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Abstract: Lung and colon cancers are among the leading causes of human mortality and morbidity.
Early diagnostic work up of these diseases include radiography, ultrasound, magnetic resonance
imaging, and computed tomography. Certain blood tumor markers for carcinoma lung and colon
also aid in the diagnosis. Despite the lab and diagnostic imaging, histopathology remains the gold
standard, which provides cell-level images of tissue under examination. To read these images,
a histopathologist spends a large amount of time. Furthermore, using conventional diagnostic
methods involve high-end equipment as well. This leads to limited number of patients getting final
diagnosis and early treatment. In addition, there are chances of inter-observer errors. In recent
years, deep learning has shown promising results in the medical field. This has helped in early
diagnosis and treatment according to severity of disease. With the help of EffcientNetV2 models
that have been cross-validated and tested fivefold, we propose an automated method for detecting
lung (lung adenocarcinoma, lung benign, and lung squamous cell carcinoma) and colon (colon
adenocarcinoma and colon benign) cancer subtypes from LC25000 histopathology images. A state-
of-the-art deep learning architecture based on the principles of compound scaling and progressive
learning, EffcientNetV2 large, medium, and small models. An accuracy of 99.97%, AUC of 99.99%,
F1-score of 99.97%, balanced accuracy of 99.97%, and Matthew’s correlation coefficient of 99.96% were
obtained on the test set using the EffcientNetV2-L model for the 5-class classification of lung and colon
cancers, outperforming the existing methods. Using gradCAM, we created visual saliency maps to
precisely locate the vital regions in the histopathology images from the test set where the models
put more attention during cancer subtype predictions. This visual saliency maps may potentially
assist pathologists to design better treatment strategies. Therefore, it is possible to use the proposed
pipeline in clinical settings for fully automated lung and colon cancer detection from histopathology
images with explainability.

Keywords: lung cancer; colon cancer; EffcientNetV2; explainability; histopathology

1. Introduction

According to the World Health Organization, cancer is the leading cause of mortality
worldwide, and by 2040, the global cancer burden is expected to be 28.4 million cases, a
47% increase from 2020 [1,2]. Lung and colorectal (both colon and rectum) cancers are the
more prevalent types worldwide, after breast cancer, with incidence rates of 11.4% and
10%, respectively, in 2020 [2]. Although low, there is a chance of synchronous occurrence
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between lung and colon cancers [3]. In addition, lung and colorectal cancers exhibit the top
two mortality rates of 18% and 9.4%, respectively, among all cancers [2]. Therefore, a more
accurate diagnosis of these cancer subtypes is necessary to explore the treatment options in
the initial stages of the disease. The non-invasive methods for diagnosis include radiogra-
phy and computed tomography (CT) imaging for lung cancer and flexible sigmoidoscopy,
and CT colonoscopy for colon cancer. However, reliable subtyping of these cancers may not
be possible using non-invasive means always, and minimally invasive procedures, such as
histopathology, would be required for precise disease identification and improved quality
of treatment. In addition, the manual grading of histopathological images may be tiresome
to pathologists. Moreover, accurate grading of the lung and colon cancer subtypes requires
trained pathologists, and manual grading could be error prone. Hence, automated image
processing methods for cancer lung and colon cancer subtype screening are warranted to
reduce the burden on pathologists.

Deep learning (DL) is a branch of machine learning (ML) that eliminates the need for
manual feature engineering, and convolutional neural network (CNN) based DL models
provide hierarchical feature maps for better representation of input images. In recent
years, various state-of-the-art CNN-based DL frameworks, including the AlexNet [4],
VGG Nets [5], GoogLeNet [6], Residual Nets [7], DenseNets [8], EfficientNets [9,10], and,
lately, multi-head self-attention based vision transformer (ViT) [11,12] architectures were
invented for various vision tasks, including classification. Although massive data would
be required to train these large DL models from scratch, transfer learning (TL) helps to
adapt the large pre-trained models for downstream tasks. Thus, TL reduces the need for
massive data for training, which is scarce in specific fields, such as medicine. DL and TL
have been performing a vital role in healthcare in building automated diagnostic systems
using medical images that include histopathological images, retina images, radiographs,
computed tomography images, magnetic resonance images, etc. These automated systems
are primarily used for classification tasks and also assist clinical practitioners in situations
of rapid data acquisition and automated quality checking [13–17]. EffcientNetV2 is a recent
DL architecture that was developed based on progressive learning with a combination
of compound scaling and neural architecture search (NAS) to improve both the training
speed and parameter efficiency [10], and it outperformed several existing state-of-the-
art DL models, including ViT variants in image classification task on the ImageNet and
other datasets.

In general, DL methods are similar to black box architectures. Therefore, it is often
required to ensure that these DL models focus on the most relevant regions in the input
image during target class prediction. Several methods exist in the literature to visualize
most activated areas when a DL model predicts the class of a specific image to add explain-
ability to the model. A few of these methods include class activation mapping (CAM) [18],
gradCAM [19], and gradCAM++ [20]. In this study, we considered gradCAM for creating
visual saliency maps for EffcientNetV2 predictions.

Hence, the contributions of the present work are:

i. A fully automated framework for the five-class diagnosis of most occurring lung and
colon cancer subtypes is proposed using EffcientNetV2-large (L), medium (M), and
small (S) models based on histopathology images.

ii. These existing pretrained models are finetuned and tested using a large, openly
available lung and colon cancer histopathology image dataset called LC25000.

iii. Visual saliency maps are provided using the gradCAM method to understand the
model decisions during testing better.

Related Work

Several works employing ML and DL techniques have been present in the literature
during recent years for the classification of colon and lung cancer subtypes from histopatho-
logical images from private and public (LC25000) datasets. These works are stratified into
3-class classification of lung cancer subtypes (adenocarcinoma, squamous cell carcinoma,
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and benign), 2-class classification of colon cancer subtypes (adenocarcinoma and benign),
and 5-class classification of both lung and colon cancer subtypes, which are given in Table 1.
In [21], a custom CNN model with heavy data augmentation from 298 microscopy images
was developed and achieved an overall accuracy of 71.1% for subtyping lung cancer into
adenocarcinoma, squamous cell carcinoma, and small cell carcinoma. In another recent
study using LC25000 dataset [22], lung cancer subtyping is performed using a custom-made
CNN, obtaining an accuracy of 97.2%. Furthermore, in [23], colon cancer subtyping was
only implemented using a CNN and principal component analysis (PCA) from LC25000,
and the framework has a classification accuracy of 99.8%. Few studies exist using feature
extraction from the histopathology images and different ML classifiers, including random
forest (RF) and XGBoost, for the lung and colon cancer subtyping and achieved accuracies
above 96.3% [24,25].

A multi-input dual-stream capsule neural network was proposed [26] using LC25000
images that employed several pre-processing strategies, including color balancing, gamma
correction, image sharpening and multi-scale fusion, to obtain an accuracy of 99.6%. Sim-
ilarly, Ref. [27] employs histogram equalization as the pre-processing step followed by
pretrained AlexNet to improve the colon cancer classification. In other recent studies,
pretrained DarNet-19 and support vector machine classifier [28], DenseNet-121, and RF
classifier [29] were developed and demonstrated 99.7% and 98.6% accuracy, respectively.
Integration of deep feature extraction and ensemble learning with high-performance filter-
ing was found to be effective in a recent work [30] with an accuracy of 99.3% using LC25000
data. Lastly, a custom CNN model from the same dataset followed by several dimensional-
ity reduction methods, such as PCA, discrete Fourier transform, and fast Walsh-Hadamard
transform, was employed to obtain 99.6% accuracy for the five-class classification [31].

Although some previous studies obtained accuracies above 99.5%, they lacked explain-
ability and incorporated extensive pre-processing steps. Therefore, the present study aimed
at using compound scaling-inspired EffcientNetV2 models for the five-class classification
with added interpretability using the gradCAM method. Eventually, our framework out-
performed all the existing methods based on LC25000 dataset with an overall test accuracy
of 99.98%.

Table 1. Previous works on classifying lung and colon cancer subtypes using different machine
learning and deep neural network methods based on LC25000 dataset and a private dataset. CNN:
convolution neural network. ML: machine learning, PCA: principal component analysis, DWT:
discrete wavelet transforms, SVM: support vector machine, RF: random forest, BA: balanced accuracy,
AUC: area under the receiver operating characteristic curve, MCC: Matthew’s correlation coefficient,
FWHT: fast Walsh-Hadamard transform.

Study Year Method Dataset Interpretability Performance (%)

Chehade A. H. et al. [25] 2022 ML classifiers LC25000 No Accuracy: 99.0
F1-score: 98.80

Masud M. et al. [24] 2021 ML classifiers LC25000 No Accuracy: 96.33

Ali M. et al. [26] 2021 Multi-input capsule neural network LC25000 No Accuracy: 99.58

Togacar M. [28] 2021 DarkNet-19 and SVM LC25000 No Accuracy: 99.69

Mehmood S. et al. [27] 2022 Image enhancement and AlexNet LC25000 No Accuracy: 98.40

Teramoto A. et al. [21] 2017 Custom CNN model Private dataset
(298 microscopic images) No Accuracy: 71.10

(Only lung cancer)

Attallah O. et al. [31] 2022 Custom CNN + PCA, FWHT, DWT LC25000 No Accuracy: 99.60

Hatuwal B. K. et al. [22] 2020 Custom CNN LC25000 No Accuracy: 97.20
(Only lung cancer)
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Table 1. Cont.

Study Year Method Dataset Interpretability Performance (%)

Mangal S. et al. [32] 2020 Custom CNN LC25000 No Accuracy: 96.50

Talukder Md. A. et al. [30] 2022 Hybrid ensemble learning LC25000 No Accuracy: 99.30

Kumar N. et al. [29] 2022 DenseNet121 and RF LC25000 No Accuracy: 98.60
F1-score: 98.50

Hasan Md. I. et al. [23] 2022 Custom CNN and PCA LC25000 No Accuracy: 99.80
(Only colon cancer)

Present study 2023 EffcientNetV2 LC25000 Yes

Accuracy: 99.97
F1-score: 99.97

BA: 99.97
AUC: 99.99
MCC: 99.96

2. Methods
2.1. Dataset

For this study, we considered a publicly available dataset LC25000 [33]. Initially,
250 color images for each lung and colon cancer subtype were acquired using Leica mi-
croscope LM190 HD camera connected to an Olympus BX41 microscope, constituting
1250 images before data augmentation. Then, the 250 images for each cancer subtype
were increased to 5000 by using augmentation methods, including right and left rotations
and vertical and horizontal flips. Thus, after data augmentation, the dataset consists of
25,000 regular histopathology images. The original spatial resolution of the images was
1024 × 768, but they were cropped to 768 × 768 before applying the data augmentation.
Eventually, for the current study, the spatial resolution of the images was changed to
224 × 224 by resizing.

For a fair differentiation with existing literature, the percentage of data used in train-
ing, validation, and testing from LC25000 is considered to match with existing studies,
i.e., 80% of the data was used for cross-validation and the remaining 20% for testing. The
images in the dataset were labeled as follows: 0 for lung-adenocarcinoma, 1 for lung-benign,
2 for lung-squamous cell carcinoma, 3 for colon-adenocarcinoma, and 4 for colon-benign by
experienced pathologists. Example histopathological images with lung and colon cancer
subtypes are shown in Figure 1. Furthermore, the dataset stratified with respect to lung
and colon cancer subtypes are given in Table 2 for the train, validation, and test sets.

Table 2. Number of lung and colon cancer histopathology images in the training, validation, and
testing. aca: adenocarcinoma, n: benign, scc: squamous cell carcinoma.

Lung-aca Lung-n Lung-scc Colon-aca Colon-n

Training 3600 3600 3600 3600 3600
Validation 400 400 400 400 400

Testing 1000 1000 1000 1000 1000

2.2. Physiological Mechanims of Lung and Colon Cancers

In this subsection, we briefly described the pathophysiological mechanisms about
the lung and colon cancer subtypes dealt in the present study. Lung adenocarcinoma and
squamous cell carcinoma falls under the category of non-small cell lung cancers where
squamous carcinoma frequently occurs as a central endobronchial lesion, and adenocar-
cinoma has a tendency to start in the lung periphery and invade the pleura [34]. Lung
benign is non-cancerous and will not spread to the surrounding tissues. Most occurring
lung benign include hamartomas that usually occurs in outer portion of lung connective
tissue and bronchial adenomas that grow in the bronchi and in the ducts or mucus glands
of the windpipe. Colon adenocarcinoma and benign occur in a pedunculated polyp, sessile
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polyp, or stricture. Polyp is an abnormal chunk of cells that also grow inside the colon.
Small polyps rarely contain cancer [35].
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Figure 1. Sample lung and colon cancer histopathological images from LC25000 dataset. (a) lung-
adenocarcinoma, (b) lung-benign, (c) lung-squamous cell carcinoma, (d) colon-adenocarcinoma,
(e) colon-benign.

2.3. EffcientNetV2 and Compound Scaling

EffcientNetV2 [10], the next version of EffcientNetV1 [9], is a novel family of deep CNNs
focusing on two significant aspects: enhancing the training speed and parameter efficiency.
To accomplish this task, a combination of training-aware NAS, and compound scaling were
used. The faster training was achieved by employing both MBConv and Fused-MBConv
layers. Here, MBConv layers are the basic building blocks of MobileNetV2 [36] constructed
from the inverted residual blocks. To obtain the Fused-MBConv layer, the first two blocks
(depth-wise 3 × 3 convolution and the expansion 1 × 1 convolution block) of MBConv
were replaced by a regular 3 × 3 convolution block, as shown in Figure 2. Afterward,
a squeeze and excitation block in both MBConv and Fused-MBConv layers was used to
weigh different channels adaptively. Finally, a 1 × 1 squeeze layer was inserted to reduce
the number of channels equal to the channels present in the input of either MBConv or
Fused-MBConv layers.

In the present work, we considered EffcientNetV2-L, -M, and -S models that employed
Fused-MBConv blocks in the initial layers. The EffcientNetV2-S model architecture begins
with a standard 3 × 3 convolution layer followed by three Fused-MBConv and three
MBConv blocks. The eventual layers contain a 1 × 1 convolution, pooling, and concluded
by a fully connected layer. Furthermore, the EffcientNetV2-S model was scaled up using
a compound scaling strategy to get EffcientNetV2-M and -L models. The idea behind
compound scaling is to balance the dimensions of depth (d), width (w), and input image
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resolution (r) by scaling them to a constant ratio. Mathematically, it was formulated as
given below.
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d = αϕ, w = βϕ, r = γϕ

such that α.β2.γ2 = 2
(1)

The values of α, β, and γ are always greater than or equal to one and could be determined
by grid search. Intuitively, ϕ determines the extra computational resources required for
model scaling, which is user defined. In practice, the convolution operations dominate the
computational cost in CNNs. Hence, scaling a CNN using Equation (1) would roughly
increase the floating-point operations per second (FLOPS) by

(
α.β2.γ2)ϕ. However, based on

the constraint set in Equation (1), for any new ϕ, the FLOPS in total will approximately increase
by 2ϕ. By progressively increasing the size of the image during training, the training speed
was further improved. However, this gradual increase in the image size during training often
leads to a drop in performance which was handled by adaptive regularization schemes, such
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as data augmentation and dropout. That means for smaller image sizes, weak augmentation
was used and vice versa. Furthermore, for complete details, refer to [9].

2.4. Model Training and Validation

The final softmax layer of the pre-trained EffcientNetV2-S, -M, and -L models were
discarded, and a new softmax layer is added to classify lung and colon cancer subtypes.
The model cross-validation and testing were conducted under the Google Colab Pro cloud
environment using TensorFlow 2.0 with high-level Keras API at the backend. Furthermore,
all the hyperparameters for all the models were empirically selected, and hence the val-
idation set was used to ensure that the individual models were not over-fitting during
training. For training, the Adadelta optimizer was used at 0.1 learning rate, 32 batch size,
and 5 epochs. Since it is a five-class classification problem, sparse categorical cross-entropy
(SCCE), as given in Equation (2), was used as the loss function.

SCCEloss = −
1
N

N

∑
i=0

5

∑
j=1

yjlog(ŷj) (2)

Above, N is the total number of images during training/validation, ŷj is the label of
predicted class, and yj is the label of the true class. For all three models, the parameters of
the last 50 percent of layers were fine-tuned during training, and the parameters of the first
half of the network remain unaltered. We have used two repetitions for splitting the data
into training, and testing and the average performance metric values are reported.

2.5. Visual Saliency Maps

To better understand the model’s decisions on where it is keeping more attention on
the histopathology image during prediction, the visual saliency maps are created for each
EffcientNetV2 model using gradCAM [19] for all lung and colon cancer subtypes. To obtain
the gradCAM map Lc

gradCAM ∈ Ru×v of width u and height v for class c, indicating the
most representative regions, we initially compute the first order derivative of the score
for class c denoted as yc (before the softmax), with respect to the feature maps Ak of the
last convolutional layer. Furthermore, these first order derivatives propagated back are
global mean pooled over the width and height of Ak (indexed by i and j, respectively)
to get the neuron significance weights αc

k. Mathematically, it is described as given below
in Equation (3). Here, Z is the product of the width and height of the feature map Ak.
The importance weights αc

k captures the ‘importance’ of feature map Ak for a class of
interest c. Furthermore, to get Lc

gradCAM, a weighted sum of final convolution layer output
maps followed by ReLU (rectified linear unit) is performed as shown in Equation (4).
Furthermore, ReLU is given in Equation (5). A ReLU is applied evatually to extract the
‘positive’ features that influence the class of interest.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(3)

Lc
gradCAM = ReLU

(
∑
k

αc
k Ak

)
(4)

ReLU(x) =
{

x, x > 0
0, x ≤ 0

(5)

2.6. Evaluation Metrics

To conduct the performance evaluation of the proposed models, the Python-based
scikit-learn toolbox was used. The metrics include accuracy, F1-score, balanced accuracy
(BA), area under the receiver operating characteristic curve (AUC), and Matthew’s correla-
tion coefficient (MCC), as described in the below equations. Here, F1-score is calculated
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from the harmonic mean of precision and sensitivity, whereas BA is computed as the aver-
age of recall and specificity. Since it was a five-class classification study, the performance
scores are obtained from the corresponding confusion matrix (CM) by employing one vs.
rest approach. Given a specific class, the correctly classified images are categorized as true
positives (TP). The false positives (FP) are the misclassifications above the half-diagonal
of CM. The number of correctly classified present in the diagonal of CM other than the
specific class are called true negatives (TN). Eventually, the misclassifications below the
half diagonal are considered as false negatives (FN).

accuracy =
TP + TN

TP + TN + FP + FN
(6)

F1− score =
2 ∗ precision ∗ recall

precison + recall
(7)

BA =
sensitivity + speci f icity

2
(8)

sensitivity (recall) =
TP

TP + FN
(9)

speci f icity =
TN

TN + FP
(10)

precision =
TP

TP + FP
(11)

MCC =
TP.TN − FP.FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(12)

3. Results

All the models converged within five iterations during the cross-validation. Therefore,
the evaluation scores during validation are very close to the performance scores during
testing. Table 3 presents the complete evaluation details of the proposed EffcientNetV2-S,
-M, -L models on the test set. The EffcientNetV2-L model performed better among all three,
with an accuracy of 99.97% and an AUC of 99.99%. However, the other two models (small
and medium) abilities are also very close to the performance metrics of the large model. For
example, from Figure 3, we can see that the large model achieved almost 100% accuracy
for the three-class stratification of lung cancer. Similarly, the medium model has obtained
100% accuracy for the two-class classification of colon cancer.

Table 3. Evaluation metrics on the test set for classifying lung and colon cancer subtypes using
EffcientNetV2-S/M/L models given in percentages. BA: balanced accuracy, AUC: area under the curve,
MCC: Matthew’s correlation coefficient.

EffcientNetV2-S EffcientNetV2-M EffcientNetV2-L

Accuracy 99.90 99.96 99.97
AUC 99.99 99.99 99.99

F1-Score 99.90 99.96 99.97
BA 99.90 99.97 99.97

MCC 99.87 99.94 99.96

Furthermore, Figure 4 shows the visual saliency maps for a sample image for all lung
and colon cancer subtypes using gradCAM. For comparison, the maps were generated
for all three employed models of EffcientNetV2. In general, the highlighted regions in the
histopathology image are similar among the different models. However, some notable dif-
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ferences are present. For instance, the most activated regions during colon adenocarcinoma
prediction using medium and large models are slightly different. In addition, the activated
regions for the three-class lung cancer classification are wider for the small model compared
to the medium and large models. Furthermore, we have given a color bar applicable to
all the sub-saliency maps present in Figure 4 for quantitative estimate of attention. Here,
red color indicates more attention (maximum value being one), and blue color indicates
less attention (minimum value being zero) that the model put over the test histopathology
image during the class prediction.
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colon benign.



Diagnostics 2023, 13, 1594 10 of 13Diagnostics 2023, 13, 1594 10 of 14 
 

 

 
Figure 4. Visual saliency maps for explainability of the model’s decisions during class prediction, 
created using gradCAM. For each class, one image is randomly picked from the test set. Lung_aca: 
lung adenocarcinoma, Lung_n: lung benign, Lung_scc: lung squamous cell carcinoma, Colon_aca: 
colon adenocarcinoma, Colon_n: colon benign. The red color in the maps indicates that more atten-
tion is given in those regions, and the blue color indicates that less attention is put to those regions 
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Figure 4. Visual saliency maps for explainability of the model’s decisions during class prediction,
created using gradCAM. For each class, one image is randomly picked from the test set. Lung_aca:
lung adenocarcinoma, Lung_n: lung benign, Lung_scc: lung squamous cell carcinoma, Colon_aca:
colon adenocarcinoma, Colon_n: colon benign. The red color in the maps indicates that more attention
is given in those regions, and the blue color indicates that less attention is put to those regions during
model prediction.
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4. Discussion

In the present study, we proposed a pipeline using pretrained EffcientNetV2 models
(L, M, and S) for the automated classification of lung and colon cancer subtypes from
histopathology images of LC25000 dataset. These compound-driven architectures outper-
formed the existing works on the same dataset by achieving an accuracy up to 99.97%,
including all five classes indicating the power of both compound scaling and TL. Hence,
the models may essentially replace the pathologist and make the classification of lung
and colon cancer fully automatic. Furthermore, our framework is end-to-end, requiring
neither any pre-processing methods nor any dimensionality reduction strategies as em-
ployed in some previous studies to achieve accuracies above 99.5% [26,31]. For instance,
the method in [27] used histogram equalization for colon cancer images to boost the overall
accuracy from 89% to 98.4%, and we believe that extensive pre-processing may hamper
the generalizable ability of the model to unseen data. The better overall performance of
EffcientNetV2-L model could be due to the presence of a greater number of MBConv and
Fused-MBConv layers that helped in learning the most relevant abstract features required
for very accurate classification.

Looking at the visual saliency maps in Figure 4, we can understand the most activated
regions during the target class prediction by the models. In general, the most activated
areas in the image are widespread for small model relative to medium and large models
since the small model has comparatively few parameters/layers, and to achieve better
differentiability among subtypes, attention over large area of the image may be necessary.
This trend was more apparent for lung cancer subtypes and colon adenocarcinoma. Inter-
estingly, the medium model demonstrated wider activations for colon benign compared
to the small and large models. Overall, we can observe from the saliency maps that all
models’ feature abstraction is from the appropriate areas of the histopathological images
consistent across all lung and colon cancer subtypes. Furthermore, the color bar guides
the pathologists to quantitively measure (in the scale between zero and one) the amount
of attention/importance the model put over the subregions of the test histopathology
images during their class prediction. Furthermore, these visual saliency maps may assist
pathologists in potentially designing individual treatment strategies.

Since the dataset was largely generated by augmenting the original dataset containing
250 histopathology images for each cancer subtype, data augmentation may not provide
true data variability. Hence, future studies should involve testing the proposed models
on larger datasets created without using any data augmentation. Although the hyperpa-
rameters during training were chosen empirically, a thorough grid search, including the
selection of optimizer, could be conducted using cross validation. Nonetheless, the perfor-
mance metrics are quite impressive on the test set across all three models, thus, strongly
supporting the empirically chosen hyperparameters. In addition, it will be interesting to
implement few-shot learning methods [37] that work based on small sample sizes as an
alternative to increasing the dataset size using heavy data augmentation.

Deep learning with EffcientNetV2 large, medium, and small models with high accura-
cies of 99.96% can perform an important role in diagnosis and treatment of carcinoma lung
and colon. This algorithm can be employed to analyze the vast amounts of data generated
for cancer diagnosis, including images of tissue samples viewed under a microscope, ge-
netic data, and other clinical information. One of the key advantages of this deep learning
model is its ability to analyze large datasets and identify patterns that may be difficult for
human experts to discern. This can significantly improve the accuracy of cancer diagnosis,
particularly in cases where subtle differences between healthy and cancerous tissue may be
difficult to distinguish. In addition to improving diagnosis, it can also be used to develop
personalized treatment plans for cancer patients according to disease severity. This can
be done by analyzing data from large numbers of patients with similar genetic profiles.
The presented algorithm can identify the most effective treatment options for individual
patients based on their unique characteristics. Overall, the role of deep learning in CA lung
and CA colon histopathology is significant, as it has the potential to improve the accuracy
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of cancer diagnosis, reduces histopathologist’s burden, identify new treatment options, and
ultimately help save lives.

5. Conclusions

The EffcientNetV2 based -L, -M, and -S models presented in this study have achieved
accuracies above 99.96% AUCs of 99.99%, and MCC of up to 99.96% on the test dataset
for the five-class classification that includes three lung cancer subtypes and two colon
cancer subtypes from histopathology images. The performance is superior to the existing
works using the LC25000 dataset, and, furthermore, we employed gradCAM to highlight
the most important regions while target class prediction. The performance metrics of the
classification are marginally superior for -M and -L models compared to -S model. Hence,
the proposed framework may assist pathologists in fully automating the lung and colon
cancer subtyping from histopathological images and interpretability. In the future, we
would like to propose lightweight models for the same task that could be deployable on
edge devices. The code of the proposed pipeline can be found here.
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