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Abstract: A cerebral arteriovenous malformation (AVM) is a tangle of abnormal blood vessels that
irregularly connects arteries and veins. Stereotactic radiosurgery (SRS) has been shown to be an
effective treatment for AVM patients, but the factors associated with AVM obliteration remains a
matter of debate. In this study, we aimed to develop a model that can predict whether patients with
AVM will be cured 36 months after intervention by means of SRS and identify the most important
predictors that explain the probability of being cured. A machine learning (ML) approach was applied
using decision tree (DT) and logistic regression (LR) techniques on historical data (sociodemographic,
clinical, treatment, angioarchitecture, and radiosurgery procedure) of 202 patients with AVM who
underwent SRS at the Instituto de Radiocirugía del Perú (IRP) between 2005 and 2018. The LR
model obtained the best results for predicting AVM cure with an accuracy of 0.92, sensitivity of 0.93,
specificity of 0.89, and an area under the curve (AUC) of 0.98, which shows that ML models are
suitable for predicting the prognosis of medical conditions such as AVM and can be a support tool
for medical decision-making. In addition, several factors were identified that could explain whether
patients with AVM would be cured at 36 months with the highest likelihood: the location of the AVM,
the occupation of the patient, and the presence of hemorrhage.

Keywords: brain arteriovenous malformation; prognosis; prediction; machine learning; artificial
intelligence; decision tree; logistic regression

1. Introduction

Cerebral arteriovenous malformation (AVM) is a congenital neurological disease that
causes cerebral hemorrhage, seizures, or headache. It consists of an abnormal conglomerate
of dilated cerebral vessels derived from the maldevelopment of the capillary network that
allows direct connections between cerebral arteries and veins [1]. One of the treatments,
known of since the 1970s, in addition to microsurgery and endovascular therapy, is stereo-
tactic radiosurgery (SRS), in which the AVM is obliterated by radionecrosis through the
administration of multi-beam directed radiation [2]. From the medical point of view, SRS is
a neurosurgical technique that does not require an incision and is used as an alternative or
complement to noninvasive treatment.

The healing process of patients with AVM undergoing SRS is not immediate and
requires time with clinical and imaging monitoring to know the evolution of the disease.
The successful exclusion of brain AVM with radiosurgery is considerably higher for smaller
lesions. For example, one study showed that the obliteration rate of patients with brain
AVM after SRS was between 54–92% for lesion diameters ≤ 2.5 cm [3]. Several scoring
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systems, such as the Spetzler–Martin Grading Scale (SMGS) and the Virginia Radiosurgery
AVM Scale (VRAS), are currently used by physicians to understand the nature of AVM and
predict the results of radiosurgery treatment [4–6]. However, developing new methods to
predict the results of radiosurgery treatment and determining the factors that influence the
probability of success are needed.

Machine learning (ML) is a subset of artificial intelligence (AI) that uses algorithms that
automatically “learn” to identify patterns in data, which are used to make forecasts based
on these patterns [7]. The use of such algorithms as support tools for medical decision-
making and their application in the prognosis, diagnosis, and treatment of diseases has been
recently developed [8]; however, certain conditions still exist that make it difficult for them
to be widely adopted [9–13]. Among the studies referring to the prediction and diagnosis
of neurological and brain diseases in which ML techniques were applied is the study
of Uspenskaya-Cadoz et al. [14], which proposed a method for diagnosing Alzheimer’s
disease (AD) by applying logistic regression (LR), decision tree (DT), random forest (RF),
and gradient-boosted trees (GBT) techniques, and the study of Ghafouri-Fard et al. [15],
which proposed using artificial neural networks (ANNs) to predict multiple sclerosis (MS)
risk based on genotypes.

At present, the application of ML techniques to the diagnosis, prognosis, or treatment
of AVM has increased. Interesting studies can be found, such as one by Tao et al. [16],
which examined the factors that influence the risk of bleeding from AVM, and another
by Hong et al. [17], which reported an experiment for the detection of hemorrhages in
AVMs using digital subtraction angiography (DSA) images. There are also studies on the
use of deep learning models, a type of ML specialized in image processing; for example,
Wang et al. [18] automated the process of segmenting and identifying AVMs in computed
tomography (CT) and DSA images. Other studies have focused on the prognosis of patients
with AVM after surgery, with the aim of predicting whether they would be cured. For
example, Asadi et al. [19] presented a study on identifying the factors that influence the
outcome of treatment with endovascular embolization and showcased that ML techniques
can satisfactorily predict outcomes with high accuracy and can help to individualize the
treatment based on key predictors. Finally, Oermann et al. [20] used an ML approach to pre-
dict the outcomes of AVM patients undergoing radiosurgery, and achieved an accuracy of
0.74, which is considered to be the best prognostic result as of the date of publication of this
paper. However, the prediction error rate found in these previous studies is high (greater
than 25%), and in addition, they did not study the explainability phenomena through
assessing the importance of the variables, which is key for medical decision-making.

From these previous studies [16–20], which show that ML algorithms are powerful
tools that can be used in the medical field, in the present study, we aimed not only to
provide an ML approach for predicting whether patients with AVM who undergo SRS
will be cured but also one that could identify the main factors influencing whether these
patients will be cured 36 months after radiosurgery.

2. Materials and Methods

The construction of an ML system for the prognosis of patients with AVM treated
with SRS is proposed using two techniques: DT and LR (Figure 1). These two techniques
were used in this study because they can produce results (predictions) that are easy to
understand by the experts in the domain as they are considered “white box” methods [21].
Additionally, these methods were also used in previous studies regarding the AVM outcome
prediction [16,19,20].
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Figure 1. Proposed ML system.

Due to a common long-term follow-up protocol that suggests complete AVM oblitera-
tion within the first 3 years for 70–80% of AVM patients [22], the objective of this study is
to predict whether a patient will be cured or not at 36 months after undergoing SRS; for
this, a supervised ML learning approach was chosen via binary classification. Additionally,
the use of LR is proposed to determine the main factors that influence whether an AVM
patient will be cured.

2.1. Dataset

For this study, a dataset comprising 45 variables of 202 patients diagnosed with AVM
who underwent SRS treatment to cure this disease was used. The data were collected from
different medical sources at the Instituto de Radiocirugía del Perú (IRP) between 2005 and
2018 following the process shown in Figure 2.
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Figure 2. Data collection process: (A) consent; (B) patient selection; (C) data extraction; (D) data tabulation.

The variables that were collected from patient data were considered as input data (pre-
dictors) and were grouped into 5 categories: sociodemographic (S), clinical (C), treatment
(T), angioarchitecture (A), and radiosurgery (R). The variable for patients being cured at
36 months after radiosurgery was considered as output data (response). Table 1 shows the
structure of the dataset used in this study.
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Table 1. Dataset structure.

Cat. Variable Name Description Values

(S) gender Sexual/gender identity 1 = male; 0 = female

(S) age Chronological age 4–75

(S) residence Place of residence (city where patient
lived during treatment)

1 = Lima or Callao, Peru; 2 = outside Lima or
Callao in Peru; 3 = outside Peru

(S) occupation Principal work or business

1 = professional with bachelor’s or technical
degree; 2 = general worker; 3 = housewife;

4 = police officer or similar; 5 = undergraduate
student; 6 = school student; 7 = unemployed;

8 = self-employed

(S) education_level Level of education 1 = preschool; 2 = primary school;
3 = secondary school; 4 = higher education

(S) health_insurance Type of health insurance 1 = private; 2 = EsSalud; 3 = SIS; 4 = personal;
5 = military or similar

(C) hemorrhage
Presence of bleeding on a computerized

tomography (CT) scan in brain AVM
before radiosurgery

1 = yes; 0 = no

(C) hemorrhage_type Type of bleeding in brain AVM
1 = parenchymal; 2 = ventricular;

3 = parenchymal and ventricular; 4 = no
hemorrhage present

(C) headache Persistent headache
before radiosurgery 1 = yes; 0 = no

(C) seizures Presence of seizures at time
of diagnosis 1 = yes; 0 = no

(C) encephalomalacia
Localized softening of brain substance

due to bleeding or inflammation
before radiosurgery

1 = yes; 0 = no

(C) other_diseases Presence of other systemic or
degenerative diseases 1 = yes; 0 = no

(C) deficit Type of deficit in patient’s senses
before radiosurgery

1 = motor deficit; 2 = sensory deficit;
3 = cognitive deficit; 4 = no deficit observed

(C) karnofsky_scale Measurement for classification of
functional impairment 0–100%

(C) glasgow_coma_scale Assessment of impaired consciousness
in response to defined stimuli 3–15

(C) spetzler_martin_scale

Estimation of risk of open neurosurgery
for patients with brain AVM, by

evaluating AVM size, pattern of venous
drainage, and eloquence of

brain location

0–5

(C) buffalo_scale Grading system for endovascular
treatment of brain AVMs

(C) virginia_scale
Scale to predict favorable outcomes for

brain AVM patients treated with
gamma knife radiosurgery

0–4

(T) prev_cran_surgery Previous open cranial surgery 1 = yes; 0 = no

(T) embolization Embolization procedure to occlude
brain AVM before radiosurgery 1 = yes; 0 = no
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Table 1. Cont.

Cat. Variable Name Description Values

(T) embolization_agent Type of material used for
embolization procedure 1 = Onyx; 2 = Histoacryl; 3 = none

(T) prev_surgery_or_embolization Surgery or embolization before
radiosurgery procedure

1 = surgery; 2 = embolization; 3 = surgery and
embolization; 4 = none

(A) localization_avm Anatomical location of brain AVM

1 = frontal lobe; 2 = temporal lobe; 3 = parietal
lobe; 4 = occipital lobe; 5 = cerebral corpus

callosum; 6 = insular cortex; 7 = basal ganglia;
8 = cerebellum; 9 = ventricular; 10 = vermis;

11 = frontomesial; 12 = frontoparietal;
13 = frontotemporal; 14 = mesencephalon;
15 = mesio-occipital; 16 = mesio-parietal;
17 = parieto-occipital; 18 = protuberance;

19 = mesio-temporal; 20 = temporo-occipital;
21 = temporo-parietal; 22 = brainstem

(A) venous_aneurysm Presence of venous aneurysm along
with brain AVM 1 = yes; 0 = no

(A) arterial_aneurysm Presence of arterial aneurysm along
with brain AVM 1 = yes; 0 = no

(A) dolichoectasia Elongation, dilatation, and distension
of brain AVM drainage veins 1 = yes; 0 = no

(A) num_afferent_vessels Number of arteries feeding brain AVM Number

(A) depth_avm Depth of brain AVM inside
cranial structure

1 = cortical; 2 = subcortical;
3 = cortico-subcortical; 4 = deep;

5 = ventricular

(A) diameter_avm Largest diameter of brain AVM
in centimeters 0.5–8.0 cm

(A) side_avm Brain side where AVM is located 1 = right; 2 = left; 3 = middle

(A) expansion_shape_avm Shape of AVM expansion in
cerebral area 1 = compact; 2 = fuzzy; 3 = scattered mixed

(A) type_venous_drainage Drainage type of venous blood in
brain AVM 1 = superficial; 2 = deep; 3 = mixed

(A) eloquence Brain AVM is in a zone that
compromises vital functions 1 = yes; 0 = no

(A) type_circulation_drainage Type of circulation of drainage in
brain AVM 1 = superficial venous; 2 = deep venous

(A) blood_flow_velocity Blood flow velocity in brain AVM 1 = slow; 2 = moderate; 3 = fast

(A) venous_stenosis Narrowing of venous vessel lumen at
outlet of drainage of brain AVM 1 = yes; 0 = no

(A) volume_avm Volume of brain AVM mass in
cubic centimeters 0.05–75 cc

(A) num_radiosurgeries Number of radiosurgeries needed to
stabilize brain AVM Number

(A) mri_examination Brain AVM was examined by magnetic
resonance imaging (MRI) 1 = yes; 0 = no

(A) ct_examination Brain AVM was examined by CT 1 = yes; 0 = no

(A) das_examination Brain AVM was examined by digital
angiography system (DAS) 1 = yes; 0 = no
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Table 1. Cont.

Cat. Variable Name Description Values

(R) num_isocenters Number of iso-centers to cover and
treat brain AVM Number

(R) radiation_doses Dose of radiation applied to brain AVM
during radiosurgery in Gray units 1–50 Gy

(R) isodosis Percentage of isodosis applied during
radiosurgery of brain AVM 40–80%

(R) cured
Brain AVM is cured within 3 years of

radiosurgery, as indicated by
cerebral angiography

1 = patient was cured; 0 = patient was
not cured

S, sociodemographic; C, clinical; T, treatment; A, angioarchitecture; R, radiosurgery.

The dataset is tabular and is made up of 202 records (rows) and 45 variables (columns),
in which the rows correspond to the patient data and the columns represent the variables
considered in the study. The first 44 variables were considered as input variables to the
system (independent variables) and the last column as the output variable (dependent
variable), representing patients being cured (cured = 1) or not (cured = 0).

2.2. Data Preprocessing

Before carrying out any data processing and because this was a medical application,
it was advisable to analyze the data regarding possible confounding variables that could
have an undesired impact on our prediction results [23]; for this, we analyzed the possible
confounding variables of gender and age.

For the categorical variable gender, the chi-square test of homogeneity was performed
to verify whether the difference in the number of men and women in each data group
was statistically significant, and no difference was found (p-value = 0.566; Figure 3a). For
the age variable, Student’s t-test was applied to verify whether there was a statistically
significant difference in age between groups (class 0, mean = 31.97; class 1, mean = 26.72),
and again no difference was found (p-value = 0.058; Figure 3b).
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From this analysis, we concluded that the variables age and gender should not be
considered as confounding variables, so we moved forward with the data preprocessing.

Finally, in order to avoid prediction biases and build the ML system effectively, variable
selection and data balancing were carried out.

2.2.1. Variable Selection

After an analysis by expert judgment, 6 independent variables were identified that
were considered not to influence the prognosis of being cured, so they were excluded from
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the study (residence, education_level, health_insurance, mri_examination, ct_examination,
and das_examination).

Additionally, correlation analysis of the 38 remaining independent variables was
carried out; Cramer’s test [24] was applied to identify the linear correlation between cat-
egorical variables and Pearson’s test (Pearson’s correlation coefficient) for the numerical
variables; in both cases, a threshold value greater than or equal to 0.7 was used to determine
the high positive (negative) correlation [25], and 6 correlated variables that exceeded the
threshold were identified and discarded from the study (Table 2). The dython library [26],
which is available for the Python programming language, was used to perform the calcu-
lations. Finally, 12 independent variables were discarded, leaving a dataset made up of
32 independent variables and 1 dependent variable, which were used in the ML system
proposed in this study (Table 3).

Table 2. Variables discarded from the study.

Discarded Variables Method Threshold

residence, education_level,
health_insurance,
mri_examination,
ct_examination,
das_examination

Expert judgment n.a.

hemorrhage_type,
embolization_agent,
prev_surgery_or_embolization,
spetzler_martin_scale,
type_circulation_drainage

Cramer’s V test 0.7

diameter_avm Pearson’s test 0.7

Table 3. Variables selected for the study.

Id Variable Name Id Variable Name Id Variable Name

1 gender 12 buffalo_scale 23 expansion_shape_avm
2 age 13 virginia_scale 24 type_venous_drainage
3 occupation 14 prev_cran_surgery 25 eloquence
4 hemorrhage 15 embolization 26 blood_flow_velocity
5 headache 16 localization_avm 27 venous_stenosis
6 seizures 17 venous_aneurysm 28 volume_avm
7 encephalomalacia 18 arterial_aneurysm 29 num_radiosurgeries
8 other_diseases 19 dolichoectasia 30 num_isocenters
9 deficit 20 num_afferent_vessels 31 radiation_doses
10 karnofsky_scale 21 depth_avm 32 isodosis
11 glasgow_coma_scale 22 side_avm 33 cured *

* Dependent variable.

The final dataset was made up of 202 records, with 32 independent variables and
1 dependent variable, which was divided into two datasets, 75% (n = 151) for ML model
training and validation and 25% (n = 51) for testing. In addition, the 32 independent vari-
ables of the training and validation set were normalized using the min–max technique [27].

2.2.2. Data Balancing

The original training dataset had a data imbalance with respect to the dependent
variable, cured, in that it consisted of 125 records of class 1 and 26 of class 0. The imbalance
was corrected by applying the synthetic minority oversampling technique (SMOTE), which
creates new synthetic instances of the minority class instead of repeating them [28,29]. We
obtained 250 records in total; 125 records for each class, as shown in Figure 4.
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Finally, two training datasets were obtained: an imbalanced training dataset made
up of 151 records, and a balanced training dataset made up of 250 records. Both datasets
were represented by a data matrix of dimension n × 32, in which the observation i can be
expressed as oi = [o0, o1, . . ., o32] ∈ Rn×32, where n is the number of observations or records
in the dataset.

2.3. Machine Learning Models

For the construction, validation, and evaluation of the ML system, we used the process
shown in Figure 5, which consisted of using the two training datasets (balanced and
imbalanced) to build and validate the two ML models (DT and LR) in four experimental
scenarios; based on the results, the model with the best performance metrics was chosen.
Scenario 1 refers to the imbalanced training data with the DT model, scenario 2 refers to
the imbalanced training data with the RL model, scenario 3 refers to the balanced training
data with the DT model, and scenario 4 refers to the balanced training data with the RL
model. The final model’s performance was evaluated by using both the accuracy and the
AUC metrics to compare our study’s results with the ones obtained by Oermann et al. [20]
and Meng et al. [30]. The accuracy was used to evaluate how well the model predicts the
correct label (cured patients) for a given data point, so the ML model can be effectively
used in the medical field.
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Additionally, the LR method was used to identify the most important factors that
determine the probability of patients being cured (clinical interpretability).

In the training phase, the grid search technique [31] was used to find the optimal
hyperparameters of the ML models in each of the four scenarios. The set of search values
defined for the hyperparameters is given in Table 4.
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Table 4. Search space for tuning hyperparameter values.

Model Parameters Grid Search Space

Decision tree (DT)
max_depth 2–9

criterion gini, entropy

Logistic regression (LR)

penalty l1, l2
solver liblinear

C 0.001, 0.01, 0.1, 1, 10, 100, 100
max_iter 1000, 5000

During the training process, the resampling technique was used (Figure 6), in which
the training dataset was divided into 8 subsets, with 1 set taken for validation and 7 for
training, following 8-fold cross-validation, which is a commonly used method for selecting
ML models [32,33].
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To build the ML models, the scikit-learn 1.0.2 library [34] of Python version 3.8.16
was used in the Google Colab environment. The algorithms and resources built for this
research can be found at https://github.com/mirkorodriguez/ml-prediction-mav accessed
on 14 December 2023.

3. Results

The composition of the study population, the performance of the prediction models,
and the explainability of the prediction are presented below.

3.1. Study Population

This study included 202 patients with AVM who underwent stereotactic radiosurgery
between 2005 and 2018 at the IRP. As shown in Supplementary Figure S1, 167 patients
(82.20%) were cured 36 months after the surgical intervention.

Supplementary Table S1 shows the sociodemographic characteristics of the population
included this study: 52.97% were men and 47.03% were women; 70.49% of patients were in

https://github.com/mirkorodriguez/ml-prediction-mav
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the age range of 18 to 59 years; 80.69% were from Lima or Callao; 18.82% had a preschool
or grade school education and 52.97% had only a high school education; and 42.08% had
insurance through the Ministry of Health of Peru (SIS).

Supplementary Table S2 shows the clinical characteristics of the patients. The average
time from radiosurgery to AVM cure (obliteration) was 22.07 months, the average radiation
dose was 17.86 Gray, the average AVM diameter was 2.14 cm, and the average number of
isocenters applied was 1.35. On average, radiosurgery was performed in a single session.

Supplementary Table S3 shows the statistics of the patients’ previous treatments before
SRS. Of the 202 patients, 31 had undergone surgical treatment and 49 had prior embolization.
As part of the treatment, 22 only underwent surgery, 40 only embolization, and 9 both
surgery and embolization. The embolizing agents were Onyx (52%) and Histoacryl (48%).
In total, 155 patients had previous cerebral hemorrhage, 76 developed encephalomalacia,
178 had headache, and 112 had seizures; furthermore, 55% presented some type of deficit
(motor, sensory, or cognitive). Regarding the angioarchitecture (characteristics) of the AVM,
most (100) were located on the left side of the brain and most (96) were categorized as deep;
most treated AVMs (95) had moderately intense flow.

Finally, Supplementary Table S4 shows the anatomical locations of the AVMs, which
were mainly found in the basal ganglia (16.83%), frontal lobe (9.9%), insular cortex (6.93%),
parieto–occipital region (6.93%), mesio-temporal region (6.93%), and cerebellum (6.44%).

3.2. Performance of Prediction Models

The results obtained by the models using the data in the testing set are described below.
Table 5 shows the optimal hyperparameters identified for each scenario that were used

in the models for prediction.

Table 5. Calibrated hyperparameters for each model found during the training process.

Scenario Dataset + Model Parameters Value

01 Imbalanced + DT
max_depth 4

criterion gini

02 Balanced + DT
max_depth 9

criterion entropy

03 Imbalanced + LR

penalty l1
solver liblinear

C 10
max_iter 1000

04 Balanced + LR

penalty l1
solver liblinear

C 10
max_iter 1000

Figure 7 shows the confusion matrices obtained as a result of evaluating the best ML
model from each of the four predefined scenarios with the testing dataset. Figure 8 shows
the AUC curve for each scenario.

Table 6 shows the results of the experiments with the four scenarios in terms of
their performance metrics for both the training and testing datasets. The best model
according to the performance metrics in the testing dataset is the LR model built with the
balanced dataset.
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Table 6. Summary of models’ performance.

Dataset Model Name Accuracy Sensitivity Specificity Precision Bal. Accuracy F1-Score AUC

Training

DT * 0.92 0.93 0.88 0.97 0.91 0.95 0.94
DT (imbalanced) 0.94 0.96 0.85 0.97 0.90 0.96 0.92

DT (balanced) 0.98 0.98 0.99 0.99 0.98 0.98 0.98
LR * 0.95 0.96 0.92 0.98 0.94 0.97 0.96

LR (imbalanced) 0.97 0.96 1.00 1.00 0.98 0.98 0.99
LR (balanced) 0.96 0.97 0.96 0.96 0.96 0.96 0.99

Testing

DT * 0.76 0.86 0.33 0.86 0.60 0.86 0.62
DT (imbalanced) 0.78 0.83 0.56 0.90 0.69 0.86 0.75

DT (balanced) 0.80 0.81 0.78 0.94 0.79 0.87 0.79
LR * 0.80 0.81 0.78 0.94 0.79 0.87 0.93

LR (imbalanced) 0.84 0.86 0.78 0.95 0.82 0.90 0.94
LR (balanced) 0.92 0.93 0.89 0.98 0.91 0.95 0.98

* Models built without any data preprocessing used as a baseline for comparison.
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3.3. Explainability of Models

In order to gain a general idea about the explainability of the results obtained by
the models used in this research, the LR model built with balanced data (scenario 4) was
used based on its good prediction results and its interpretability through the calculation of
the odds ratio (importance) [35]. Table 7 shows the variables (features) and their level of
importance in explaining the probability of patients with AVM being cured 36 months after
SRS, among which 18 have a negative influence and 14 have a positive influence. The five
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most important variables that positively influence being cured are (1) the location of the
AVM (side_avm), (2) the occupation of the patient (occupation), (3) the presence of bleeding
in the AVM (hemorrhage), (4) previous cranial surgery (prev_cran_surgery), and (5) the
type of venous drainage (type_venous_drainage). It is important to highlight that the
patient’s occupation is an antecedent of the disease, but it is not clinically relevant; however,
it is an interesting finding that should be evaluated in greater detail in another study.

Table 7. Importance of variables in LR model calculated via odds ratio.

Feature Coef. Importance

side_avm 3.69 3.99 × 101

occupation 3.68 3.98 × 101

hemorrhage 3.61 3.71 × 101

prev_cran_surgery 2.81 1.66 × 101

type_venous_drainage 2.12 8.35 × 100

deficit 1.01 2.74 × 100

eloquence 0.98 2.66 × 100

gender 0.48 1.61 × 100

seizures 0.43 1.53 × 100

karnofsky_scale 0.00 1.00 × 100

virginia_scale 0.00 1.00 × 100

num_isocenters 0.00 1.00 × 100

num_radiosurgeries 0.00 1.00 × 100

arterial_aneurysm 0.00 1.00 × 100

headache −0.01 9.90 × 10−1

glasgow_coma_scale −0.06 9.39 × 10−1

buffalo_scale −0.59 5.52 × 10−1

venous_stenosis −1.08 3.39 × 10−1

radiation_doses −1.11 3.28 × 10−1

num_afferent_vessels −1.23 2.93 × 10−1

other_diseases −1.29 2.74 × 10−1

venous_aneurysm −1.34 2.61 × 10−1

age −2.23 1.07 × 10−1

encephalomalacia −3.07 4.64 × 10−2

localization_avm −3.11 4.47 × 10−2

depth_avm −3.23 3.95 × 10−2

expansion_shape_avm −4.01 1.81 × 10−2

isodosis −4.73 8.82 × 10−3

embolization −4.74 8.75 × 10−3

dolichoectasia −5.67 3.46 × 10−3

blood_flow_velocity −7.41 6.07 × 10−4

volume_avm −21.47 4.75 × 10−10

4. Discussion

Inspired by the use of ML techniques in medicine [36–42], and specifically for the
prognosis of patients with AVM [19,20,30], this study proposed a method that makes it
possible to predict whether or not a patient with AVM who undergoes SRS will be cured at
36 months after the intervention. We found that using ML techniques for the prognosis of
patients with AVMs is possible. Our approach involved evaluating four scenarios using two
ML models and two datasets (imbalanced and balanced data). After following a standard
process to build the ML models, in which oversampling, grid search, and cross-validation
techniques were also applied, it was found that the best model to predict whether patients
with AVM would be cured is the LR model trained with balanced data (accuracy 0.92, AUC
0.98). The LR model was superior to the DT model even when trained with imbalanced
data, as shown in Table 6. The data preprocessing (selection of variables and balancing)
performed in this study led to significantly higher results for the two models (DT and
LR) than when the data were not preprocessed, so we can argue that data preprocessing
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should be included in any approach that uses an ML model. In addition, the results
obtained in this study (accuracy 0.92 and AUC 0.98) were found to be superior to the results
obtained in other studies using similar procedures, such as those by Oermann et al. [20]
and Meng et al. [30], who obtained an accuracy of 0.74 and 0.83, and an AUC of 0.71 and
0.77, respectively.

From the clinical perspective, it is observed that the data used in this study have ac-
ceptable homogeneity for the radiosurgery protocol: AVM diameter of 2.14 cm (SD = 0.89),
applied radiation dose of 17.86 Gy (SD = 4.44), and number of isocenters of 1.35 (SD = 0.56);
all of this, together with other technical and morphological factors, allowed for the effective
application of ML techniques to individualize the AVMs that will respond positively to ra-
diosurgery treatment. The LR model is the one that best predicts the SRS outcomes and the
variables that positively influence determining whether a patient will be cured are (1) the
location in the basal ganglia, which coincides with previous studies [43]; additionally, the
location of the AVM on the left side of the brain as an important factor is due to the fact that
the sample is not completely random; (2) deep venous drainage, which occurs at the level
of the basal ganglia or midbrain is considered not treatable with other techniques due to
the high risk involved; (3) the occupational group, which denotes a population of children
and adolescents who tend to have a good response to radiosurgery, was expected and also
coincides with results from other studies [44]. In addition, it is important to highlight that
both the history of bleeding in the AVM and the presence of previous surgical treatment
are key prognostic factors, as it is shown in our study, where 71 (35.14%) of the patients
had previous treatment either through conventional neurosurgery, embolization, or both,
which contributed to improving the favorable prognosis of AVMs by reducing their size or
altering the hemodynamics of the residual AVM, which ultimately favors its healing.

The importance of the results of this study goes beyond the possibility of using this
method for the medical prognosis of patients with AVM; it also allows us to confirm that it
is possible to use an ML model, understood as a generalizable framework, in medicine, by
using historical data to predict the future. We believe that the ML algorithms that process
clinical and imaging data in a personalized way can effectively help in decision-making to
predict which patients with cerebral AVM could benefit from being cured by treatment with
stereotactic radiosurgery. In this case, we used historical information over a 14-year time
horizon, from which sociodemographic and medical data were collected to build an ML
system that achieved very good prediction results and could be used as a tool by medical
professionals for decision-making when dealing with new AVM cases.

Finally, the proposed approach for the prognosis and explainability of whether patients
with AVM will be cured has no limitations; however, the results of these models are
limited to the dataset used in this study, so its application in medical practice requires
more experiments with larger amounts of data and the possibility of including additional
medical variables should also be evaluated. Also, it is important to remark that the two ML
models used in this study are considered transparent models, or “white box” models [21],
the results of which are easy to interpret; however, it would be important to contrast the
interpretability with more sophisticated explainability techniques such as local interpretable
model-agnostic explanations (LIME), Shapley additive explanations (SHAP), and others,
which are focused on identifying the most important predictors for any type of ML model,
including those considered “black box” models.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/diagnostics14010022/s1, Figure S1: Distribution of cured
variable; Table S1: Sociodemographic characteristics of study population; Table S2: Clinical and radio-
surgery characteristics of study population; Table S3: Angioarchitecture and treatment characteristics
of study population; Table S4: Locations of AVM in study population.
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