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Abstract: Evaluation of hepatic fibrosis is essential to prevent liver-related morbidity and mortality.
Although various types of ultrasound shear wave elastography (SWE) have been used and validated,
there are limited studies on the relatively newer technique, two-dimensional SWE (2D-SWE). There-
fore, this study aimed to compare the diagnostic performances of 2D-SWE and point SWE (p-SWE)
for evaluating liver fibrosis using histology as the reference standard. To measure liver stiffness (LS)
values, 87 patients underwent 2D-SWE and p-SWE using the same machine. Technical failures and
unreliable measurements were also evaluated. The diagnostic performances of 2D-SWE and p-SWE
were compared using area under the receiver operating characteristic (AUROC) curve analysis. No
technical failures were observed in either method; however, unreliable measurements were less
frequent in 2D-SWE (1/87 [1.1%]) than in p-SWE (8/87 [9.2%]) (p < 0.001). The AUROC of the LS
values of 2D-SWE were significantly higher than those of p-SWE for diagnosing significant fibrosis
(0.965 vs. 0.872, p = 0.022) and cirrhosis (0.994 vs. 0.886, p = 0.042). In conclusion, 2D-SWE is more
reliable and accurate than p-SWE for diagnosing hepatic fibrosis.

Keywords: two-dimensional shear wave elastography; point shear wave elastography; chronic liver
disease; liver fibrosis; histology

1. Introduction

Chronic liver disease (CLD) is a major global health issue, responsible for two million
liver-related deaths annually worldwide [1,2]. A wide range of etiologies, including viral
infections (hepatitis B and C), toxins, alcohol abuse, autoimmune diseases, and genetic and
metabolic disorders, can damage the liver parenchyma, leading to parenchymal regenera-
tion with the recruitment of stellate cells and fibroblasts, and accumulation of excessive
fibrous tissue in the liver [3–5]. Liver fibrosis, a principal consequence of CLD, can lead to
portal hypertension, cirrhosis, liver failure, and hepatocellular carcinoma [5,6]. Therefore, a
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precise and timely diagnosis of hepatic fibrosis is crucial for assessing disease severity, guid-
ing appropriate treatment decisions, monitoring disease progression over time, predicting
clinical outcomes, and preventing liver-related morbidity and mortality [6–8]. Liver biopsy
is considered as the standard method for assessing hepatic fibrosis. However, its routine
use for monitoring is limited by its invasiveness, high cost, poor patient compliance, and
limited accessibility [9,10]. Consequently, non-invasive tools for assessing hepatic fibrosis
have emerged [10].

Ultrasound-based shear wave elastography (SWE) is an established noninvasive
tool for staging liver fibrosis in patients with CLD [11–16]. This technique uses shear
wave velocity to estimate tissue stiffness, which is correlated with the degree of fibrosis.
Shear waves can be generated by external mechanical vibration (vibration-controlled
transient elastography; TE) or by focused short-duration acoustic pulses enabling a single
measurement (acoustic radiation force impulse imaging; ARFI imaging) or an image
(supersonic shear wave imaging; SSI) [12–14]. In the United States, TE is commonly used to
assess liver fibrosis [15]. Multiple studies have extensively validated TE and demonstrated
its high diagnostic performance and reproducibility [13,14,16]. On the other hand, transient
elastography (TE) has its drawbacks, including the inability to perform B-mode imaging
and its high failure rates in individuals who are obese, have ascites, or have narrow
intercostal spaces [17,18].

The ARFI imaging technique can be broadly grouped into two categories: point shear
wave elastography (p-SWE) and two-dimensional shear wave elastography (2D-SWE),
both of which allow simultaneous evaluation of liver morphology on gray-scale B-mode
imaging and quantitative assessment of liver fibrosis using the same probe as that used
in the conventional diagnostic ultrasound system [19]. p-SWE generates a single shear
wave at a single frequency during each measurement, whereas 2D-SWE emits multiple
shear waves at various frequencies throughout the examined area. Unlike p-SWE, which
allows for a single region-of-interest (ROI) measurement, 2D-SWE enables the operator
to select and analyze multiple circular ROIs (approximately 10 mm in diameter) within
the larger ROI box [19,20]. Numerous studies have demonstrated that both p-SWE and
2D-SWE exhibit diagnostic accuracies comparable, or superior, to those of TE for measuring
liver fibrosis [21–24]. However, limited available data suggest that 2D-SWE, a relatively
newer technique, may have superior diagnostic accuracy compared with p-SWE [25–27].
Additionally, few published studies have validated the diagnostic performance of 2D-SWE
for staging liver fibrosis using histology as the reference standard [28].

Therefore, the objective of this study was to compare the diagnostic performances
of 2D-SWE and p-SWE, both equipped on the same machine, for the evaluation of liver
fibrosis, using histology as the reference standard.

2. Materials and Methods
2.1. Study Population

This prospective pilot study was conducted with the approval of the Institutional Review
Board (IRB) of Hallym University Sacred Heart Hospital (HALLYM 2017-I061), and written
informed consent was obtained from all patients. Between May 2017 and February 2020,
87 patients who were scheduled to undergo a liver biopsy or hepatic resection were enrolled in
this study (Figure 1). The inclusion criteria were as follows: (1) patients ≥ 19 years; (2) patients
scheduled for liver parenchymal biopsy due to suspected chronic liver disease; (3) patients
scheduled to undergo hepatectomy for various causes (e.g., hepatic tumor, transplantation, or
liver donation).
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Figure 1. Flow diagram of the study population. 2D-SWE, two-dimensional shear wave elas-
tography; p-SWE, point shear wave elastography. 
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All participants who provided consent were scheduled for liver elastography before 

undergoing liver biopsy or hepatic resection. The liver stiffness (LS) values were obtained 
using 2D-SWE (ElastQ Imaging) and p-SWE (ElastPQ) on the same ultrasound machine 
(EPIQ7G, Philips Healthcare, Cleveland, OH, USA). The elastography procedure was per-
formed by an expert radiologist with >10 years of abdominal ultrasound experience and 
>5 years of SWE experience, using a convex probe (C5-1 probe) via an intercostal ap-
proach. Two sessions were conducted to measure LS values, with each session consisting 
of 10–15 sequential LS values measured using 2D-SWE and 10–15 sequential LS values 
measured using p-SWE. A B-mode scan was performed between the two sessions to avoid 
recall bias. Before the examination, patients were instructed to fast for at least 6 h and were 
positioned in a supine posture with their right arm elevated above the head. During the 
procedure, patients were instructed to briefly suspend their respiration (less than 5 s) 
[6,14]. For LS values measurement using 2D-SWE, a trapezoid-shaped, colored elasto-
graphic box was placed at a depth of 1.5–2.0 cm below and perpendicular to the liver cap-
sule [25]. Two or three round ROI with a 1 cm diameter were drawn within the elasto-
graphic box (Figure 2A). For LS values measurement using p-SWE, a square ROI (1.5 cm 
× 0.5 cm) was positioned in the same position as the liver (Figure 2B). The ROIs were 
placed to avoid hepatic vessels and masses. 

Technical failure of 2D-SWE was defined as a colored filling of <50% of the elasto-
graphic box in all measurements [29]. For p-SWE, failure to obtain 10 valid values during 
10–15 sequential measurements was considered a technical failure. Unreliable measure-
ments were defined as an interquartile range (IQR)/median ratio of LS > 30% [6]. The rep-
resentative LS value for each session was the median LS measurement. 

Figure 1. Flow diagram of the study population. 2D-SWE, two-dimensional shear wave elastography;
p-SWE, point shear wave elastography.

2.2. Liver Stiffness Values Measurement Using 2D-SWE and p-SWE

All participants who provided consent were scheduled for liver elastography before
undergoing liver biopsy or hepatic resection. The liver stiffness (LS) values were obtained
using 2D-SWE (ElastQ Imaging) and p-SWE (ElastPQ) on the same ultrasound machine
(EPIQ7G, Philips Healthcare, Cleveland, OH, USA). The elastography procedure was
performed by an expert radiologist with >10 years of abdominal ultrasound experience
and >5 years of SWE experience, using a convex probe (C5-1 probe) via an intercostal
approach. Two sessions were conducted to measure LS values, with each session consisting
of 10–15 sequential LS values measured using 2D-SWE and 10–15 sequential LS values
measured using p-SWE. A B-mode scan was performed between the two sessions to avoid
recall bias. Before the examination, patients were instructed to fast for at least 6 h and were
positioned in a supine posture with their right arm elevated above the head. During the
procedure, patients were instructed to briefly suspend their respiration (less than 5 s) [6,14].
For LS values measurement using 2D-SWE, a trapezoid-shaped, colored elastographic
box was placed at a depth of 1.5–2.0 cm below and perpendicular to the liver capsule [25].
Two or three round ROI with a 1 cm diameter were drawn within the elastographic box
(Figure 2A). For LS values measurement using p-SWE, a square ROI (1.5 cm × 0.5 cm) was
positioned in the same position as the liver (Figure 2B). The ROIs were placed to avoid
hepatic vessels and masses.

Diagnostics 2023, 13, 1646 4 of 12 
 

 

 
Figure 2. Liver stiffness value measurements using 2D-SWE (A) and p-SWE (B). 2D-SWE, two-di-
mensional shear wave elastography; p-SWE, point shear wave elastography. 

2.3. Clinical Data and Biomarkers for Fibrosis 
Clinical data, including age, sex, weight, body mass index (BMI), aspartate ami-

notransferase (AST), alanine aminotransferase (ALT), and platelets were obtained from 
the electronic medical records (EMR) of the institution, which were collected within one 
week prior to performing US elastography. Based on clinical data, biomarkers for hepatic 
fibrosis were derived. The AST-to-platelet ratio index (APRI) was defined as (AST/upper 
limit of normal)/platelet count (109/L) × 100. The fibrosis index based on four factors (FIB-
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activity (A1), mild activity (A2), moderate activity (A3), and severe activity (A4). Steatosis 
was graded from S0 to S4 (S0: absent steatosis; S1: <5%; S2: 5–33%; S3: 33–66%; and S4: > 
66%). 

2.5. Statistical Analysis 
Statistical analyses were performed using MedCalc (version 20.218; MedCalc soft-
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Technical failure of 2D-SWE was defined as a colored filling of <50% of the elasto-
graphic box in all measurements [29]. For p-SWE, failure to obtain 10 valid values during
10–15 sequential measurements was considered a technical failure. Unreliable measure-
ments were defined as an interquartile range (IQR)/median ratio of LS > 30% [6]. The
representative LS value for each session was the median LS measurement.

2.3. Clinical Data and Biomarkers for Fibrosis

Clinical data, including age, sex, weight, body mass index (BMI), aspartate amino-
transferase (AST), alanine aminotransferase (ALT), and platelets were obtained from the
electronic medical records (EMR) of the institution, which were collected within one week
prior to performing US elastography. Based on clinical data, biomarkers for hepatic fibrosis
were derived. The AST-to-platelet ratio index (APRI) was defined as (AST/upper limit of
normal)/platelet count (109/L) × 100. The fibrosis index based on four factors (FIB-4) was
defined as [age (years) × AST (IU/L)]/[platelets (109/L) × ALT1/2 (IU/L)].

2.4. Histologic Analysis

The specimens were fixed in a formalin–alcohol–acetic acid solution, embedded in paraf-
fin, cut, and stained with hematoxylin and eosin. Two expert pathologists (with >10 years
of experience in hepatic pathology) without knowledge of the clinical data and LS values
independently analyzed the specimens based on the METAVIR scores. In case of disagree-
ment, a consensus was reached between the pathologists to determine the final scoring.
Fibrosis was classified as no fibrosis (F0), portal fibrosis (F1), periportal fibrosis (F2), septal
fibrosis (F3), or cirrhosis (F4). The necroinflammatory activity grade, consisting of porto-
periportal and lobular activity, was classified as no activity (A0), minimal activity (A1), mild
activity (A2), moderate activity (A3), and severe activity (A4). Steatosis was graded from
S0 to S4 (S0: absent steatosis; S1: <5%; S2: 5–33%; S3: 33–66%; and S4: >66%).

2.5. Statistical Analysis

Statistical analyses were performed using MedCalc (version 20.218; MedCalc software,
Mariakerke, Belgium) and SPSS software (version 27.0; SPSS, Inc., Chicago, IL, USA).
To compare continuous values (e.g., LS values of 2D-SWE and p-SWE), a paired t-test
or Wilcoxon test was used. Fisher’s exact test or chi-square test was used to compare
categorical values. Spearman’s correlation test was used to determine the correlation
between METAVIR scores (fibrosis, steatosis, and necroinflammation staging) and LS
values. Subsequently, multiple regression analysis was used to determine the independent
factors affecting the LS values.

The diagnostic performances of 2D-SWE and p-SWE were evaluated and compared using
area under the receiver operating characteristic (AUROC) curve analysis based on histological
staging as a reference standard. The optimal cutoff values for diagnosing significant fibrosis
(≥F2) and cirrhosis (F4) were obtained using Youden index. A p-value < 0.05 was considered
statistically significant.

3. Results
3.1. Technical Failure and Unreliable Measurement

Of the 87 patients enrolled in this study, eight were excluded from the final analysis
because of unreliable 2D-SWE and p-SWE measurements. Unreliable measurements were
significantly less frequent with 2D-SWE (1/87 [1.1%]) than with p-SWE (8/87 [9.2%])
(p < 0.001). No technical failures were observed in either 2D-SWE or p-SWE. Therefore,
79 patients with reliable measurements obtained using both SWE methods were included
in the final analysis (Figure 1).

3.2. Clinical and Histologic Features in Patients Included in the Final Analysis

The 79 patients in the final analysis consisted of 4 patients who underwent liver
biopsy and 75 patients who underwent hepatic resection. Histological confirmation was
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performed within 1 week after LS measurements, with a median interval of 1 day (range:
0–7 days). The histologic diagnosis of 79 patients included hepatocellular carcinoma (n = 26),
cholangiocarcinoma (n = 23), combined hepatocellular-cholangiocarcinoma (n = 10), hepatic
metastasis (n = 10), necrotic nodules associated with transarterial chemoembolization
(n = 2), hepatolithiasis (n = 2), intraductal papillary neoplasm of bile duct (n = 2), alcoholic
liver cirrhosis (n = 1), primary biliary cirrhosis (n = 1), simple steatosis (n = 1), and normal
parenchyma without steatohepatitis (n = 1). The clinical characteristics and METAVIR scores
of the 79 patients (51 men, 28 women; mean age, 62.2 years ± 11.1 [standard deviation]) are
presented in Table 1. Significant fibrosis (≥F2) was observed in 29 (36.7%) of 79 patients
and cirrhosis (F4) was observed in 17 (21.5%) of 79 patients.

Table 1. Clinical features and METAVIR scores of 79 patients in the final analysis.

Mean Age (Years) 62.2 ± 11.1
Sex

Male 51 (64.6%)
Female 28 (35.4%)

Body mass index (kg/m2) 24.5 ± 3.6
Laboratory data

Aspartate transaminase (U/L) 121.2 ± 220.4
Alanine transaminase (U/L) 83.5 ± 102.4
Alkaline phosphatase (U/L) 133.1 ± 113.2
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Alkaline phosphatase (U/L) 133.1 ± 113.2 
ɣ-Glutamyl transferase (U/L) 166.7 ± 343.0 
Total bilirubin (µmol/L) 2.1 ± 3.7 
Prothrombin time (s) 14.5 ± 2.1 
Albumin (g/dL) 3.7 ± 0.2 
Platelet count (109/L) 195.3 ± 92.7 
APRI 2.1 ± 4.0 
FIB-4 4.9 ± 7.5 

Underlying liver disease  

Chronic hepatitis B 32 (40.5%) 
Chronic hepatitis C 6 (7.6%) 
Chronic alcohol hepatitis 5 (6.3%) 
Idiopathic chronic hepatitis  4 (5.1%) 
Nonalcoholic steatohepatitis 3 (3.8%) 
Autoimmune hepatitis 1 (1.3%) 
None 28 (35.4%) 

METAVIR Scores  

Fibrosis   

F0 27 (34.2%) 

-Glutamyl transferase (U/L) 166.7 ± 343.0
Total bilirubin (µmol/L) 2.1 ± 3.7
Prothrombin time (s) 14.5 ± 2.1
Albumin (g/dL) 3.7 ± 0.2
Platelet count (109/L) 195.3 ± 92.7
APRI 2.1 ± 4.0
FIB-4 4.9 ± 7.5

Underlying liver disease
Chronic hepatitis B 32 (40.5%)
Chronic hepatitis C 6 (7.6%)
Chronic alcohol hepatitis 5 (6.3%)
Idiopathic chronic hepatitis 4 (5.1%)
Nonalcoholic steatohepatitis 3 (3.8%)
Autoimmune hepatitis 1 (1.3%)
None 28 (35.4%)

METAVIR Scores
Fibrosis

F0 27 (34.2%)
F1 23 (29.1%)
F2 2 (2.5%)
F3 10 (12.7%)
F4 17 (21.5%)

Steatosis
S0 20 (25.3%)
S1 15 (19.0%)
S2 25 (31.6%)
S3 13 (16.5%)
S4 6 (7.6%)

Necroinflammation
A0 22 (27.8%)
A1 15 (19.0%)
A2 18 (22.8%)
A3 24 (30.4%)

APRI, aspartate aminotransferase to platelet ratio index; FIB-4, fibrosis index based on four factors. Values are
presented as means ± standard deviations or numbers with percentages.
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3.3. Correlation with Liver Stiffness Values of 2D-SWE and p-SWE and METAVIR Scores

The LS values obtained using 2D-SWE and p-SWE increased as the fibrosis stage
increased (Figure 3). However, there was no significant difference in the median LS values
measured using 2D-SWE and p-SWE for each fibrosis stage (Table 2). The LS values of
2D-SWE and METAVIR fibrosis stages exhibited a strong positive correlation (r = 0.762,
95% confidence interval [CI]: 0.651–0.841, p < 0.001), and those of p-SWE also showed a
high correlation with the fibrosis stages (r = 0.652, 95% CI: 0.502–0.764, p < 0.001) (Table 3).
However, the LS values on 2D-SWE showed a weak correlation with necroinflammation
in the METAVIR score (r = 0.270, 95% CI: 0.050–0.464, p = 0.017). The LS values on p-SWE
did not correlate with necroinflammation. The steatosis and LS values on 2D-SWE and
p-SWE were not correlated. Multiple regression analysis revealed that fibrosis staging
only (β = 1.77, p < 0.001, for 2D-SWE; β = 1.53, p < 0.001, for p-SWE) was an independent
factor affecting LS values of 2D-SWE (R2 = 0.613, p < 0.001) and those of p-SWE (R2 = 0.443,
p < 0.001).
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F3 7.77 (6.62, 9.60) 7.66 (7.24, 9.54) 1.000
F4 12.75 (11.28, 19.67) 12.23 (9.04, 19.95) 0.151

LS, liver stiffness; 2D-SWE, two-dimensional shear wave elastography; p-SWE, point shear wave elastography;
NA, not available. The p-values were calculated using Wilcoxon test. Values are presented as median (interquartile range).
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Table 3. Correlation of METAVIR scores and liver stiffness values obtained using 2D-SWE and p-SWE.

Correlation Coefficient, r 95% CI for r p-Values

Fibrosis 2D-SWE 0.762 0.651, 0.841 <0.001
p-SWE 0.652 0.502, 0.764 <0.001

Necroinflammation 2D-SWE 0.27 0.050, 0.464 0.017
p-SWE 0.139 −0.088, 0.352 0.230

Steatosis 2D-SWE 0.255 0.011, 0.487 0.060
p-SWE 0.081 −0.188, 0.339 0.556

CI, confidence interval; 2D-SWE, two-dimensional shear wave elastography; p-SWE, point shear wave elastography.

3.4. Comparison of Diagnostic Performance between 2D-SWE and p-SWE

The diagnostic performances of 2D-SWE and p-SWE for diagnosing significant fibrosis
(≥F2) were excellent with the AUROC of 0.965 (95% CI: 0.895–0.993) and 0.872 (95% CI:
0.777–0.937), respectively. The optimal cutoff values for 2D-SWE and p-SWE for significant
fibrosis were 6.26 kPa and 7.08 kPa, respectively. For diagnosing cirrhosis (F4), the diagnos-
tic performances of both 2D-SWE and p-SWE were excellent, with AUROC of 0.994 (95%
CI: 0.943–1.00) and 0.886 (95% CI: 0.794–0.947), respectively. The optimal cutoff values for
2D-SWE and p-SWE for cirrhosis were 8.40 kPa and 9.30 kPa, respectively (Table 4). The
AUROC of 2D-SWE was significantly higher than that of p-SWE for diagnosing significant
fibrosis (0.965 vs. 0.872, p = 0.022) and cirrhosis (0.994 vs. 0.886, p = 0.042) (Figure 4).

Table 4. Comparison of diagnostic performance of 2D-SWE and p-SWE for significant fibrosis (≥F2)
and cirrhosis (F4).

≥F2 F4

2D-SWE p-SWE p-Value 2D-SWE p-SWE p-Value

AUROC 0.965 0.872 0.022 0.994 0.886 0.042
95% CI 0.895, 0.993 0.777, 0.937 0.943, 1.00 0.794, 0.947

optimal cutoff value (kPa) 6.26 7.08 8.4 9.3
sensitivity (%) 96.7 75.9 100 76.5
specificity (%) 95.9 87.8 95.1 91.8

AUROC, area under the receiver operating curve; CI, confidence interval; 2D-SWE, two-dimensional shear wave
elastography; p-SWE, point shear wave elastography.
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The diagnostic performance of APRI and FIB-4 for detecting significant fibrosis was
suboptimal with AUROCs of 0.6 (95% CI: 0.482–0.710) and 0.637 (95% CI: 0.520–0.744) and
was also suboptimal for cirrhosis with AUROCs of 0.655 (95% CI: 0.538–0.759) and 0.688
(95% CI: 0.572–0.788), respectively (Supplementary Table S1). 2D-SWE showed the best
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diagnostic performance, followed by p-SWE, APRI, and FIB-4 in distinguishing between
significant fibrosis and cirrhosis (Supplementary Figure S1).

4. Discussion

We prospectively conducted this study to directly compare the diagnostic perfor-
mances of two newer SWE techniques, 2D-SWE (ElastQ imaging) and p-SWE (ElastPQ), on
the same machine (EPIQ7G, Philips Healthcare) for detecting liver fibrosis, using the his-
tological staging of hepatic fibrosis as a reference standard. Our results demonstrated
that the LS values of 2D-SWE were strongly correlated with histologic fibrosis stage
(r = 0.762), and those of p-SWE also showed a high correlation with fibrosis stage
(r =0.652). 2D-SWE exhibited better diagnostic performance than p-SWE for detecting
significant fibrosis, with excellent AUROCs of 0.965 and 0.872, and for cirrhosis, with
AUROCs of 0.994 and 0.886, respectively.

Numerous studies have reported a significant correlation between liver fibrosis stages
based on histology and LS values obtained using p-SWE, which has demonstrated compara-
ble or better diagnostic performance than TE [21,23–25]. In contrast, 2D-SWE is a relatively
newer technique with limited available data, based mostly on the supersonic shear imaging
(Aixplorer®, Supersonic Imagine, Aix-en-Provence, France). Several studies have shown
that LS values obtained using supersonic shear imaging are strongly correlated with the
fibrosis stage based on histology. Furthermore, it has demonstrated comparable or better
diagnostic accuracy than p-SWE and TE in discriminating between significant fibrosis and
cirrhosis, using liver biopsy as the reference standard [22,23,26,28,29]. However, ElastQ
imaging, the latest 2D-SWE technique used in our study, has not yet been extensively
validated. A recent meta-analysis, which included 23 articles on 2D-SWE and 48 articles
on p-SWE, revealed that 2D-SWE had a higher diagnostic performance than p-SWE for
detecting significant fibrosis with AUROCs of 0.89 and 0.85 and for cirrhosis with AUROCs
of 0.94 and 0.91, respectively [30]. Although the meta-analysis yielded results similar to
those of our study, none of the studies in the meta-analysis directly compared 2D-SWE and
p-SWE. In contrast, our study directly compared the diagnostic performances of 2D-SWE
and p-SWE, which were performed on the same machine and used in the same population.
Since all variables (e.g., US machine, US probe, patient, operator) except for the SWE tech-
niques were the same, our study could exactly reflect the influence of the SWE technique on
the diagnostic performance for the evaluation of liver fibrosis. Furthermore, unlike other
studies, our study compared the diagnostic performances of 2D-SWE and p-SWE using
histological confirmation as a reference standard [25,31]. Additionally, to the best of our
knowledge, previous studies have mostly used supersonic shear imaging as a 2D-SWE
machine, and there were few studies using the ElastQ imaging used in our study.

Here, both 2D-SWE and p-SWE showed much higher diagnostic performance for
the detection of significant fibrosis and cirrhosis than biomarkers (APRI and FIB-4). In
contrast, other studies reported no statistical difference in the diagnostic performance of
transient elastography for cirrhosis among SWE, APRI, and FIB-4 [32]. A meta-analysis
comparing p-SWE, APRI, and FIB-4 reported that, similar to our results, p-SWE showed
better diagnostic performance than biomarkers [33].

Our results demonstrated that among METAVIR scores (fibrosis, necroinflammation,
steatosis), fibrosis staging was an independent factor affecting LS values in both 2D-SWE
and p-SWE. This finding is similar to those of previous studies [29,34]. In a study comparing
TE and 2D-SWE in patients with non-alcoholic fatty liver disease, necroinflammation
affected LS values measured by TE but not by 2D-SWE [34]. A previous study comparing
the diagnostic accuracy of 2D-SWE, p-SWE, and TE also reported that all three techniques
correlated with the degree of fibrosis and necroinflammation, but not steatosis [23]. In our
study, the LS values on 2D-SWE showed a weak correlation with necroinflammation on
the METAVIR score. Therefore, we hypothesized that necroinflammation could have some
impact on LS values measured using SWE.
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Our study found that 2D-SWE had fewer unreliable measurements than p-SWE, which
is consistent with the findings of previous studies [25,28]. This may be due to the larger
elastographic box with color coding in 2D-SWE, which allows for more appropriate place-
ment of ROIs away from the artifact areas. In addition, 2D-SWE requires fewer acquisitions
than p-SWE [6]. Another study using the latest 2D-SWE technique, ElastQ Imaging, re-
ported that 2D-SWE has technical advantages over p-SWE, including greater reliability
and speed [25]. However, this study did not evaluate the diagnostic performance of these
two techniques. Our prospective study directly compared the diagnostic performance of
2D-SWE and p-SWE, using histology as a reference standard.

This study has several limitations. First, the number of patients included was small,
and this prospective study was conducted at a single center. Second, our patients were
not equally distributed according to liver fibrosis stage. Only two patients had an F2 score,
and although this limited number could potentially impact the interpretation of our study,
our focus was on discriminating significant fibrosis (≥F2) and cirrhosis (F4) rather than
evaluating diagnostic performance for each fibrosis stage separately. Thus, we believe the
impact of the limited number of F2 patients on our study results was negligible. Third, the
etiologies of the underlying liver disease were heterogeneous. Cutoff values are affected by
the etiology of the underlying liver disease [35]. However, it is not feasible to recruit patients
with a single disease in a clinical setting, and many previous studies targeted patients with
various causes of chronic liver disease. Fourth, patients with hepatic tumors were included in
this study. While previous studies have also included patients with hepatic tumors to evaluate
hepatic fibrosis and have placed ROIs to avoid hepatic tumors [29,36–38], it is possible that
the presence of a tumor could still affected the liver stiffness values. However, in our study,
we took care to place ROIs in tumor-free areas to minimize the potential impact of tumors
on liver stiffness measurements. Finally, only one radiologist measured the LS values using
2D-SWE and p-SWE without evaluating the intra- and inter-observer variability. Our study
measured the LS values using two techniques on the same machine and within the same
population, which provides a more valid way to compare different tests. In addition, a
recent meta-analysis reported that 2D-SWE had good-to-excellent intra-observer reliability
(ICC = 0.93) and inter-observer reliability (ICC = 0.87) [27]. Further large-scale multicenter
studies with the same etiology of underlying liver disease are needed to evaluate the
diagnostic performance and increase the level of evidence.

5. Conclusions

For the detection of hepatic fibrosis, 2D-SWE and p-SWE are good noninvasive tools
with excellent diagnostic performance, particularly for discriminating significant fibrosis
and cirrhosis. In addition, 2D-SWE has better diagnostic performance than p-SWE, with
greater reliability. Serologic biomarkers, including APRI and FIB-4, showed lower diagnos-
tic accuracy than SWE. Thus, 2D-SWE may be a suitable alternative to liver biopsy for the
diagnosis and monitoring of hepatic fibrosis in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13091646/s1, Figure S1. Area under the receiver operating
curves of 2D-SWE, p-SWE, APRI, and FIB-4 in diagnosing significant fibrosis (≥F2) (A) and cirrhosis
(F4) (B), 2D-SWE, two-dimensional shear wave elastography; p-SWE, point shear wave elastography;
APRI, aspartate aminotransferase to platelet ratio index, FIB-4 = fibrosis index based on four factors;
Table S1. Comparison of diagnostic performances of 2D-SWE, p-SWE, and biomarkers for diagnosis
of significant fibrosis (≥F2); Table S2. Comparison of diagnostic performances of 2D-SWE, p-SWE,
and biomarkers for diagnosis of cirrhosis (F4).
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