaceable
and autoclavable optical fiber head. The Raman measurement was performed for about
one second. The next step in the surgical procedure was to fill the sinus with a commercial
bovine bone material (Figure 1b). The lateral window was covered with a resorbable
collagen membrane (Figure 1c), and the wound was closed by a suitable number of sutures
(Figure 1d).

2.1. In Vivo Measurements

For in vivo investigation of the patients, the Raman probe was fitted with a special
‘cap’ tailored to be compatible with steam autoclave sterilization according to the medical
standard protocol. The special cap contains a slot for inserting the Raman probe equipped
with a spacer sleeve that fits and holds the Raman probe in a fixed position (vertical).

Before evaluation, the targeted area of the jawbone was prepared with blood suction,
washed with saline and kept dry as much as possible by blood aspiration. During data
acquisition, other electromagnetic wave sources were avoided (no light, lamps off) in order
to have far less possible fluorescence contamination from the krypton lamp. The Raman
probe was fixed almost in a perpendicular position on the jawbone surface (interest site)
chosen for examination (Figure 1a in [10]). For each patient, three Raman spectra were
recorded during the in vivo evaluation [3,5,16,17].

All patients signed an informed consent. The biopsy and Raman investigation protocol
were approved by the Semmelweis University Regional and Institutional Committee of
Science and Research Ethics (SE TUKEB No. 234/2015, No. 141/2020).

The starting point for our investigation is based mainly on OCP and additionally
on HAP (amorphous hydroxyapatite air-dried and air-damped), HAP crystalline (from
Sigma–Aldrich, St. Louis, MO, USA), two bone substitutes based on biological HAP
(Cerabone®, Botiss Zossen, Berlin, Germany) and Bio–Oss (Geistlich Korea Biomaterials
MBH, Princeton, NJ, USA); all were shaped as pellets for easy handling. The first three pure
calcium phosphates (OCP, HAP amorphous air-dried and HAP amorphous air-damped)
were synthesized at the Frantsevich Institute—Kyiv, Ukraine, as described and included
their characteristics in a previous study [3].

2.2. Characterization Methods

Raman spectra were acquired by using a BTR111—785 RAMAN spectrometer device
(λ = 785 nm, output power p = 300 mW and spectral resolution as fine as 4 cm−1) in
the shift range of 300–1800 cm−1 for all samples’ investigation, both in vivo and ex vivo
evaluation. The integration time was 1000 ms, and laser power was fitted for 10% of
maximum output power (300 mW). Regarding the Maximum Permissible Exposure (MPE)
for bone tissue, there is no clear limitation for the skin (0.50 mW/cm2) according to the
American National Standard Institute (ANSI). During ‘in vivo’ measurements employed
in our study, the laser irradiation level (ablation process) was about ≈7 mW/mm2. The
Raman spectrometer was calibrated with a Si (100) spectroscopic standard sample, before
and after data recording in both cases of in vivo and ex vivo measurements. Experimental
data were recorded under the same geometrical conditions during bone sample evaluation,
in three points corresponding to in vivo and ex vivo, in order to avoid local heating, and
with dark acquisition before each data recording. Data processing was performed by using
Origin Pro v2017 software (Origin Lab, Northampton, MA, USA).

Selected values for Raman peak intensities were obtained after baseline correction
and unit normalization was applied to raw data (dark subtracted, not affected by noise,
summarized peak to peak). Differences in peak intensity on raw spectra reflect the dif-
ferences in the quantities of the chemical components for each investigated specimen.
Sensitive qualitative/quantitative information may be obtained according to the Raman
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spectra shape, such as fluorescence by using raw data (no flat line subtraction and without
smoothing) [5,15,17,18].

To summarize, the methodology consisted in recording the Raman spectra (using
a replaceable and sterilizable optical fiber head) for different types of bones (healthy,
periodontal or healed) before the patient underwent surgery. Then, the Raman spectra
were compared with the level of mineralization of the bone (immature, mature and type-B
carbonate) in order to propose a calcification process mechanism.

3. Results and Discussion

Raman investigation highlights the peaks (Raman shift) for the main bone (cortical
or cancellous type) components (chemical groups and elements) in order to evaluate
differences between bone tissue for the investigated patients (healthy, previous periodontal
or periodontal). The assignment of the main Raman peaks has been detailed elsewhere [3,5]
in table form. Briefly, we observed high-intensity peaks corresponding to extensive mineral
immature bone (at 955–960 cm−1, 955 cm−1, 957 cm−1) [15], to mineral mature bone (peaks
at 960–965 cm−1, 963 cm−1) [15,19], peaks corresponding to symmetric P••O stretch modes
of PO3

2− moieties, ν3 PO3 and of P–O–P bridging (at 1023 cm−1 and 1027 cm−1—attributed
to PPi (P2O7

4−), inorganic pyrophosphate) [20–22]. Mineral bone B-type carbonate HAP
presented high-intensity peaks at 1070 cm−1 and 1076 cm−1 [15], while ν3PO4

3− showed
peaks at 430–450 cm−1 (with shoulder) and 1048 cm−1 [14,15,19]. The selected Raman
bands (shifts) of bone tissue have been established to be significant to our study and for the
future tracking of chemical compounds and evaluation/monitoring of the patients.

As was mentioned before, the starting point and discussion will be focused on OCP,
because it is considered a natural precursor of HAP in the process of natural bone min-
eralization. Therefore, it is believed that, compared with other calcium phosphates, it
has the most pronounced bioactivity properties, including osteoinductiveness [3,23]. For
this reason, in our study, it is considered to be the stage from where the mineralization
process can be developed and metabolism can be involved. Raman spectra obtained for
the reference calcium phosphate compounds (OCP, HAP—air-dried and air-damped amor-
phous phase), respectively, for HAP crystalline phase and bone substitutes (Cerabone and
Bio–Oss) are depicted in Figures 2 and 3. Some of the Raman bands (shift) that are observed
in Figures 2 and 3 overlap the assignment of the main Raman peaks.

The presence of PPi was noticed for the OCP compound, HAP amorphous phases
and for bone substitutes Cerabone/Bio–Oss Geistlich. For the HAP crystalline phase
acquired from Sigma Aldrich, it was absent. A stronger PPi peak was noticed for OCP and
HAP air-damped (Raman signal weaker), as OCP is considered the starting point of the
transition phase to HAP. A lower intensity value was observed for Cerabone and Bio–Oss
bone substitutes. For those phosphate compounds, even being in a high-crystalline phase,
soft traces of PPi were found, a fact that confirms their biological origin.

In a previous work [5], we established the patients’ status based on Ca/P ratio, clinical
evaluation and Raman bands statistics. The same group of patients was used for the present
investigation. After a careful evaluation of in vivo Raman investigation results, ‘some
regulation’ was noticed regarding the rates of pyrophosphate peak intensities reported to
those of HAP peak intensities.

The investigation for the present study was completed with collagen (Col) evaluation
related to the second-order luminescence band at ~500–900 cm−1 (817–845 nm), as shown
in Figure 4. Additionally, the following rates related to (Col) were introduced, as described
by ICol/IPO4 (Table 2) and ICol/IPyro (Table 3), where I is the intensity of Raman peaks in
arbitrary units for specific elements. The Raman results presentation and discussion are
systematized according to the patient’s medical status after the clinical evaluation.
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Table 2. Ratio of collagen reported to ν1PO4 intensities. The color codes in the table are related to
healthy (green), with previous periodontitis (blue) and present periodontitis (red) clinical conditions
of the patients.

Patient PL Maximum
(cm−1)

Intensity
(arb.u.)

Intensity PO4 (@959.6 cm−1)
(arb.u.) ICol/IPO4

#1 726.65 1550.18 1439.33 1.07
#2 673.55 748.43 672.66 1.11
#3 641.91 330.80 334.75 0.98
#4 692.39 847.90 783 1.08
#5 686.13 376.71 358.41 1.05
#6 574.47 765.16 742.25 1.03
#7 635.55 812.51 641.16 1.26
#8 567.98 402.07 483.75 0.93
#9 574.47 510.37 523.75 0.97

#10 515.57 371.83 413.91 0.89
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Table 3. Ratio of collagen photoluminescence (col) intensity versus inorganic pyrophosphate (Pyro)
intensities. The color codes in the table are related to healthy (green), with previous periodontitis
(blue) and present periodontitis (red) clinical conditions of the patients.

Patient PL Maximum
(cm−1)

Intensity
(arb.u.)

Intensity Pyro
(@1023/1027 cm−1) (arb.u.) ICol/IPyro

#1 726.65 1550.13 1433 1.08
#2 673.55 748.43 724 1.03
#3 641.91 330.80 293 1.12
#4 692.39 847.90 709 1.19
#5 686.13 376.71 340 1.10
#6 574.47 765.16 752 1.01
#7 635.55 812.51 962 0.84
#8 567.98 402.07 402 1.00
#9 574.47 510.37 502 1.01

#10 515.57 371.83 386 0.96

The patient’s status information depicted in Table 1 after correlation with the Raman in-
vestigation results from Tables 2 and 3, with the additional information from pyrophosphate
levels, could make the prediction of periodontal clinical status much easier.

The Raman results presentation and discussion are systematized according to the
patient’s medical status, emphasizing a possible mechanism for the periodontal disease.
We have the following categories:

(I) Clinical status—Periodontal healthy (patients: #2, #6 and #9)
For this category, for the rate, Icol/IPO4 values are centered on 1.00 (oscillating in the

interval (0.95 ÷ 1.12). In the case of the ICol/IPiyro ratio, the situation is similar and oscillates
in the interval (1.00 ÷ 1.03).

(II) Clinical status—Previous periodontitis (patients: #1, #3, #4, #5 and#8)
For this category, values obtained have the same trend, and ICol/IPO4 is oscillating in

the interval (0.93 ÷ 1.08). Regarding the rate ICol/IPiyro, the obtained values belong to the
interval 1.00 ÷ 1.19.

(III) Clinical status—Periodontitis (patients: #7 and #10)
For this category, a total imbalance was noticed between the components ratio, and

they are significantly different than the other two categories. The ratio for ICol/IPO4 was
the highest and, respectively, the lowest of all the values calculated for the patients (the
two values obtained were 1.26 and 0.89), while the ratio corresponding to the ICol/IPiyro
showed the lowest values of all (0.84 and 0.96). A typical difference between the categories
described above is depicted in Figure 5.

These results confirm previously obtained results [5]. An important remark is that
the rates reported for Col, and taking into account Col luminescence, are more sensitive
and accurate. A possible mechanism for periodontal disease can emerge by taking into
account Col and Pyro behavior applied on phase transition for calcium phosphates starting
with OCP.

Regarding the ratio to (PO4 and HPO4
2−) corresponding to 959.6 cm−1 Raman shift,

the obtained values are almost the same with small variations ±0.10 around the 1.00 value.
A higher imbalance can be observed for periodontal patients (#7 and #10), which confirms
their medical status. The Raman shift corresponds to an extensive mineral immature
bone (Table 1). As a suggested mechanism, for the phase transition mechanism to mature
bone (Raman shift 962.6 cm−1), the pyrophosphate is involved. According to the ratio
to Pyro (Raman shift 1023/1027 cm−1), the level is higher, which may be interpreted as
a shortage of this compound for periodontal patients. For the bone tissue, there is Pi
((H2PO4)1−, (HPO4)2− and (PO4)3−) as a mixture of ions including PPi ((P2O7)4−) under
the physiological pH (homeostatic). In some conditions, the balance can be broken and the
mineralization process is affected.
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Figure 5. Raman spectra, representative for the patient’s medical status (healthy, previous periodonti-
tis and periodontitis).

Proposed Phase Transition Mechanism Starting with OCP Considered Precursor for HAP

Some of the current studies are using different calcium phosphate compounds very
close to HAP as a Posner molecules cluster model (Ca9(PO4)6) or CDHA (Calcium Deficient
Hydroxyapatite, Ca9(HPO4)(PO4)5OH) as a transition to HAP [12,24,25]. We suggest as
a starting point a ‘crude’ calcium phosphate compound as OCP and more implication of
metabolism and tissue elements to the final transition for HAP.

As was mentioned before, for the bone tissue there is a mixture of ions including Ca2+

and (OH)1− (water elimination by hydrolysis) as well. Some of the motion species (Pi and
PPi) are the result of ATP (adenosine triphosphate) metabolism. A very important chemical
reaction occurs with two of the motion species being involved:

(P2O7)
4− + H2O + energy

Mg2+

→ 2(HPO4)
2− (1)

The obtained (HPO4)2− (Equation (1)) is involved in water generation by deprotona-
tion (not released, for HAP transition) and in a higher concentration is typical for immature
bone (amorphous phase).

For the transition OCP → HAP, we presume intrusion of Ca2+ and (OH)1− to the
OCP elementary cell network (by chelation and disruption of the water layer bound on
the crystal surface) that is achieved with the mechanical action (W, Work) of cemento-
blast/osteoblast cells supported by proteins (PV—Phosvitin, PPP—Phosvitin phospho-
peptides) and enzymatic activity of TNAP, ANK and NPP1 during homeostasis in the
extracellular space [25–30].

Inorganic phosphate (Pi) is a component of mineral hydroxyapatite (HAP), while py-
rophosphate (PPi) is a potent inhibitor of HAP crystal precipitation and growth, according
to Foster et al. [27]. The tissue enzyme nonspecific alkaline phosphatase (TNAP) hydrolyzes



Diagnostics 2024, 14, 66 10 of 13

PPi to release ionic Pi, creating conducive conditions for mineralization. The local PPi level
is increased by the functions of the progressive ankylosis protein (ANK) and ectonucleotide
pyrophosphatase phosphodiesterase 1 (NPP1), which act to preserve the mineralization
process on ‘standby’ (Figure 6 and [24]).
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odontal disease.

Many studies are focused on defining the regulatory role of PPi in tooth root cementum
development and demonstrated that PPi acts as a basic regulator for tooth root acellular
cementum development, a determinant key defining the hard–soft interface between the
cementum and PDL (Periodontal Ligaments). Dysregulation of PPi resulting from loss
of any of the central PPi controlling factors explored here had profound consequences
on the development of acellular extrinsic fiber cementum (AEFC), a tissue essential to
tooth attachment and function. To wit, loss of TNAP caused severe underdevelopment
or even absence of acellular cementum. Because these three factors, TNAP, ANK and
NPP1, primarily adjust extracellular PPi, then support PPi as the key mechanistic factor,
this prompts us to propose that PPi regulates acellular cementum in a molecular ‘rheostat’
fashion, i.e., acellular cementum thickness relates inversely to PPi production [24,25], thus
resulting in the importance of a quick and precise method for monitoring, such as Raman
spectroscopy. According to the obtained results, the trend was fully confirmed by the
obtained Raman peaks and ratios depicted in Tables 2 and 3.

Based on other suggested models [24,27,28,31], we propose a model for the hypoth-
esized role of PPi in the phase transition of OCP to HAP that is essential in acellular
cementum formation (Figure 6). The periodontal region is very rich in ALP (alkaline
phosphatase) activity (reducing local PPi) and thus a permissive milieu action for cemen-
tum formation on the root surface. In the course of normal development, cementoblasts
modulate PPi to curb apposition (by increasing PPi via ANK and NPP1) to maintain AEFC
(acellular extrinsic fiber cementum) as a thin tissue on the root surface. When one of
these PPi factors is removed from the equation, apposition cannot be fully regulated and
cementoblasts attempt to compensate by increasing the expression of its counterpart PPi
regulator [32–35]. With directly controlling cementum mineral apposition, these studies
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suggest that PPi influences ECM (extracellular matrix) protein composition [36–39]. In
the circumstances of rapid cementogenesis, cementoblasts are increasing the expression
of OPN (osteopontin) and DMP1 (dentin matrix phosphoprotein). The increase in OPN,
a negative regain of HAP crystal growth, may be an additional cementoblast mechanism
employed to limit the extent of cementum apposition [40–42].

4. Conclusions

The present study aimed to promote the Raman spectroscopy as a new simple, quick,
noninvasive and independent method of investigation for in vivo application in oral
surgery regarding bone evaluation in relation to periodontal disease (even disease mecha-
nism) or bone healing status in oral reconstructive surgery [43–47].

Mainly, the investigation was based on tracing the two compounds (PO4
3−/HPO4

2−

and PPi) related and reported to Col. The rates obtained from Tables 2 and 3 confirmed the
proposed mechanism and are sustained by the medical status of the patients. The key role
is held by PPi, but in close relation with other elements as proteins and enzymes. The big
advantage is that PPi is Raman-sensitive, compared to enzymes that can be monitored only
by their activity (TNAP, not isolated).

The proposed model for a phase transition is based on similar models but starts with
OCP and emphasizes some physicochemical processes such as chelation and ‘Work’ to
be involved.

An important limitation of our study is that of the small number of patients who
were involved in the investigation, compared with other studies (~600,000 patients) [35,48].
Another limitation is that some enzymes (TNAP) are not isolated, and information can be
obtained just by monitoring the activity.

To highlight: # Raman spectroscopy accuracy is capable of differentiating the patients’
status as healthy/periodontitis recovered/periodontitis and to use PPi as periodontitis
marker in the future; # The proposed model can be a new start for metabolism implication
in bone tissue recovery; # The study can be a call for a larger number of patients in order to
validate the proposed method.
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