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Abstract: Mild cognitive impairment (MCI) is cognitive decline that can indicate future risk of
Alzheimer’s disease (AD). We developed and validated a machine learning algorithm (MLA), based
on a gradient-boosted tree ensemble method, to analyze phenotypic data for individuals 55–88 years
old (n = 493) diagnosed with MCI. Data were analyzed within multiple prediction windows and
averaged to predict progression to AD within 24–48 months. The MLA outperformed the mini-
mental state examination (MMSE) and three comparison models at all prediction windows on most
metrics. Exceptions include sensitivity at 18 months (MLA and MMSE each achieved 0.600); and
sensitivity at 30 and 42 months (MMSE marginally better). For all prediction windows, the MLA
achieved AUROC ≥ 0.857 and NPV ≥ 0.800. With averaged data for the 24–48-month lookahead
timeframe, the MLA outperformed MMSE on all metrics. This study demonstrates that machine
learning may provide a more accurate risk assessment than the standard of care. This may facilitate
care coordination, decrease healthcare expenditures, and maintain quality of life for patients at risk
of progressing from MCI to AD.

Keywords: mild cognitive impairment; Alzheimer’s disease; machine learning; disease progression

1. Introduction

Mild cognitive impairment (MCI) is cognitive decline that is atypical for an individual’s
age [1,2]. Up to 18% of individuals over 60 years of age experience MCI [3]. MCI may be the
result of Alzheimer’s disease (AD), a type of dementia, or alternative etiologies, including
conditions for which cognitive decline can be reversed with appropriate treatment. AD
is an irreversible neurodegenerative disease that causes deterioration and impairment in
cognition, memory, and functioning, and is ranked among the top five causes of mortality
among all United States (US) adults aged 65 years and older [4].

The risk of progression from MCI to dementia (including AD) increases over time,
with approximately 10% of individuals progressing within one year following MCI diagno-
sis, and 80% progressing within six years following MCI diagnosis [5]. Individuals who
progress from MCI to AD face severe cognitive deterioration that ultimately eliminates
the ability to independently engage in activities of daily living without reliance on care-
givers [6]. Individuals with AD require increasingly intensive and costly care, estimated at
approximately USD 56,000 per individual per year [7].

The ability to stratify patients with MCI who are likely to progress to AD is essential
for optimizing clinical and non-clinical care coordination in advance of severe disease
onset, which may allow for improved quality of care, quality of life, decreased healthcare
expenditures, and a reduction in health and safety risks associated with AD [4]. For patients
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that are not at risk for progressing from MCI to AD, a differential diagnosis can prompt
treatment to delay or reverse cognitive decline [3].

Assessing a patient’s risk of progressing from MCI to AD is an inherently complex
process that involves a full clinical assessment and collecting patient performance data
from assessment scales that measure functioning in specific domains [8,9]. Standard of
care (SOC) assessment scales for measuring cognitive function in patients with MCI as
a method of predicting risk of progression to dementia include the Montreal Cognitive
Assessment (MoCA) and the mini-mental state examination (MMSE), the latter of which is
widely used in clinical practice to monitor progression of MCI to AD and is considered the
gold-standard for measuring cognitive impairment [10]. Other methods for assessing risk
include genetic testing for individuals aged 60 and younger, neuroimaging, and biomarker
analysis [11,12]. However, these methods are limited by their invasive nature, prohibitive
cost, and the need to obtain serial measurements over time to ensure accuracy and observe
longitudinal cognitive changes [13].

Artificial intelligence (AI) and machine learning (ML) decision support tools have
been validated for a variety of clinical predictive tasks, including those related to neu-
rodegenerative and neurodevelopmental conditions as well as other acute and chronic
conditions [14–29]. These tools provide the opportunity for earlier detection of medical
conditions or complications and may, in turn, facilitate earlier treatment when appropriate
for a particular condition. Many of these tools used state-of-the-art methods for their
classification tasks, including a range of input features varying from complex biomarkers
to assessment data and diverse ML models (Supplementary Table S1). Hinrichs et al. used
ML to analyze a combination of imaging data, biological data, and cognitive assessment
testing data, in order to classify AD patients versus individuals with typical cognitive
ability (accuracy of 0.924) and to predict which patients with MCI would progress to
AD versus reverting to typical cognition (area under the receiver operating characteristic
curve/AUROC of 0.9708) [17]. A multi-kernel learning algorithm was used as the basis
for their ML model, which facilitated analysis of complex and diverse types of data while
limiting the complexity of the model itself. Massetti et al. employed a random forest ML
model to predict progression from MCI to AD using neuropsychological evaluation results
and AD biomarkers and achieved an accuracy of 0.86 [20]. Noting that the presence of
emergent neuropsychological disorders correlates with progression from MCI to dementia,
Mallo et al. used nine ML models to evaluate symptoms of these disorders in patients with
MCI to establish risk of progression to dementia and achieved an accuracy of 0.88 by using
a random forest model [27]. Morabito et al. examined resting state electroencephalographic
(EEG) waveform data to measure degeneration of connectivity density within the brains of
individuals with AD and yielded statistically significant (p < 0.05) changes between initial
assessment and follow-up at 3 months, indicating that AD progression can be measured
by these changes in EEG data [25]. Rutkowski et al. employed wearable EEG headsets
constituting a brain–computer interface to analyze participants’ responses to memory and
visuospatial cognitive tasks [28]. Supervised and unsupervised ML methods were used to
analyze the data and differentiate between patients with typical cognition and patients with
MCI, yielding AUROCs ranging from 0.49 to 1.00 depending on the region of the brain that
was analyzed, but the latter results are not likely to be generalizable. Spasov et al. employed
a deep learning approach and novel methods in which the ML model concurrently learned
two classification tasks: classifying participants with MCI who would progress to AD and
classifying participants as having AD or typical cognition (i.e., control group) [29]. Data
were derived from imaging, demographics, neuropsychological assessments, and genetic
data and the model achieved an AUROC of 0.925 for predicting MCI conversion to AD
within 3 years and AUROC of 1.00 for differentiation between participants with AD and
those with typical cognition. Marcisz and Polanska used a logistic regression model to
classify individuals as having MCI, AD, or normal cognition using magnetic resonance
imaging radiomic data to evaluate brain volume and yielded the highest AUROC (0.997)
for classification of AD and the lowest AUROC (0.793) for classification of MCI vs. normal
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cognition [30]. Peng et al. predicted the progression of MCI to AD using feature inputs to
analyze white matter from the brain measured by positron-emission computed tomography
(PET) scans [31]. Multimodal data were used as input features to construct an ML model,
which yielded an AUROC of 0.865 within the test set for prediction of individuals with
MCI converting to AD. Chen et al. used Orthogonal Latent space learning with Feature
weighting and Graph learning (OLFG) to evaluate atrophy in various regions of the brain
and achieved AUROCs of 0.719, 0.970, and 0.814 for distinguishing between normal cog-
nition vs. MCI, normal cognition vs. AD, and non-progressive MCI vs. progressive MCI,
respectively [32]. Martínez-Torteya et al. used logistic regression to analyze multimodal
data inputs, including imaging, clinical measurements, and results from biological testing
to distinguish between individuals with AD, MCI, and normal cognition and yielded
AUROCs of 0.945, 0.864, and 0.838 for distinguishing between normal cognition and AD,
normal cognition and MCI, and MCI and AD, respectively [33]. Despite the relatively good
performance of these ML models for their respective classification tasks, each has critical
limitations. For example, invasive inputs that are expensive to acquire were required to
make predictions (biomarkers, imaging, genetic data, etc.) and models were trained on
biased data, thus limiting generalizability. Additionally, with the exception of the study
by Spasov et al., these studies do not provide for longitudinal prediction of progression of
MCI to AD in future time windows [29].

Given the lack of efficient and reliable methods to determine a patient’s risk of pro-
gressing from MCI to AD, there is a need to develop and validate advanced longitudinal
prediction methods for MCI progression to AD. With the ability to analyze the multi-
tudinous amount of individualized data that is accrued over time in electronic health
records (EHRs), ML can uncover latent patterns in data to enable personalized and accurate
risk assessments.

Here, we describe the development and validation of a machine learning algorithm
(MLA) to predict MCI to AD progression. A widely used gradient-boosted tree ensemble
method, XGBoost (version 1.6.2), was used to develop our MLA [34]. We assessed the MLA’s
performance in each of the 12-, 18-, 24-, 30-, 36-, 42-, and 48-month prediction windows, and
then used averaged data (24–48-month lookahead timeframe) to examine the performance
of the MLA. The performance of our MLA was compared with the performance of the
MMSE SOC and of three additional popular machine learning models which we trained
on substantially the same dataset used for training the MLA, k-nearest neighbors (KNN),
a multi-layer perceptron (MLP) neural network, and logistic regression (LR). The results
of this exploratory study indicate that an ML-based risk assessment tool can serve as a
personalized risk assessment approach with excellent performance. Figure 1 depicts the
workflow of the MLA in a clinical setting. Used for clinical decision support, this MLA
may provide the opportunity for healthcare providers (HCPs) to conduct broad screenings
using fewer resources and with better performance than other risk assessment methods.
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2. Materials and Methods

Retrospective data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu) was used for our analysis [35]. ADNI was launched in 2003 and its
primary goal has been to test whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessments can be combined
to measure the progression of MCI and early AD. ADNI consists of phenotypic data
on more than 2000 individuals, aged 55 years and older. As data were de-identified to
maintain compliance with Health Insurance Portability and Accountability Act (HIPAA),
this research did not constitute human subjects research per the 45 US Code of Federal
Regulations 46.102.

Data were filtered to ensure individuals in the dataset had the necessary inputs,
as shown in Figure 2A. From the 2397 total individuals in the dataset, we selected the
individuals (n = 897) who had (i) an MCI diagnosis at baseline (the beginning of the
ADNI study), with no AD diagnosis at that time; and (ii) longitudinal diagnostic data
for at least 12–48 months from baseline. Then, we selected the individuals with desired
phenotypic data (n = 493) as follows: 259 individuals who received an AD diagnosis at
some point between 12 and 48 months from baseline were filtered into the AD cohort, and
234 individuals who did not receive an AD diagnosis at or before 48 months from baseline
were filtered into the non-AD cohort. The non-AD cohort included individuals with data
supporting stable MCI in months 12–48 after baseline, as well as individuals progressing
to AD more than 48 months after baseline (i.e., the progression from MCI to AD occurred
beyond 48 months from baseline). Further, the non-AD cohort excluded individuals with
insufficient diagnostic data to indicate stable MCI (i.e., no confirmation of MCI status at
month 48 and no diagnostic information after month 48). Diagnosis of AD or MCI within
the database was reported by HCPs and was considered the ground truth to identify the
positive (AD) and negative (non-AD) classes of patients. For diagnosing AD within ADNI,
key factors were presence of memory complaints, MMSE score (under 27 points), Clinical
Dementia Rating (CDR) score (0.5 or 1), and Logical Memory II subscale of the Wechsler
Memory Scale–Revised (score up to 25, depending on education level) [36].

Comorbidity information regarding diabetes, cerebrovascular disease, coronary heart
disease, depression, hypertension, bone and musculoskeletal diseases (osteoporosis and
osteoarthritis), and hearing and vision impairment were extracted from medical history files
which were collected as part of the ADNI study. These comorbidities have been associated
with AD as risk factors, frequently co-occur with AD, or are a result of AD [37–39].

2.1. Multiple Prediction Windows/Timepoints

After filtering, the study cohort (n = 493) was randomly split into a training set and a
hold-out test set (i.e., test set), such that 80% of the individuals (n = 394) were in the training
set and the remaining 20% of the individuals (n = 99) were in the test set. The training
and test sets remained completely independent of each other (i.e., no overlap between the
individuals in the training set and those in the test set). Maintaining separation between
the training and test sets prevented data leakage from the training set from affecting the
MLA’s performance evaluation.
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Figure 2. (A) Attrition chart for the dataset used for modeling. We selected individuals receiving
a mild cognitive impairment (MCI) diagnosis at their baseline visit in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study. Selection criteria included data availability to confirm MCI
stability or progression to Alzheimer’s disease (AD). The filtered dataset was split 80/20 into training
and test sets, respectively. (B) Examples of subjects’ diagnostic statuses/tags over the course of the
study. The vertical red line is at month 12, the first prediction timepoint/window investigated, before
which all subjects were filtered to have MCI (not AD).

Each individual in the filtered study cohort (n = 493) was given a tag at each of the
7 timepoints under consideration (months 12, 18, 24, 30, 36, 42, and 48), with the given tag
corresponding to the individual’s status (AD or non-AD) at that particular timepoint in
the study. The same 394 individuals constituted the training set at each of the 7 studied
timepoints. Similarly, the same 99 individuals constituted the test set at each of the 7 studied
timepoints. While the individuals in each of the training and test sets did not change
between the seven studied timepoints, their tags could change in some cases, as follows.
Once categorized as AD for a given timepoint, an individual retained the AD tag for all
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future timepoints. However, the tag of a non-AD individual could change into an AD
tag at a subsequent timepoint, should the patient have developed AD since the previous
timepoint. For example, and as shown in Figure 2B, an individual could have a non-AD
tag at month 12, continue to have a non-AD tag at month 18, but then the same individual
could acquire the AD tag at month 24, and this AD tag would remain with this particular
individual at 30, 36, 42, and 48 months. As another example, an individual could receive a
non-AD tag at month 12 and continue to have this non-AD tag at 18, 24, 30, 36, 42, and 48
months. As yet another example, an individual could receive the AD tag at month 12, and
continue to have this AD tag at 18, 24, 30, 36, 42, and 48 months.

The demographics for each of the training sets were substantially consistent between
different timepoints, and representative training set demographic information is shown in
Table 1 for the 12-, 24-, and 48-month timepoints. The demographic information for the
other timepoints (18, 30, 36, and 42 months) is given in Supplementary Table S2. The age
in the demographics tables is given for the baseline of the study, i.e., 12 months prior to
the first time point (the 12-month timepoint or prediction window). The demographics for
each of the test sets were also substantially consistent between different timepoints, and
test set demographic information is given in Supplementary Tables S3 and S4 for all seven
timepoints (12, 18, 24, 30, 36, 42, and 48 months).

Table 1. Demographic information for training sets, for three timepoints.

12 Months 24 Months 48 Months

Demographics
(Training Sets)

Non-AD
(n= 338)

AD
(n = 56)

Non-AD
(n = 257)

AD
(n = 137)

Non-AD
(n = 190)

AD
(n = 204)

Age
(years)

55–60 9
(2.7%)

4
(7.1%)

8
(3.1%)

5
(3.6%)

7
(3.7%)

6
(2.9%)

61–70 108
(32.0%)

10
(17.9%)

91
(35.4%)

27
(19.7%)

73
(38.4%)

45
(22.1%)

71–80 160
(47.3%)

32
(57.1%)

115
(44.7%)

77
(56.2%)

87
(45.8%)

105
(51.5%)

81–90 61
(18.0%)

10
(17.9%)

43
(16.7%)

28
(20.4%)

23
(12.1%)

48
(23.5%)

Sex Assigned at
Birth

Female 128
(37.9%)

26
(46.4%)

100
(38.9%)

54
(39.4%)

71
(37.4%)

83
(40.7%)

Male 210
(62.1%)

30
(53.6%)

157
(61.1%)

83
(60.6%)

119
(62.6%)

121
(59.3%)

Race

White 314
(92.9%)

54
(96.4%)

238
(92.6%)

130
(94.9%)

178
(93.7%)

190
(93.1%)

Black or
African American

11
(3.3%)

1
(1.8%)

9
(3.5%)

3
(2.2%)

5
(2.6%)

7
(3.4%)

Asian 8
(2.4%)

1
(1.8%)

6
(2.3%)

3
(2.2%)

3
(1.6%)

6
(2.9%)

American Indian or
Alaskan Native

1
(0.2%)

0
(0.0%)

1
(0.4%)

0
(0.0%)

1
(0.5%)

0
(0.0%)

More than one race 4
(1.2%)

0
(0.0%)

3
(1.2%)

1
(0.7%)

3
(1.6%)

1
(0.5%)
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Table 1. Cont.

12 Months 24 Months 48 Months

Demographics
(Training Sets)

Non-AD
(n= 338)

AD
(n = 56)

Non-AD
(n = 257)

AD
(n = 137)

Non-AD
(n = 190)

AD
(n = 204)

Ethnicity

Hispanic/Latino 11
(3.3%)

1
(1.8%)

9
(3.5%)

3
(2.2%)

6
(3.2%)

6
(2.9%)

Not Hispanic/Latino 327
(96.7%)

55
(98.2%)

248
(96.5%)

134
(97.8%)

184
(96.8%)

198
(97.1%)

Comorbidities

Diabetes 28
(8.3%)

6
(10.7%)

24
(9.3%)

10
(7.3%)

18
(9.5%)

16
(7.8%)

Depression 109
(32.2%)

14
(25.0%)

84
(32.7%)

39
(28.5%)

59
(31.1%)

64
(31.4%)

Osteoporosis or
Osteoarthritis

81
(24.0%)

11
(19.6%)

62
(24.1%)

30
(21.9%)

45
(23.7%)

47
(23.0%)

Cerebrovascular
Disease

15
(4.4%)

2
(3.6%)

13
(5.1%)

4
(2.9%)

8
(4.2%)

9
(4.4%)

Hypertension 141
(41.7%)

27
(48.2%)

108
(42.0%)

60
(43.8%)

81
(42.6%)

87
(42.6%)

Hearing or vision
impairment

85
(25.1%)

10
(17.9%)

63
(24.5%)

32
(23.4%)

47
(24.7%)

48
(23.5%)

Coronary heart disease 16
(4.7%)

1
(1.8%)

15
(5.8%)

2
(1.5%)

10
(5.3%)

7
(3.4%)

The MLA was trained at each of the seven timepoints, with the training set having
the number of AD and non-AD individuals as indicated in Figure 2A, and then the trained
MLA was analyzed at the time window where it was trained on the corresponding test set
to evaluate model results to determine the algorithm’s efficacy at that particular timepoint.
For example, at the 36-month timepoint, the MLA was trained on data from 394 individuals
(215 non-AD, 179 AD), and then was tested on the corresponding test set: 99 individuals
(49 non-AD, 50 AD).

As the MLA was distinctly trained at each of the seven timepoints, a type of forward
feature selection algorithm was applied separately at each of the 7 timepoints (12, 18, 24,
30, 36, 42, and 48 months). For any given timepoint, feature selection involved reading
in and combining the screening and baseline data for each individual, using their status
(AD or non-AD) at that timepoint as their label for feature selection, removing one out
of each pair of highly correlated features (Pearson correlation coefficient > 0.85), and
checking feature importance for 5 to 50 features per iteration of feature selection. For a
given iteration of feature selection, the single feature AUROC was first calculated for each
feature, followed by calculating a pairwise AUROC for each combination of features. The
features with the highest single feature AUROC, and the features with the highest pairwise
AUROC were placed in the list of most important features. This process continued until at
most 50 features were chosen for that particular iteration of feature selection, with fewer
features chosen if fewer than 50 features contributed meaningfully to the prediction, a
threshold determined through parameter tuning prior to selecting features. The features
that were used in forward feature selection at each of the seven timepoints are shown in
Table 2, with detailed breakdown about the components for each input category shown in
Supplementary Table S5.
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Table 2. MLA inputs used in feature selection for all MLA models and timepoints.

Demographics
Age
Marital Status

Neuropsychiatric Assessments
Alzheimer’s Disease Assessment Scale (ADAS)
Mini-Mental State Examination (MMSE)
Functional Activities Questionnaire (FAQ)
Neuropsychiatric Inventory Questionnaire (NPI-Q)
Clinical Dementia Rating (CDR)
Geriatric Depression Scale (GDS)
Rey Auditory Verbal Learning Test (RAVLT)
Neuropsychological Assessment Battery (NAB)
ADNI-specific composite scoring
Modified Hachinski Ischemic Score

Family Medical History

Comorbidities

Some feature processing was performed prior to inputting the features into the pre-
diction algorithm. For example, categorical features such as lists of comorbidities were
encoded to binary features indicating the presence or absence of a specific comorbidity.
The remaining features were utilized “as-is” without any processing methods to alter the
raw data value based on the use of a gradient-boosted tree-based model, which does not
require data normalization or other preprocessing. Tree-based models split data for each
feature individually, eliminating the need for data normalization or standardization. Input
features were not explicitly combined or compared outside of the prediction algorithm.
However, the input features were implicitly compared to thresholds and combined by the
prediction algorithm to provide the final output. These thresholds were learned by the
prediction algorithm during the training process.

As discussed, the training process was performed on each training set for a particular
timepoint. During the training process, the gradient-boosted tree algorithm XGBoost was
utilized for the classification of individuals having AD vs. non-AD individuals. This
XGBoost-based model combines the estimates of simpler, weaker models—in this case,
shallow decision trees—to make predictions for a chosen target [34]. Tree models utilize
the values of a subset of the inputs to build a path to the class (e.g., AD class, non-AD class)
to which a particular set of inputs belongs, with the path being known as a decision tree.
This was repeated to develop a series of decision trees which were utilized together to de-
termine the final output of the MLA. Due to the MLA containing several trees, each with a
subset of the input data, the MLA was able to perform classifications that accounted for the
heterogeneity of feature values with which an individual diagnosed with AD may present.
One of the benefits of using XGBoost is that it has been shown to perform better than other
ML models on tabular data, which made it an appropriate choice for our dataset [40]. We
performed a grid search in order to select the best combination of hyperparameters of the
XGBoost model utilized in the MLA. The grid search method evaluates a range of hyperpa-
rameter values in order to identify the combination of hyperparameters which optimizes
model performance. This tuning process led to selection of the following hyperparameter
values: a learning rate of 0.1, a maximum tree depth of 2, inclusion of 200 estimators in the
model, and use of a logarithmic loss evaluation metric for validation data [40].

2.2. Data Averaging for a 24–48-Month Lookahead Timeframe

We also investigated whether averaging across different prediction windows would
improve the prediction uncertainty that results from noise in the training data, where
the noise is owed to an imperfect deterministic relationship between input features and
diagnostic ground truth. This type of training data noise can also impact feature selection
for a given prediction window, and we sought to minimize the effect of training data
noise by averaging prediction outputs across different prediction windows. The goal
was to determine the effect of such averaging on the performance metrics. For this, the
unrounded predictions from the 24-, 30-, 36-, 42-, and 48-month windows were averaged
for the same test set of 99 individuals from Figure 2 to yield an averaged MLA prediction.
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The predictions at the 12- and 18-month windows were excluded when averaging the data,
because the AUROC values were not significantly different between the MLA and MMSE
for these timepoints, whereas the AUROC was significantly higher for the MLA than for the
MMSE model starting at the 24-month prediction window. The MMSE was not designed to
be used for long-term longitudinal predictions; thus, it was expected that it would perform
relatively well at the shorter-term timepoints (12 and 18 months) [41]. However, a reliable
prediction tool for the longer-term timepoints is lacking.

2.3. SOC Comparator

We compared the metrics produced by our MLA with the metrics of an SOC screening
tool, the MMSE. The MMSE is widely used in clinical practice as a screening device for
cognitive impairment, with a low score suggesting the need for further evaluation. Its
ubiquitous, routine use by medical practitioners makes the MMSE a valuable comparator
for more complex algorithmic approaches such as the MLA we developed. Given its clinical
importance, components of the MMSE were included as input features in our MLA. This
was similar to the approach of Marcisz and Polanska, who trained a linear regression model
on a small set of features including the MMSE to investigate AD but did not factor in
changes in disease status over time and did not include other neuropsychological tests
and important comorbidities in building their model. They similarly used the MMSE on
its own as a base comparison model [30]. In our MLA, MMSE input features allowed for
the comparison of the predictive performance of the MMSE alone to a model built using
MMSE components along with other features of interest, rather than comparing the MMSE
to a model built solely using other features. This is important because, from a practical
perspective, the MLA does what the MMSE could never do on its own: it delivers powerful
predictions longitudinally up to 48 months. The MLA practically accounts for the SOC,
rather than excluding the SOC solely to allow for a theoretical comparison to the MMSE.

It should be noted that the MMSE classifier is not based on ML, and this classifier has
been generated by splitting the dataset corresponding to each timepoint into AD-positive
and AD-negative classes based on MMSE score thresholds, as follows. The MMSE total
score has possible values ranging from 0 to 30. MMSE total score values between 0 and
30 were used as a threshold (i.e., the MMSE score value below which an individual can be
classified as having AD) for separating the positive and negative classes, resulting in a set
of sensitivity and specificity values corresponding to that particular threshold, as illustrated
by the resulting receiver operating characteristic (ROC) curves for the MMSE classifier in
Supplementary Figure S1. All individuals in the filtered study cohort (n = 493) have MMSE
scores between 19 and 30; thus, there are only 12 possible MMSE score values in the dataset.
The individuals in each test set displayed only 7 of these 12 possible values; thus, each
MMSE classifier ROC curve has 7 data points. A different MMSE classifier ROC curve was
generated for each of the seven timepoints (12, 18, 24, 30, 36, 42, and 48 months). It should
be noted that while the individuals in the test set remained the same (n = 99) between the
different timepoints, the data for each individual may have changed from one timepoint to
another. Specifically, at each of the seven timepoints (months 12, 18, 24, 30, 36, 42, and 48),
each individual in the filtered study cohort (n = 493) was given a tag corresponding to the
individual’s status (AD or non-AD) at that particular timepoint in the study.

2.4. Comparison with Other Machine Learning Models

To gauge the performance of the XGBoost-based MLA versus models built with
other machine learning algorithms, we trained three additional models for comparison.
We selected one model which is substantially simpler compared to XGBoost, k-nearest
neighbors (KNN), one which is substantially more complex, a multi-layer perceptron (MLP)
neural network, and one based on a logistic regression approach previously published in
the context of the ADNI dataset [30].

KNN is a non-parametric, supervised learning classifier which uses a proximity metric
to classify individual samples into two or more classes [42]. This is a simple, instance-based
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approach which performs best on low-dimensional data. The classifier algorithm evaluates
the vector distance between an input and each of the training examples to determine which
examples are closest in distance to the input. Amongst classifications of the k nearest
neighbors, a predicted classification is selected for the input. Following hyperparameter
tuning, we set k = 7 as the number of nearest neighbors to use in classification.

An MLP is a feedforward artificial neural network model which maps the input dataset
to a set of outputs, in this case in a binary manner as this is a binary classification [43]. The
network consists of a series of dense hidden layers which extract information from the data
followed by a final softmax layer which scales outputs into a binary prediction. Following
hyperparameter tuning, we used three hidden layers (in order from first to last, containing
150, 100, and 50 neurons), the ‘Adam’ algorithm for weight optimization, a maximum of
300 epochs (the number of times each data point can be used), and the rectified linear unit
function as the activation function for the hidden layer.

LR is a generalized linear modeling approach for binomial and multinomial classi-
fication tasks, commonly used in medicine and epidemiology [44]. In this case, a binary
outcome (stable at MCI or progression to AD) was assumed, on the condition of the input
features, to follow a binomial distribution. This approach assumes a linear relationship
between the logarithm of the odds of the predicted outcome and the predictors (input
features). In this case, we used LR for binary classification of a dataset with a relatively
small number of features, so hyperparameter tuning was not performed.

The same set of features output from feature selection for the MLA at each time
window were also utilized for the three comparison models in order to allow for a more
direct comparison rather than introducing another complexity to the comparison. The
KNN model, MLP model, and LR model required additional data processing, compared
to the data processing carried out for the XGBoost-based MLA, to successfully train these
additional comparison models. In contrast to XGBoost models, KNN, MLP, and LR cannot
handle null values implicitly; thus, any data points with null values either need to be
removed from the dataset or replaced (e.g., using imputation). In these cases, individuals
with missing data were simply removed from the dataset before proceeding.

2.5. Statistical Analysis

The predictive performance of each trained model (for each of the 7 prediction win-
dows, as well as for the averaging approach) on its corresponding test set was evaluated
using several standard performance measures [45,46]. These performance metrics were
AUROC (the probability that a classifier will be able to distinguish between an instance of
the positive class and one of the negative class), sensitivity (true positive rate), specificity
(true negative rate), positive predictive value (PPV, the proportion of true positives among
all positive predictions), negative predictive value (NPV, the proportion of true negatives
among all negative predictions), and accuracy (the proportion of correct predictions among
all predictions).

The 95% confidence intervals (CIs) for AUROC were calculated using a bootstrapping
method. For the bootstrapping method, a subset of patients from the hold-out test dataset
were randomly sampled and the AUROC was calculated using the data from those patients.
This step was repeated 1000 times with replacement. From these 1000 bootstrapped AUROC
values, the middle 95% range was selected to be the 95% CI for the AUROC. As the sample
size of the hold-out test dataset was greater than 30, the CIs for the other performance
metrics were calculated using normal approximation.

2.6. System Requirements

In this study, we utilized a 2021 MacBook Pro with 16 GB of memory and an Apple
M1 Pro chip, for training, testing, and performance evaluation. Training was completed
in less than three seconds for each model at each time window. Since compute capacity
is not a limiting factor for machine learning analysis of tabular data, most modern Mac,
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Windows, and Linux computers with at least 8 GB of memory can easily handle training
any of the models (XGBoost-based, KNN, MLP, and LR) we describe here.

All data processing, training, testing, and evaluation were performed in Python.
Only commonly used packages were utilized: pandas for data input and manipulation,
scikit-learn for machine learning using the three comparison models (KNN, MLP, and
LR), XGBoost for machine learning using the MLA, NumPy for working with arrays, and
Matplotlib for creating visualizations [47–51].

3. Results

Figure 3 displays the ROC curves for identification of progression vs. non-progression
from MCI to AD for 12-, 24-, and 48-month prediction windows (with months 18, 30, 36,
and 42 shown in Supplementary Figure S2). The ROC curves show the true positive rate or
sensitivity against the false positive rate or 1-specificity, and illustrate the diagnostic ability
of a binary classifier at different thresholds. We additionally included a baseline curve
(dashed line) for a classifier providing no predictive value, for the purpose of comparison.
The legend in Figure 3 shows the individual AUROC values for the MLA and the MMSE
classifier, as well as the baseline. Supplementary Figure S3 shows the ROC curves for
AD class vs. non-AD class as given by the MLA classifier when the prediction algorithm
is tested on the hold-out test sets for each of the seven prediction windows showing the
performance of the MLA over time.
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The performance of the MLA, along with the performance of three comparison models
(KNN, MLP, and LR) and the SOC, for differentiating between the AD class and the non-AD
class is shown in Table 3 for the 12-, 24-, and 48-month prediction windows (with months 18,
30, 36, and 42 shown in Supplementary Table S6). The MLA performance metrics in Table 3
and Supplementary Table S6 were obtained by selecting an operating sensitivity of 0.770 on
the ROC for each prediction window. An operating sensitivity of 0.770 was chosen in order
to highlight the performance of the MLA at a sensitivity greater than the highest sensitivity
attained by the MMSE comparator. As noted in Table 3, at the 24-month prediction window,
the MMSE comparator achieves a peak sensitivity of 0.769. Therefore, we chose to set an
operating sensitivity of 0.770 to compare the MLA against the peak performance of the
MMSE comparator. The performance of the MLA showcases a strong ability to identify
individuals with an increased likelihood of progression from MCI to AD, as well as those
who will likely not progress from MCI to AD. Supported by a meta-analysis showcasing an
MMSE cutoff of 26/27 to indicate MCI to AD progression risk [8], we chose the cutoff of
27 for displaying the MMSE classifier performance metrics in Table 3 and Supplementary
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Table S6. The MLA outperformed the MMSE classifier for identification of progression or
non-progression from MCI to AD (i.e., differentiation between AD and non-AD classes)
for all prediction time windows, with the AUROC value being significantly higher for the
MLA than for the corresponding MMSE classifier in a given prediction window (p < 0.05)
except at 12 and 18 months. Specificity, PPV, and accuracy were significantly higher for
each MLA compared to the corresponding MMSE classifier in each prediction window
except for the MLA at 42 months.

Table 3. MLA performance on corresponding hold-out test sets for 12-, 24-, and 48-month prediction
windows showing the performance of the MLA, in comparison to the MMSE and three comparison
models over time.

Performance Metrics

Prediction
Window

Modeling
Approach

AUROC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Accuracy
(95% CI)

12 months

MLA 0.857
(0.756–0.935)

0.800
(0.646–0.954)

0.843
(0.796–0.890)

0.364
(0.239–0.489)

0.974
(0.952–0.996)

0.838
(0.793–0.883)

LR 0.740
(0.589–0.877)

0.800
(0.783–0.817)

0.686
(0.678–0.693)

0.267
(0.256–0.278)

0.960
(0.956–0.964)

0.700
(0.693–0.707)

MLP 0.829
(0.719–0.934)

0.800
(0.784–0.816)

0.771
(0.765–0.778)

0.364
(0.239–0.489)

0.974
(0.952–0.996)

0.838
(0.793–0.883)

KNN 0.789
(0.635–0.921)

0.900
(0.863–0.937)

0.557
(0.534–0.580)

0.225
(0.200–0.250)

0.975
(0.965–0.985)

0.600
(0.579–0.621)

MMSE
Classifier }

0.575
(0.334–0.804)

0.600
(0.270–0.930)

0.528
(0.415–0.641)

0.125
(0.023–0.227)

0.922
(0.841–1.000)

0.535
(0.429–0.642)

24 months

MLA 0.980
(0.957–0.996)

0.846
(0.762–0.931)

1.000
(0.998–1.000)

1.000
(0.998–1.000)

0.909
(0.857–0.961)

0.939
(0.904–0.975)

LR 0.957
(0.910–0.988)

0.816
(0.727–0.904)

0.952
(0.906–0.999)

0.939
(0.881–0.998)

0.851
(0.778–0.924)

0.888
(0.838–0.937)

MLP 0.960
(0.909–0.991)

0.789
(0.682–0.897)

1.000
(0.998–1.000)

1.000
(0.998–1.000)

0.840
(0.756–0.924)

0.900
(0.846–0.954)

KNN 0.975
(0.943–0.996)

0.789
(0.700–0.879)

0.976
(0.944–1.000)

0.968
(0.925–1.000)

0.837
(0.765–0.908)

0.888
(0.840–0.935)

MMSE
Classifier }

0.750
(0.642–0.848)

0.769
(0.626–0.913)

0.700
(0.574–0.826)

0.625
(0.476–0.774)

0.824
(0.710–0.937)

0.727
(0.632–0.823)

48 months

MLA 0.975
(0.947–0.995)

0.800
(0.715–0.885)

1.000
(0.998–1.000)

1.000
(0.998–1.000)

0.800
(0.715–0.885)

0.889
(0.839–0.938)

LR 0.964
(0.919–0.994)

0.816
(0.724–0.908)

0.976
(0.942–1.000)

0.969
(0.924–1.000)

0.854
(0.780–0.929)

0.900
(0.851–0.949)

MLP 0.965
(0.920–0.995)

0.895
(0.814–0.976)

0.976
(0.938–1.000)

0.971
(0.926–1.000)

0.911
(0.842–0.980)

0.938
(0.893–0.982)

KNN 0.944
(0.890–0.979)

0.789
(0.711–0.868)

0.952
(0.913–0.992)

0.938
(0.887–0.988)

0.833
(0.769–0.897)

0.875
(0.831–0.919)

MMSE
Classifier }

0.713
(0.601–0.813)

0.655
(0.518–0.791)

0.727
(0.584–0.870)

0.750
(0.617–0.883)

0.627
(0.483–0.772)

0.687
(0.588–0.786)

} Note: The MMSE classifier uses a threshold score value of 27. AUROC = area under the receiver operator
characteristic curve; CI = confidence interval; KNN = k-nearest neighbors algorithm; MLP = multi-layer perceptron;
PPV = positive predictive value; NPV = negative predictive value.

Overall, the MLA, KNN model, MLP model, and LR model performed significantly
better than the MMSE classifier at all prediction windows, for example as shown in
Figures 3 and 4 and Table 3 (as well as Supplementary Figures S2 and S4, and
Supplementary Table S6). MMSE performance declined over time for all but two metrics
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(specificity and PPV, which both improved), whereas the MLA and MLP model improved
on all but one metric (NPV) over time, the KNN improved on all metrics besides sensitivity
and NPV, and the LR improved on all metrics besides NPV. The MLA largely performed
similarly compared to the MLP and LR models, while the MLA performed significantly
better than the KNN model at certain prediction windows in terms of specificity (at 12, 18,
42, and 48 months), PPV (at 42 and 48 months), and accuracy (at 12 and 18 months).
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Figure 4. The AUROC (A), Sensitivity (B), and Specificity (C) vs. Prediction Window for the MLA
and MMSE classifier across all 7 prediction windows showing the performance of the MLA and the
MMSE over time.

The 95% CIs for the MLA were consistently narrow, whereas the 95% CIs for the
MMSE classifier were much broader (Table 3 and Supplementary Table S6), indicating the
superior performance of the MLA. Additionally, there was little to no overlap between
the 95% CIs for the AUROC and specificity for the MLA and the MMSE classifier, which
further underlines the superiority of the MLA over the MMSE classifier.

Figure 5 displays the ROC curves for identification of progression vs. non-progression
from MCI to AD for the averaged MLA. The AUROC for the MLA (0.965) was excellent
and far superior to the performance of the MMSE classifier for longitudinal prediction at
the 48-month prediction window (0.713).
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The performance of the averaged MLA for differentiating between the AD class and
the non-AD class is shown in Table 4 for the 24–48-month lookahead timeframe, with a bar
plot visualization of these data shown in Supplementary Figure S5. The MLA performance
metrics in Table 4 were obtained by selecting an operating sensitivity of 0.770 on the ROC.
A cutoff of 27 was used for calculating the performance metrics for the MMSE classifier at
the 48-month prediction window (Table 4). The averaged MLA outperformed the MMSE
classifier for differentiation between the AD and non-AD classes.

Table 4. Averaged MLA performance in comparison with the performance of the MMSE classifier at
48 months.

Performance Metrics Averaged MLA MMSE Classifier at 48 Months }

AUROC (95% CI) 0.965 (0.927–0.990) 0.713 (0.601–0.813)
Sensitivity (95% CI) 0.800 (0.734–0.866) 0.655 (0.518–0.791)
Specificity (95% CI) 0.955 (0.915–0.993) 0.727 (0.584–0.870)
PPV (95% CI) 0.957 (0.920–0.993) 0.750 (0.617–0.883)
NPV (95% CI) 0.792 (0.724–0.861) 0.627 (0.483–0.772)
Accuracy (95% CI) 0.869 (0.827–0.910) 0.687 (0.688–0.786)

} Note: The MMSE classifier uses a threshold score value of 27. AUROC = area under the receiver operator
characteristic curve; CI = confidence interval; PPV = positive predictive value; NPV = negative predictive value.

The top 10 features impacting the performance of the MLA are shown in Table 5 for
the 12-, 24-, and 48-month prediction windows. For the MLA at each prediction window,
these ranked lists of most important features were determined using SHAP, a widely used
approach to explaining the contribution of each feature towards the output (prediction) of
a machine learning model [50]. The features are listed in the table from the most important
feature at the top, decreasing in order of importance to the bottom. Similarly, the top 10 fea-
tures for the 18-, 30-, 36-, and 42-month prediction windows are shown in Supplementary
Table S7 and the individual features that were included for each neuropsychological assess-
ment input are shown in Supplementary Table S5. Overall, for the windows comprising the
averaged MLA, the 10 most important features for the prediction algorithm models were
(from the most important to the least): Functional Assessment Questionnaire (FAQ) total
score, Rey Auditory Verbal Learning Test (RAVLT) Immediate Recall subscore, ethnicity,
11-task Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-CoG-11) total
score, RAVLT Percent Forgetting, MMSE tree score, FAQ Tax Forms subscore, Logical
memory Delayed Recall total score, 13-task ADAS-CoG (ADAS-Cog-13) Delayed Word
Recall score, and FAQ Remembering subscore.

Table 5. The top 10 features impacting the performance of the MLA at 12-, 30-, and 48-month
prediction windows.

12 Months 24 Months 48 Months

1. FAQ Game subscore
2. MMSE day of the week
3. CDR sum of boxes
4. MMSE tree
5. FAQ Attention and Understanding subscore
6. MMSE flag
7. Ethnicity
8. FAQ Remembering subscore
9. RAVLT Percent Forgetting
10. MMSE letter “L” in “spell WORLD backwards” task

11. RAVLT Immediate Recall subscore
12. Ethnicity
13. RAVLT Percent Forgetting
14. Logical Memory Delayed Recall total score
15. ADAS-Cog-11 Orientation
16. MMSE tree
17. MMSE day of the week
18. FAQ total score
19. GDS total score
20. ADAS-Cog-13 Delayed Word Recall

21. Logical Memory Delayed Recall total score
22. Ethnicity
23. ADAS-Cog-13 Delayed Word Recall
24. FAQ Travel subscore
25. RAVLT Immediate Recall subscore
26. FAQ total score
27. ADAS-Cog-13 Number Cancellation
28. RAVLT Learning subscore
29. FAQ Tax Forms subscore
30. NPIQ time to complete

FAQ = Functional Assessment Questionnaire; MMSE = Mini-Mental State Examination; CDR = Clinical Dementia
Rating; RAVLT = Rey Auditory Verbal Learning Test; ADAS-Cog-11 = Alzheimer’s Disease Assessment Scale–
Cognitive Subscale (11 tasks); GDS = Geriatric Depression Scale; ADAS-Cog-13 = Alzheimer’s Disease Assessment
Scale–Cognitive Subscale (13 tasks); NPIQ = Neuropsychiatric Inventory Questionnaire.
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4. Discussion

Across six metrics, our MLA outperformed the SOC (MMSE), achieving significantly
higher specificity and PPV for all prediction windows from 12 to 48 months, significantly
higher accuracy for all but one prediction window, and significantly higher AUROC for
all but two prediction windows. This consistent predictive improvement indicates that
the MLA makes relatively stable gains in identifying patient progression from MCI to
AD over time, in comparison to the SOC. Furthermore, it is suggested that longitudinal
measurements can create a better estimation of how an individual’s brain and cognition are
changing [41]. All four machine learning models (the XGBoost-based MLA and KNN, MLP,
and LR comparison models) outperformed the SOC for all prediction windows, indicating
that machine learning more broadly offers substantial value in predicting progression of
MCI to AD over time. Further, the MLA performed significantly better than the KNN and
LR models in certain key performance metrics, whereas it performed similarly to the more
complex MLP model.

The KNN model, MLP model, and LR model were developed as additional compara-
tors to further examine the potential of machine learning for this application. All three
comparison models were able to reliably identify progression (or lack thereof) from MCI to
AD over time with relatively high-performance metrics. In addition, the three comparison
models outperformed the SOC comparator. However, there are some important limitations
to the KNN, MLP, and LR approaches compared to the XGBoost-based MLA. First, the
performance of the XGBoost-based MLA is significantly better than the KNN model at
some time windows in terms of specificity (at 12, 18, 42, and 48 months), PPV (at 42 and
48 months), and accuracy (at 12 and 18 months). The XGBoost-based MLA also performed
significantly better than the LR at the 12-month time window in terms of specificity and
accuracy. Second, all three comparison models require additional data processing and
filtering (or imputation) to enable their use for datasets containing missing data, which
severely limits their application to clinical datasets such as those used here, which are
often incomplete. While filtering was performed to eliminate features with high levels of
missingness, the majority of patients in the total dataset had at least one missing feature.
Without a robust imputation process or the ability to handle null values, many of these
patients may not be eligible for prediction, reducing the clinical utility of this type of
approach. In addition, imputation has limitations as generation of synthetic data may not
be possible or ideal in clinical settings. Finally, MLP is a neural network, a category of
machine learning approaches which are notorious black boxes, in the sense that they are
extremely challenging to interpret. As feature importance is a fundamental element of
applied machine learning, particularly for clinical algorithms which can be used to guide
medical treatment, an approach such as XGBoost is preferable given its relatively high level
of interpretability.

In our work, we endeavored to develop and validate an ML-based tool to provide a
longitudinal prediction regarding the risk of progressing to AD in patients with an existing
MCI diagnosis. It is the intent for such a tool to facilitate an easier risk assessment process
for HCPs using highly accessible and personalized patient data and with better accuracy
than existing screening tools. The patient data used is pre-existing and readily available
data from the EHR, as patients who are diagnosed with MCI (those for whom the MLA
is intended for use) undergo comprehensive assessments [52]. Traditionally, assessing a
patient’s risk of progressing from an MCI diagnosis to AD is a complex, multi-step process
that includes the use of SOC risk assessment scales, ongoing and repeated evaluation
to measure changes in an individual’s cognitive status, and clinical evaluation to rule
out other potential causes of brain disease or cognitive impairment. HCPs have a range
of assessments available to select from and may need to tailor their selection based on
the patient’s symptoms. Additionally, a variety of assessments that examine different
symptoms, domains, and levels of functioning may have to be used [12,53,54]. The most
commonly used SOC risk assessment scales, MoCA and MMSE, have been validated for
determining the rate at which an individual with MCI will experience cognitive decline,
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though they were not originally created or intended for use to capture data over time.
Possibly as a result of not being designed for such use, the MMSE and MoCA have been
reported to lose sensitivity when measuring cognitive decline over time [41]. However,
even with serial measurements taken over time, changes to an individual’s cognition are
not always obvious [8], which makes estimation of the risk of progression challenging.
Cognitive changes during the prodromal stage of AD, when AD-associated MCI may be
present, may be even less obvious than symptoms at a more advanced stage of AD, and
thus harder to attribute to future AD onset. AD biomarkers in patients with MCI may
suggest a risk of progression from MCI to AD; however, the invasive and costly nature of
such tests may make accessibility difficult and require specialized settings and equipment.
In contrast, our MLA achieved excellent performance for making predictions within 12-,
18-, 24-, 30-, 36-, 42-, or 48-month prediction windows after baseline (highest AUROC: 0.980
for prediction at 24 months) and with the longitudinal data averaged (AUROC: 0.965). All
metrics were significantly more robust than the MMSE SOC used for prediction on the same
cohort. Most impressively, the MLA at the 36-month prediction window achieved values
≥ 0.900 for all six performance metrics (AUROC of 0.922, sensitivity of 0.900, specificity of
0.918, PPV of 0.918, NPV of 0.900, and accuracy of 0.909), with each performance measure
significantly higher than the corresponding measure for the MMSE classifier (AUROC of
0.712, sensitivity of 0.680, specificity of 0.714, PPV of 0.708, NPV of 0.686, and accuracy of
0.697). Because the MLA draws data directly from EHRs and uses individualized patient
data, it could be used in a primary care setting by an HCP without specialized expertise,
and with better performance than the MMSE SOC. Research on predictive tools using
readily available patient data to determine the risk of converting from MCI to AD is
limited; thus, this approach fills an unmet clinical need. Grassi et al. used ML models and
sociodemographic data, results from neuropsychological tests, and MCI categorization
(early or late) to predict progression from MCI to AD within 3 years after MCI diagnosis,
with predictions demonstrating performance values of 0.88 for AUROC, >0.77 for sensitivity,
and ≈0.80 for specificity [55]. Bucholc et al. employed an unsupervised MLA to predict
conversion from MCI to dementia 4 years after MCI diagnosis using data from cognitive
and daily functioning assessments, with the best performing model achieving an accuracy
of 0.875 [56].

A meta-analysis of examining the MMSE noted highly variable performance for esti-
mating conversion from MCI to AD within varying lookahead periods, between 15 months
and 7 years (sensitivity: 27–89%; specificity: 32–90%) [8]. MMSE also has limitations
that may render its use less suitable for subpopulations of individuals. For example, it is
well-documented in literature that the MMSE scores are subject to the “ceiling and floor
effects” [10,41]. In these particular circumstances, individuals in a pre-dementia stage can
achieve MMSE scores indicating normal cognition; for individuals who have severe cogni-
tive impairment, the test loses sensitivity to evaluate ongoing decline. Socio-demographic
factors, such as age, level of formal education, race, and ethnicity also impact how an
individual scores on the MMSE, thus making it necessary for an HCP to consider those
factors when selecting thresholds for interpreting the scores. MMSE has multiple thresholds
by which a clinician could determine that a patient has a positive MMSE result; for example,
it is suggested that individuals with higher levels of education should be scored within a
higher threshold, and vice versa for individuals that have received less education (equating
to a higher number of points achieved on the MMSE) to avoid the ceiling and floor effects,
respectively. MoCA is also subject to similar limitations in that it was not intended for lon-
gitudinal use to repeatedly collect data for the purpose of measuring cognitive decline over
time and a different threshold must be used based on the individual’s level of education to
correctly interpret scores for determining the rate of cognitive decline. Though there are
limited studies validating MoCA for identification of patients with MCI who are at high
risk of progressing to dementia, the studies that were conducted report AUROCs ranging
from 0.740 to 0.95 [57,58].
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In comparison to the MMSE SOC, a multi-parameter model utilizing various relevant
demographic and assessment data, including neuropsychiatric assessments, is likely to be
more robust to longitudinal and practice effects, as it incorporates several standardized
assessments that are known to continue working relatively effectively over time. This
extends to the RAVLT and logical memory tests. Combined with a significantly enhanced
predictive power versus the SOC, this careful inclusion of diverse information sources may
ensure more reliable application for clinical use. Averaging MLA predictions over time
may also improve the prediction quality, especially when predictions for a given individual
may vary over time.

Limitations and Future Directions

Though this proof-of-concept study demonstrates promise that ML methods hold the
ability to provide accurate and automated risk stratification for progression from MCI to
AD, our study has several limitations. The dataset that we used contained retrospective
patient data. To determine the MLA’s effectiveness in a clinical setting, and particularly
in a non-specialized setting (e.g., primary care), future work should deploy the MLA for
validation using prospective patient data. While the ADNI dataset is an invaluable tool
for AD research, data were collected solely from clinical sites in the US and Canada [35].
Therefore, this does not take into account regional and population-specific variations, both
in terms of progression risk assessment and diagnostic thresholds for MCI and AD and
global prevalence estimates [12]. Future work should consider stratifying individuals by
racial, ethnic, and geographic demographics and training and testing the MLA on these
subgroups to ensure that the MLA achieves similar performance metrics across diverse
populations in order to reduce demographic bias and encourage health equity. Related
to the demographic variable of sex, several limitations exist. Though females have a
higher prevalence of AD than males [59], the demographics within our study population
do not reflect this, resulting in imbalanced data. There are notable differences among
sexes between domains within neuropsychological screening tools in terms of how they
contribute to determining risk of progression from MCI to AD [60]. Females also experience
different rates of conversion from MCI to AD than males [60]. To ensure that our MLA can
provide the most accurate prediction of progression in these two cohorts, future research
should stratify patients by sex for separate training and validation. Regarding our second
experiment, in which data from the lookahead time windows were averaged, there is a lack
of comparable studies regarding these averaging methods. However, prediction within
this broad timeframe (12–48 months) may enhance the clinical utility and ease of use of the
MLA for predicting MCI progression to AD. Therefore, future work should provide further
validation of these statistical methods.

5. Conclusions

The current limitations associated with the evaluation of individuals with MCI for risk
of progression to AD, including interpretation of biomarker thresholds and the high cost of
invasive testing, result in a deficient screening process. Though SOC tools are useful in a
variety of clinical settings, they must be used in conjunction with comprehensive clinical
assessments, and accuracy may be limited in different subpopulations. ML overcomes
these limitations through the use of personalized data that are collected automatically from
EHRs. It has the potential to provide broader access to risk assessment screening with
higher accuracy than current methods, which may reduce costs associated with unnecessary
invasive testing, allow for better care planning for individuals at risk of AD, and provide
the opportunity for individuals who are not at risk for AD to seek alternative diagnoses and
treatment to manage cognitive decline. In this study, using a comprehensive ML approach
led to significant improvement across many predictive performance measures, compared
to the SOC, without requiring new or more complex testing of patients, where averaging
of predictions over time yielded a more stable prediction of progression from MCI to
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Alzheimer’s disease. Further testing, evaluation, and application of this approach in clinical
settings will afford clinicians a reliable tool when evaluating the risk of cognitive decline.
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(D) 42-month prediction window. Figure S3. The receiver operating characteristic (ROC) curves for
the Alzheimer’s disease (AD) class vs. the non-AD class as given by the machine learning algorithm
(MLA) classifier when the prediction algorithm is tested on the hold-out test sets for each of the
seven prediction windows showing performance of the MLA over time. Figure S4. The positive
predictive value (PPV) (A), negative predictive value (NPV) (B), and accuracy (C) vs. prediction
window for the machine learning algorithm (MLA) and Mini-Mental State Examination (MMSE)
classifiers across all seven prediction windows showing performance of the MLA and the MMSE
over time. Table S5. Detailed feature inputs for all input categories. Table S6. Machine learning
algorithm (MLA) performance on corresponding hold-out test sets for the 18-, 30-, 36-, and 42-month
prediction windows showing performance of the XGBoost-based MLA, the multi-layer perceptron
(MLP) neural network, k-nearest neighbors (KNN), and logistic regression (LR) models, and the
Mini-Mental State Examination (MMSE) over time. XGBoost is a widely used gradient-boosted tree
ensemble method. Figure S5. Bar plot visualization of averaged machine learning algorithm (MLA)
performance in comparison with the performance of the Mini-Mental State Examination (MMSE)
classifier at 48 months. Each pair of bars represents a different performance metric: area under the
receiver operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and accuracy. The value on each bar represents the calculated
metric for either the MLA or MMSE classifier, and the error bars at the top of each bar represent
95% confidence intervals. Table S7. The top 10 features impacting the performance of the machine
learning algorithm (MLA) at the 18-, 30-, 36-, and 42-month prediction windows.
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