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Abstract: Background: The accurate preoperative identification of decompression levels is crucial
for the success of surgery in patients with multi-level lumbar spinal stenosis (LSS). The objective of
this study was to develop machine learning (ML) classifiers that can predict decompression levels
using computed tomography myelography (CTM) data from LSS patients. Methods: A total of
1095 lumbar levels from 219 patients were included in this study. The bony spinal canal in CTM
images was manually delineated, and radiomic features were extracted. The extracted data were
randomly divided into training and testing datasets (8:2). Six feature selection methods combined
with 12 ML algorithms were employed, resulting in a total of 72 ML classifiers. The main evaluation
indicator for all classifiers was the area under the curve of the receiver operating characteristic (ROC-
AUC), with the precision–recall AUC (PR-AUC) serving as the secondary indicator. The prediction
outcome of ML classifiers was decompression level or not. Results: The embedding linear support
vector (embeddingLSVC) was the optimal feature selection method. The feature importance analysis
revealed the top 5 important features of the 15 radiomic predictors, which included 2 texture features,
2 first-order intensity features, and 1 shape feature. Except for shape features, these features might be
eye-discernible but hardly quantified. The top two ML classifiers were embeddingLSVC combined
with support vector machine (EmbeddingLSVC_SVM) and embeddingLSVC combined with gradient
boosting (EmbeddingLSVC_GradientBoost). These classifiers achieved ROC-AUCs over 0.90 and PR-
AUCs over 0.80 in independent testing among the 72 classifiers. Further comparisons indicated that
EmbeddingLSVC_SVM appeared to be the optimal classifier, demonstrating superior discrimination
ability, slight advantages in the Brier scores on the calibration curve, and Net benefits on the Decision
Curve Analysis. Conclusions: ML successfully extracted valuable and interpretable radiomic features
from the spinal canal using CTM images, and accurately predicted decompression levels for LSS
patients. The EmbeddingLSVC_SVM classifier has the potential to assist surgical decision making in
clinical practice, as it showed high discrimination, advantageous calibration, and competitive utility
in selecting decompression levels in LSS patients using canal radiomic features from CTM.

Keywords: machine learning; lumbar spinal stenosis; computed tomography myelography;
decompression level; predictive analysis

Diagnostics 2024, 14, 53. https://doi.org/10.3390/diagnostics14010053 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics14010053
https://doi.org/10.3390/diagnostics14010053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5143-3947
https://doi.org/10.3390/diagnostics14010053
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics14010053?type=check_update&version=2


Diagnostics 2024, 14, 53 2 of 14

1. Introduction

Lumbar spinal stenosis (LSS) is a prevalent and disabling disease in the elderly, affect-
ing an estimated 103 million people worldwide [1]. As a common degenerative disease,
LSS comprises the narrowing of the spinal canal with subsequent neural compression and
often results in reduced quality of life in geriatric patients [2]. In recent decades, severe
degenerative LSS has become the major indication of spine surgery among individuals
over the age of 65 years [3,4]. When conservative treatments fail, surgical decompression
is typically recommended. Recently, spinal endoscopic decompression has become the
cutting edge of minimally invasive spine surgery for managing LSS [5], and it has been fa-
vored over open surgery techniques by spine surgeons [6]. A recent network meta-analysis
indicated that compared to other surgical interventions for LSS, endoscopic decompression
was less invasive and associated with lower complication rates and shorter hospitalization
times [7]. However, the effectiveness of spinal endoscopic decompression heavily relies
on the accurate diagnosis and localization of the decompression levels, which remains
challenging, particularly in multi-level LSS patients.

Accurately predicting decompression levels before surgery would undoubtedly benefit
surgical decision making for LSS patients. In recent years, machine learning (ML) and
deep learning (DL) have demonstrated their advantages in many medical fields, especially
in predictive analysis [8]. In studies associated with LSS, researchers have applied ML
algorithms for quantitative and qualitative analysis [9–12]. For example, Gaonkar et al.
used an ML technique to establish a normative range of spinal canal areas in the lumbar
spine from MR images [9]. Huber et al. applied ML to detect and grade lumbar stenosis,
in which a decision tree classifier with texture analysis showed a higher reproducibility
in LSS detection [10]. Researchers, such as Hallinan et al. [11], Bharadwaj et al. [13],
Won et al. [12], Han et al. [14], and Altun et al. [15], have introduced DL models for
the automatic diagnosis, detection, and classification of LSS using lumbar MR images,
and achieved comparable performances with radiologists. In outcome predictions for
LSS, researchers have also reported several ML studies such as patient-reported outcome
measures [16,17], clinical outcome predictions [18–21], patient-specific outcomes (such as
patient resource utilization [22], non-home discharge placement prediction [23], prolonged
opioid prescriptions [24], and prolonged length of hospital stay [25]). Other ML studies,
such as surgical candidacy prediction [26] and prior authorization approval prediction [27],
have been also reported.

Radiomics is one of the most popular techniques for extracting high-throughput image
features in quantitative analysis studies [28]. Radiomics is a process that converts digital
medical images (MR, CT, etc.) to mineable high-throughput data and analyzes these data,
which might result in decision support for diagnosis, prognosis, and prediction approaches
for personalizing management and treatment [29]. Combined with ML techniques, the
accurate, quantitative, and interpretative evaluation of regions of interest (ROIs) of the
radiomic data could be achieved, which has been expected to assist in the diagnosis,
classification, and decision making of certain diseases [30].

However, to the best of our knowledge, few ML studies are available that aid in
predicting decompression levels in LSS patients. Jujjavarapu et al. [31] developed a DL
model to predict decompression surgery for lumbar disc herniation and LSS patients
using patients’ demographics, diagnosis and procedure codes, drug names, and diagnostic
imaging reports. However, the AUCs of the DL model were 0.725 and 0.655 in early
and late surgery prediction, respectively. An ML study introduced by Wilson et al. [26]
used the percentage reduction in the canal area, at each disc level, as quantitative MRI
predictors, and they achieved a high discrimination (an AUC of 0.88) in predicting surgical
candidacy for LSS patients. However, their studies did not predict decompression levels.
Roller et al. [32] applied SpineNet to predict decompression levels in LSS patients using
quantified features of sagittal MRI, but it was not available using radiomic features or CT
myelography (CTM).



Diagnostics 2024, 14, 53 3 of 14

Therefore, the aim of this study was to develop ML classifiers utilizing radiomic
features based on CTM images to predict decompression levels in LSS patients. We present
the following article in accordance with the TRIPOD reporting checklist.

2. Materials and Methods
2.1. Data Collection

Prior to data extraction, institutional review board (IRB) approval was obtained (KY-
2022-031-01). A waiver of consent was granted due to the retrospective nature of the
study and minimal risk involved. The medical records of LSS patients who underwent
CTM examination in our radiology department between January 2015 and December 2021
were retrospectively reviewed. The inclusion criteria were as follows: (1) single-level or
multi-level LSS patients with or without radicular symptoms; (2) patients who underwent
spinal decompressive surgeries and owned preoperative CTM scans; (3) age > 18 years.
The exclusion criteria were as follows: (1) those who experienced complications with
intraspinal tumors and congenital spinal malformations (tethered cord, diplomyelia, etc.);
(2) low-quality CTM images due to metal implants in the patient’s body; (3) unsuccessful
contrast injection (e.g., epidural distribution of the contrast). The scan settings of the CTM
scans were as follows: slice thickness of 1–5 mm (median 3 mm), 120–135 kV (median
120 kV), 60–200 mA (median 200 mA). Baseline characteristics of these patients including
age, gender, and decompression levels were recorded.

By tracking and reviewing the medical records in our institution, these patients were
identified whether they underwent elective spinal decompression surgery. Given that the
decompression surgeries of the patient cohort are established facts, the decompression or
non-decompression levels could be regarded as the ground truth. Thus, the lumbar disc
levels of decompression were recorded and regarded as the decompression levels, while
the rest of the lumbar disc levels were regarded as the non-decompression levels.

2.2. Radiomic Features

The CTM scan of the lumbar spine consists of five levels, indicating that each case
may have at least one decompression level. Therefore, using case samples to develop ML
models would be inappropriate. Conversely, utilizing the disc levels as samples to develop
the ML model can predict the probability of each level being a decompression level, which
is undoubtedly more valuable.

In this study, the osseous spinal canals of each disc level with the most stenotic slices
on the CTM scans were delineated on 3D Slicer 4.11 [33,34]. The manual canal delineations
were initially conducted by a human expert, who was experienced in lumbar CTM image
reading and 3D Slicer operation, and then reviewed by another two experts with similar
experience. Any disagreements of the delineated areas of the canal segmentation were
discussed and reviewed by these three experts.

As the ROIs were delineated, the PyRadiomic module of Slicer was used to extract the
radiomic features (texture features, first-order intensity, shape features, etc.) from all levels
of each patient, generating csv files of each level sample. Finally, all samples were merged
using Python 3.8.13 (Python Software Foundation) and used to develop ML classifiers
(Figure 1).

2.3. Model Development

Six common feature selection methods were utilized in this study, including embed-
ding tree, embedding random forest (RF), embedding logistic regression (embeddingLR),
embedding linear support vector classifier (embeddingLSVC), maximal information co-
efficient (MIC), and recursive feature elimination (RFE). The feature importance of each
feature selection method was used to rate the most valuable radiomic features to predict
decompression levels in LSS patients. Additionally, twelve ML algorithms were utilized,
namely, multilayer perceptron (MLP), gradient boosting, adaptive boosting (AdaBoost), lo-
gistic regression (LR), bagging, linear discriminant analysis (LDA), RF, extra trees, support
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vector machine (SVM), decision tree, k-nearest neighbor (KNN), and Gaussian naïve Bayes
(NB). Therefore, a total of 72 initial classifiers from 6 × 12 combinations were developed.
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The included patient data were divided into two sub-datasets (training:testing = 8:2).
Firstly, six common feature selection methods were utilized for the training dataset, so
six feature-selected training datasets were created. With the six feature-selected training
datasets, we endeavored to optimize the hyper-parameters for each of the 12 ML algo-
rithms. The optimization process of the hyper-parameters was achieved using 5-fold
cross-validation with the GridSearchCV or RandomSearchCV function in the scikit-learn
package, and the scoring metric was the area under the curve of the receiver operating
characteristic (ROC-AUC).

We used the SelectFromModel function from the Python package scikit-learn to con-
duct the embedding classifier feature selection with the training dataset. SelectFromModel
is a meta-transformer that can be used alongside any estimator that assigns importance
to each feature through a specific attribute (such as coef_, feature_importances_) or via
an importance_getter callable after fitting. The features are considered unimportant and
removed if the corresponding importance of the feature values are below the provided
threshold (or mean importance when no threshold is provided). Thus, the feature impor-
tance could be quantified using the SelectFromModel function of the scikit-learn package,
and the initial number of radiomic features was 15. Additionally, the weaker learners
(base estimator) of the meta-algorithms, like bagging, gradient boosting, and Adaboost,
used in this study were logistic regression, LDA, SVM, KNN, GaussianNB, and decision
tree. The above-mentioned six base estimators were all defined via their own optimized
hyper-parameters.

With the optimized hyper-parameters (Table S1) for each of the 12 ML algorithms, we
retrained them with the six feature-selected training datasets, without any cross-validation.
As a result, a total of 72 ML classifiers were obtained and assessed. The ROC-AUCs in the
independent testing were the primary indicators to assess the prediction performance for
all ML classifiers, and the precision–recall AUC (PR-AUC) was the secondary indicator.
Additionally, the calibration curves and the Decision Curve Analysis (DCA) were also
obtained to assess the predictive consistency and the clinical utility of ML classifiers,
respectively. Other indicators of discrimination ability included sensitivity, specificity,
accuracy, positive predictive value (PPV), and negative predictive value (NPV).

Top ML classifiers were selected based on the overall evaluation of the discrimination
ability, the predictive consistency, and the clinical utility of all 72 ML classifiers in the
independent testing datasets. Firstly, top classifiers with ROC-AUCs over 0.90 were initially
selected, and differences in ROC-AUCs were statistically detected. Then, we also compared
the top classifiers with PR-AUCs over 0.80, and differences in PR-AUCs were statistically
detected. Additionally, other indicators of discrimination ability were also compared
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for the top-n selected classifiers if necessary. Finally, the Brier score was used to assess
predictive consistency, and the Net benefit was used to assess the clinical utility of the top-n
selected classifiers.

2.4. Statistical Analysis

The predictions for all classifiers were defined as category outcomes: decompression
level or not. The differences in baseline characteristics between decompression level and
non-decompression level cohorts were compared using a simple t-test and chi-squared test.
The ROCs were compared using the Delong test, and the PR-AUCs were compared using
the Wilcoxon rank sum test. A p < 0.05 was considered a statistically significant difference.

3. Results

A total of 219 patients and 1095 disc levels were identified and enrolled in this study.
Among them, the non-decompression level samples had 711 lumbar disc levels, and the
decompression level samples had 384 lumbar disc levels. The baseline characteristics of the
training dataset and testing dataset are shown in Table 1. No significant differences were
observed in baseline characteristics.

Table 1. Basic characteristics of 219 patients.

Subjects Training Dataset
(n = 176)

Testing Dataset
(n = 43) p-Value

Age (years) 61.59 ± 13.43 57.47 ± 14.95 0.126
Gender 0.978

Male 83 21
Female 93 22

Decompression level 0.233
L1/L2 4 0
L2/L3 18 5
L3/L4 47 14
L4/L5 116 41
L5/S1 90 48

Data are presented as mean ± SD.

The AUCs of all ML classifiers during the cross-validation and the training process
can be found in Figure S1. The AUCs of the 72 ML classifiers in the independent testing
datasets are shown in Figure 2. Among them, seven ML classifiers, based on the embedding
LSVC feature selection method, achieved satisfactory ROC-AUCs (higher than 0.90). No
other ML classifiers with ROC-AUCs over 0.90 were found using ML with other feature
selection methods. Similarly, two classifiers with embeddingLSVC achieved satisfactory
PR-AUCs (higher than 0.80) in the independent testing datasets. No other ML classifiers
with PR-AUCs over 0.80 were found using ML with other feature selection methods. The
95% CI of the ROC-AUCs and PR-AUCs of all classifiers are shown in Tables S2 and S3. To
sum up, the embeddingLSVC seems to be the best feature selection method to extract the
most valuable radiomic features of CTM.

As shown in Figure 2, there were seven classifiers with ROC-AUCs over 0.90 in the
independent testing datasets, and the top classifier was EmbeddingLSVC_SVM (ROC-AUC,
0.920). However, the Delong tests indicated no significant differences in the ROC-AUCs
among these top seven classifiers (Table 2). Similarly, there were two classifiers with PR-
AUCs over 0.80 in the independent testing datasets (Table 3). EmbeddingLSVC_SVM was
the top PR-AUC classifier (PR-AUC, 0.855), and EmbeddingLSVC_GradientBoost was the
second best PR-AUC classifier (PR-AUC, 0.831). The Wilcoxon rank sum test revealed
a significant difference in the PR-AUCs among these top two classifiers. In brief, the
discrimination ability of the EmbeddingLSVC_SVM classifier seemed to be slightly superior
to that of the EmbeddingLSVC_GradientBoost classifier. The results of the Wilcoxon rank
sum test of the top 10 PR-AUC classifiers are shown in Table S4.
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To improve the reproducibility of the study, we disclosed the hyper-parameter settings
of the top two classifiers as follows: The kernel of EmbeddingLSVC-SVM was “rbf”,
while the max depth of EmbeddingLSVC_GradientBoost was 2, and the n_estimators of
EmbeddingLSVC_GradientBoost was 40. Other indicators reflecting the discrimination
ability of the top two ML classifiers are shown in Table 4, while the probability threshold
was set to 0.5. The EmbeddingLSVC_SVM classifier was superior across all discrimination
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indicators. To further compare the top two ML classifiers, the calibration curves and the
DCA curves of the top two ML classifiers were also obtained (Figure 3). When considering
predictive consistency, the Brier scores of the top two ML classifiers were similar, but the
EmbeddingLSVC_SVM classifier seemed to be slightly higher. For clinical utility, however,
the Net benefit of the Brier score of the EmbeddingLSVC_SVM classifier showed slight
superiority over the EmbeddingLSVC_GradiantBoost classifier on the DCA curves. In
summary, the EmbeddingLSVC_SVM classifier seems to be the optimal classifier.

Table 2. Delong tests of comparisons among top embeddingLSVC_ML classifiers with ROC-AUC
over 0.90 in the independent testing datasets.

Ranking ROC-AUC p-Values SVM LDA AdaBoost LR Bagging MLP GradientBoost

1 0.920 SVM 1 - - - - - -
2 0.917 LDA 0.820 1 - - - - -
3 0.914 AdaBoost 0.632 0.316 1 - - - -
4 0.914 LR 0.602 0.268 0.900 1 - - -
5 0.913 Bagging 0.665 0.521 0.867 0.698 1 - -
6 0.910 MLP 0.328 0.177 0.452 0.504 0.439 1 -
7 0.901 GradientBoost 0.139 0.230 0.332 0.365 0.339 0.510 1

ML—machine learning; ROC—receiver operating characteristic; AUC—the area under the curve; MLP—
multilayer perceptron; AdaBoost—adaptive boosting; LDA—linear discriminant analysis; SVM—support vector
machine; LR—logistic regression; GradientBoost—gradient boosting; LSVC—linear support vector classifier.

Table 3. Wilcoxon rank sum test of comparisons among top embeddingLSVC_ML classifiers with
PR-AUCs over 0.80 in the independent testing datasets.

Ranking PR-AUC p-Values SVM GradientBoost

1 0.855 SVM 1 <0.001
2 0.831 GradientBoost <0.001 1

ML—machine learning; PR-AUC—the area under the curve of the precision–recall curve; SVM—support vector
machine; GradientBoost—gradient boosting; LSVC—linear support vector classifier.

Table 4. Other indicators of discrimination ability for the top two selected classifiers.

EmbeddingLSVC_ML Sensitivity Specificity Accuracy PPV NPV

SVM 0.833 0.864 0.854 0.750 0.864
GradientBoost 0.694 0.850 0.799 0.694 0.850

ML—machine learning; PPV—positive predictive value; NPV—negative predictive value; SVM—support vector
machine; GradientBoost—gradient boosting; LSVC—linear support vector classifier.

As embeddingLSVC was the optimal feature selection method and the EmbeddingLSVC_SVM
classifier was the optimal classifier, the interpretation of the selected radiomic features
was vital for introducing the optimal classifier into clinical practice. Permutation im-
portance showed that the top important radiomic feature was “original shape Maxi-
mum2DDiameterSlice”, which indicates that the space of the bony spinal canal was the most
important predictor to identify the decompression levels. The second important radiomic
feature was “wavelet.LHL.glszm.GrayLevelNonUniformityNormalized”, which indicated
that the non-uniformity of the gray level of CTM was a hardly quantified but valuable
predictor. The third and fourth important features were “original.first.order.Uniformity”
and “wavelet.HLL.firstorder.RootMeanSquared”, respectively. These two radiomic features
belonged to the first-order intensity features, which might be subjectively perceivable but also
hard to quantify. The fifth importantradiomic feature was “wavelet.LLL.glrlm.ShortRunLow-
GrayLevelEmphasis”, which emphasized the importance of a low gray level of the ROI. In
summary, the top five important radiomic predictors included two texture features, two
first-order intensity features, and one shape feature, all of which were eye-discernible but
hard to objectively quantify, except for the shape feature (Figure 4). The complete results
are available in the compressed Supplementary Files.
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4. Discussion

ML predictions based on CTM radiomics were expected to assist in the decision-
making process for the surgical management of LSS. In this study, we found that em-
beddingLSVC was the optimal feature selection method for extracting the most valuable
radiomic predictors. Additionally, the EmbeddingLSVC_SVM classifier appeared to be
the optimal ML classifier to facilitate the identification of decompression levels for LSS
patients. Finally, this study also revealed that the space of the bony spinal canal was an
old-fashioned but the most important predictor. To the best of our knowledge, this is the
first study to utilize ML algorithms and radiomic data to predict decompression levels in
LSS patients using only CTM images.

Surgical decompression using a variety of techniques (such as single-level or multi-
level decompression, micro-decompression, open decompression, and decompression with
or without spinal fusion) has been proven to be beneficial to long-term outcomes for LSS
patients [35–38]. However, it remains challenging for surgeons to determine decompression
levels, especially for multi-level stenosis. A randomized controlled trial indicated that
micro-decompression was effective in the treatment of multi-level LSS, with superior re-
sults regarding less back pain postoperatively and less blood loss and soft tissue dissection
compared to open surgery [39]. However, the accurate identification and localization of
decompression levels are important prerequisites for micro-decompression; otherwise,
extensive decompression or open spinal surgery is required for multiple suspected levels.
Although the clinical outcomes are similar [38,39], multi-level decompression and open
spinal surgery have disadvantages, such as more surgical trauma, more back pain postop-
eratively, a larger volume of estimated blood loss, longer hospital stays, and so on [38–41].
Selective decompression, when considering decompressive surgery for suspected multi-
level LSS patients, could help avoid the risk and invasiveness of extensive procedures [42].
Therefore, improving the ability of spine surgeons to identify decompression levels is
essential, and the presented prediction classifier could serve as helpful assistance in the
surgical decision-making process.

In clinical practice, the identification of decompression levels largely depends on
radiologic examinations and surgeon experience. Multiple imaging modalities, such as
MRI, CT, and CTM, have been widely used in different situations [43]. Among them, MRI
is regarded as the standard imaging modality for spinal stenosis assessment, but it might
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underestimate the severity of stenosis [44–46]. In some cases (e.g., when MRI findings were
inconclusive or ambiguous), CTM was an adjunct imaging modality in clinical practice [47],
as it showed advantages in detecting multi-level LSS [48]. Moreover, with the increasing
use of spinal instrumentation, CTM still remains an alternative imaging method in the
investigation of LSS [49]. However, young physicians are unfamiliar with interpreting this
old-fashioned imaging modality, and even experienced physicians may fail to objectively
and quantitatively assess LSS. In recent studies, quantitative texture analysis has been
proven to be a valuable tool in detecting distinct quantifiable differences in tissues that
cannot be depicted via qualitative visual assessments [18,50,51]. Therefore, it is necessary
to utilize radiomic techniques and ML algorithms to mine valuable CTM features.

Radiomics is one of the most popular techniques for extracting high-throughput image
features of ROIs from multi-dimensional data [28]. When combined with ML techniques,
radiomic data can be used to achieve the accurate, quantitative, and interpretative eval-
uation of ROIs, which is expected to assist in the diagnosis, classification, and decision
making of diseases [30]. In this study, we found that the shape feature of the spinal canal
on CTM images was the most important predictor for identifying decompression levels in
LSS patients. Evidently, the shape features reflect the diameter of the osseous spinal canal,
which correlates spinal degeneration with the narrowing of space around the nerves. The
second important predictor reflects the non-uniformity of the gray level of CTM, which
should be eye-discernible, although hard to quantify but valuable, as it might reflect the
heterogeneous content of the spinal canal (e.g., the spinal nerves, ligamentum flavum,
and myelogram contrast). The two first-order intensity features might reflect the level
of the myelogram contrast in the spinal canal, which is consistent with clinical practice,
as the non-distribution of myelogram contrast at certain levels is usually regarded as the
imaging sign of the culprit level. The fifth important predictor also reflects the texture of
the spinal canal like the second best predictor, but it mainly emphasizes the contribution
of the low gray level to the selection of decompression levels. Interestingly, all the above
five predictors should be subjectively perceptible to human eyes, but they were hard to
objectively quantify, except for the shape feature, and their importance ranking has never
been disclosed.

While identifying radiomic predictors undoubtedly increased the interpretability of
decompression levels on CTM, integrating these predictors into personalized prediction
would increase applicability. Jujjavarapu et al. [31] developed a DL model to use patients’
clinical data to predict decompression surgery for lumbar disc herniation and LSS patients.
The DL models achieved a mean AUC of 0.725 for early surgery and 0.655 for late surgery.
However, the radiomic data were not used in this study. An ML study by Wilson et al. [26]
used the percentage reduction in the canal area at each disc level as quantitative MRI pre-
dictors, and they achieved a high discrimination in predicting surgical candidacy for LSS
patients (AUCs of L1–L5 were 0.71 to 0.89, and the overall AUC was 0.88). André et al. [52]
assessed the feasibility of training a DL model on synthetic patients generated from EHR
data to predict the positive and negative outcomes of decompression surgery, with an AUC
of 0.78. However, their study did not provide the indicators of precision and sensitivity. The
current study found that the optimal classifier could achieve superior AUCs (an ROC-AUC
of 0.920 and a PR-AUC of 0.855) compared to almost all classifiers mentioned above, with
balanced specificity (0.833) and sensitivity (0.864). Additionally, a slightly higher sensitivity
might reduce the risks of missing decompression levels, in which patients might undertake
the surgery without symptom relief. The improved discrimination of our optimal classifier
can be explained by the high-throughput radiomic features we adopted, which included
shape, first-order intensity, texture features, etc. Moreover, we also adopted six feature
selection methods to identify the valuable predictors and deployed 12 ML algorithms to
train the predictive classifiers. We found that embeddingLSVC was the optimal feature se-
lection method and that the EmbeddingLSVC_SVM classifier was the optimal ML classifier
via comprehensive comparisons. It should be mentioned that the EmbeddingLSVC_SVM
classifier not only demonstrated a high discrimination ability but also favorable predictive
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consistency and superior clinical utility. Clinical utility is vital when considering a classifier
to assist in decision making, and notably, the EmbeddingLSVC_SVM classifier happened
to exhibit a higher Net benefit in the DCA curve.

Several limitations should be noted in this study. First, the prediction performance of
the optimal ML classifier was not compared with clinical physicians of varying expertise
levels. This is because the main aim of this study was to explore the assistance potential
of ML algorithms in predicting decompression levels in LSS patients. However, we could
not simply draw the conclusion that the optimal ML classifier is good enough for decision
making in clinical practice. This is because surgeons need not only useful information from
preoperative radiology images to predict decompression levels in LSS patients but also
clinical information like the localization of radiating pain if the patient presents with this.
Therefore, further study should investigate the add-on value of the optimal ML classifier in
human identification of decompression levels. Second, the current study lacked external
validation. We can overcome these obstacles by including more data from other institutions
to further validate the ML classifiers. Last but not least, we selected decompression levels
instead of culprit levels as the prediction outcome, as the ground truth of the latter is hard
to objectively confirm due to the retrospective nature of this study.

5. Conclusions

ML successfully extracted valuable and interpretable radiomic features from the spinal
canal using CTM images and accurately predicted decompression levels in LSS patients.
The EmbeddingLSVC_SVM classifier has the potential to assist in surgical decision-making
processes in clinical practice, as it showed high discrimination, favorable calibration, and
advantageous utility in selecting decompression levels in LSS patients using canal radiomic
features from CTM. Future studies with improved algorithms, multi-center data, and
human comparisons are needed to further confirm the application potential of the optimal
prediction classifier.
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