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Abstract: Advances in artificial intelligence (AI), especially deep learning (DL), have facilitated
magnetic resonance imaging (MRI) data analysis, enabling AI-assisted medical image diagnoses and
prognoses. However, most of the DL models are considered as “black boxes”. There is an unmet
need to demystify DL models so domain experts can trust these high-performance DL models. This
has resulted in a sub-domain of AI research called explainable artificial intelligence (XAI). In the
last decade, many experts have dedicated their efforts to developing novel XAI methods that are
competent at visualizing and explaining the logic behind data-driven DL models. However, XAI
techniques are still in their infancy for medical MRI image analysis. This study aims to outline the
XAI applications that are able to interpret DL models for MRI data analysis. We first introduce several
common MRI data modalities. Then, a brief history of DL models is discussed. Next, we highlight
XAI frameworks and elaborate on the principles of multiple popular XAI methods. Moreover, studies
on XAI applications in MRI image analysis are reviewed across the tissues/organs of the human
body. A quantitative analysis is conducted to reveal the insights of MRI researchers on these XAI
techniques. Finally, evaluations of XAI methods are discussed. This survey presents recent advances
in the XAI domain for explaining the DL models that have been utilized in MRI applications.

Keywords: deep learning; explainable artificial intelligence; magnetic resonance imaging; functional
MRI; diffusion MRI; MR angiography; convolutional neural networks; Grad-CAM

1. Introduction

Advances in artificial intelligence (AI), especially deep learning (DL), have enabled
more complex magnetic resonance imaging (MRI) data analysis, facilitating tremendous
progress in automated image-based diagnoses and prognoses [1]. Previously, medical
image analyses were typically performed using systems fully designed by human domain
experts [2]. Such an image analysis system could be a statistical or machine learning (ML)
model that used handcrafted properties (i.e., image features) of an image or regions of
interest (ROIs) on the image [3]. These handcrafted image features range from low-level
(e.g., edges or corners) to higher-level image properties (e.g., texture). Modern DL models
can automatically learn these image features with minimal human interference to optimally
perform certain image analysis tasks, which improves efficiency and saves a lot of human
resources [4]. The fast development of DL has contributed to its growing application in
MRI image analysis.

Due to their non-linear underlying structures, most DL models are considered as
“black boxes” by scholars, and even more so by the public [5]. There is an urgent need
for more tools to demystify these DL models, which has resulted in a sub-domain of AI
research called explainable artificial intelligence (XAI). The emergence of XAI has mainly
been driven by three factors: (a) the need to increase the transparency of AI models; (b) the
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necessity to allow humans to interact with AI models; and (c) the requirement for the
faithfulness of their inferences. The above reasons have led to the rapid development of
domain-dependent and context-specific techniques when dealing with the interpretation
of DL models and the formation of explanations for public understanding [6]. Recently,
many experts have dedicated their efforts to developing novel methods that are competent
at visualizing and explaining the logic behind data-driven DL models.

XAI research has been rapidly growing over the last decade. Multiple high-quality
reviews on XAI techniques exist for the computer vision or general AI community [7,8]. In
this work, we seek to use a survey to gain insights into recent advances in XAI methods
and their applications in MRI analysis. In contrast to those prior XAI reviews, the scope
of the current study focuses on the MRI research community, where a systematic view of
the whole AI-related pipeline is necessary for rigid MRI research and clinical translation.
As such, we strive to introduce the XAI technique from this unique perspective to the
MRI research community. We present those pioneering XAI studies from a systematic
perspective as a chained pipeline, starting from MRI data to AI models, XAI methods,
specific MRI tasks/applications, and all the way to the final XAI evaluation. Figure 1
illustrates the chained pipeline of XAI-related MRI studies. The potential benefits XAI can
bring to the field of MRI analysis are huge. XAI techniques not only manage to provide
an explanation for AI decisions and pave the way to utilizing informative MRI data, but
also improve the transparency and trustworthiness of AI systems in healthcare, which is
essential for their widespread adoption and acceptance. The significance of our survey lies
in providing the most up-to-date trends of XAI approaches utilized in recent MRI research.
The quantitative analysis of those XAI studies reveals the most common XAI techniques
used in various MRI studies. We also discuss the strengths and limitations associated with
these XAI techniques. Figure 1 also serves as the organization of this survey. In Section 2,
we give an overview of MRI images. In Section 3, we briefly introduce popular AI models
that have been applied to “Learn” those MRI data. In Section 4, we elaborate on several
XAI techniques that can “Explain” the classification or segmentation results of the previous
AI models. In Section 5, we further discuss the MRI applications that “Employ” AI models
and XAI techniques in MRI research. In Section 6, we discuss the evaluation metrics that
are proposed to “Evaluate” the explainability of these XAI methods. This is followed by
the conclusion and outlook on XAI in Section 7.
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Figure 1. Organization of our survey in this work. We first review MRI images. Next, we introduce
common AI models that have been applied to “Learn” those MRI images. Then, we elaborate on
popular XAI methods that can “Explain” the classification or segmentation results of the previous AI
models. Moreover, we investigate MRI applications that “Employ” AI models and XAI techniques.
Finally, we discuss the evaluation metrics that are proposed to “Evaluate” how well these XAI
methods explain the AI models.

2. Overview of MRI Images

MRI uses the principle of nuclear magnetic resonance (NMR) [9] and maps the internal
structure of an object by acquiring the position and type of its atomic nuclei [10]. The
application of gradient magnetic fields leads to the emission of electromagnetic waves
based on the attenuation of the energy released in different structural environments within
a substance. As a noninvasive imaging technology, MRI can produce high-quality images
without the use of ionizing radiation. Thus, MRI can safely provide a wealth of diagnostic
information, which makes medical diagnoses and functional studies of the human body
convenient and effective [11]. MRI is a versatile medical imaging technique that produces
images of organs, tissues, bones, and other structures for a range of medical conditions,
and has been widely used in clinical disease screening, diagnosis, treatment guidance, and
evaluation since the mid-1980s. Figure 2 illustrates a number of examples using different
MRI techniques from various human organs. In this section, we will review a few common
MRI techniques that have been widely utilized in both the clinical and research domains.



Diagnostics 2023, 13, 1571 4 of 21
Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 2. Illustration of common MRI Images. 

2.1. Anatomical MRI 

T1-weighted MRI is one of the most commonly used anatomical MRI sequences us-

ing T1 relaxation time [10]. T1 (also known as spin–lattice or longitudinal) relaxation time 

is the time for the z component of a spin to return to 63% of its original position following 

a radiofrequency (RF) excitation pulse. Since various tissues require different T1 relaxa-

tion times to return to equilibrium, one can highlight the tissues’ contrast using differences 

in the T1 relaxation times. T2-weighted MRI is another common anatomical MRI se-

quence, which relies on T2 relaxation time [12]. T2 (also known as spin–spin or transverse) 

relaxation time is the time required for the transverse component of a proton to decay to 

37% of its initial status through irreversible processes [10]. Similar to T1-weighted MRI, 

various human tissues also have different T2 relaxation times, so we can demonstrate the 

tissues’ contrast using differences in the T2 relaxation times. T1-weighted images are pro-

duced by scans using short Time to Echo (TE) time and Repetition Time (TR). Conversely, 

T2-weighted images are generated by scans using longer TE and TR time. The contrast 

and brightness of anatomical MRI images are predominately determined by the T1 and 

T2 properties of the tissue, separately. While T1-weighted images tend to have a high-

signal intensity on fat and low intensity on water, T2-weighted images have an interme-

diate–high-signal intensity on fat and high intensity on water. For example, T1-weighted 

MRI images highlight white matter for the adult brain, while T2 MRI images highlight 

cerebrospinal fluid and inflammation [13]. 

2.2. Diffusion MRI 

Diffusion MRI, or diffusion-weighted imaging (DWI), is one MRI technique that gen-

erates image contrast by measuring the Brownian motion of the water molecules within 

tissues. Diffusion Tensor Imaging (DTI), a special type of DWI, is one of the most popular 

diffusion MRI techniques in brain research and clinical practice for mapping white matter 

tractography [14]. It measures the diffusion anisotropy of water molecules traveling in 

white matter fibers, where a higher speed is observed in parallel motion compared to per-

pendicular movements. By detecting the variations in the signals from hydrogen atoms, 

Figure 2. Illustration of common MRI Images.

2.1. Anatomical MRI

T1-weighted MRI is one of the most commonly used anatomical MRI sequences using
T1 relaxation time [10]. T1 (also known as spin–lattice or longitudinal) relaxation time is
the time for the z component of a spin to return to 63% of its original position following a
radiofrequency (RF) excitation pulse. Since various tissues require different T1 relaxation
times to return to equilibrium, one can highlight the tissues’ contrast using differences in the
T1 relaxation times. T2-weighted MRI is another common anatomical MRI sequence, which
relies on T2 relaxation time [12]. T2 (also known as spin–spin or transverse) relaxation time
is the time required for the transverse component of a proton to decay to 37% of its initial
status through irreversible processes [10]. Similar to T1-weighted MRI, various human
tissues also have different T2 relaxation times, so we can demonstrate the tissues’ contrast
using differences in the T2 relaxation times. T1-weighted images are produced by scans
using short Time to Echo (TE) time and Repetition Time (TR). Conversely, T2-weighted
images are generated by scans using longer TE and TR time. The contrast and brightness
of anatomical MRI images are predominately determined by the T1 and T2 properties of
the tissue, separately. While T1-weighted images tend to have a high-signal intensity on fat
and low intensity on water, T2-weighted images have an intermediate–high-signal intensity
on fat and high intensity on water. For example, T1-weighted MRI images highlight
white matter for the adult brain, while T2 MRI images highlight cerebrospinal fluid and
inflammation [13].

2.2. Diffusion MRI

Diffusion MRI, or diffusion-weighted imaging (DWI), is one MRI technique that
generates image contrast by measuring the Brownian motion of the water molecules within
tissues. Diffusion Tensor Imaging (DTI), a special type of DWI, is one of the most popular
diffusion MRI techniques in brain research and clinical practice for mapping white matter
tractography [14]. It measures the diffusion anisotropy of water molecules traveling in
white matter fibers, where a higher speed is observed in parallel motion compared to
perpendicular movements. By detecting the variations in the signals from hydrogen atoms,
DTI can capture the orientations of the white matter tracts in the brain. Quantitative
diffusion metrics, such as fractional anisotropy, axial diffusivity, mean diffusivity, and
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radial diffusivity, have been extensively used in brain research to reveal the white matter
integrity. These white matter tracts have found multiple neuroimaging applications, such
as brain structural and functional mapping, evaluations of brain injury, disease progression,
surgical planning, and treatment response monitoring [15].

2.3. Functional MRI (fMRI)

Functional MRI (fMRI) is an imaging technique measuring the time-varying brain
activity reflected by the fluctuations of blood oxygen levels caused by brain metabolism [16].
The oxygen is believed to concentrate at the location where the neural activity is highly
active. Due to the magnetic sensitivity difference between the oxygenated and deoxy-
genated hemoglobin, a measurable signal is detected by the MRI scanner. Two types
of brain activation patterns can be obtained when subjects are in a resting state (resting
state fMRI) or taking on targeted tasks (task fMRI). Since fMRI data are 4D time-varying
volume data, graph-based approaches are widely used to construct the brain’s functional
connectomes from the fMRI data by estimating the correlations between the distinct brain
regions, where each node represents a brain region and the edges represent the functional
connections. In recent years, fMRI has been used to investigate a wide range of cognitive
tasks, including attention, emotion, working memory, language, and decision making, as
well as neurological and psychiatric disorders (e.g., Alzheimer’s disease, attention deficit
hyperactivity disorder, and schizophrenia).

2.4. Magnetic Resonance Angiography (MRA)

Magnetic resonance angiography (MRA) [17] is a special type of MRI designed to im-
age the vascular system. It plays an essential role in the accurate diagnosis of and treatment
selection for patients with arterial disease. Contrast-enhanced (CE) MRA provides more
detailed images for more precise diagnoses with shorter acquisition times and reduced
artifacts caused by blood flow and pulsatility, but increases examination expenses and the
risk of nephrogenic systemic fibrosis caused by gadolinium-based agents. Non-contrast-
enhanced (NCE) MRA provides a safer tool for generating image contrasts between blood
vessels and background tissues and is becoming increasingly popular in clinical practice.
Among the various NCE MRA techniques, time-of-flight (TOF) imaging is the most com-
mon and is widely used in clinical practice and research fields [18], which measures the
magnetization state difference between stationary tissues and blood flow. TOF MRA has
been applied to the assessment, diagnosis, and treatment of multiple cerebrovascular and
arterial diseases.

3. Brief Introduction of AI Models

Multi-layer perceptron (MLP), also known as artificial neural networks, are one of
the most classic ML models [19]. An MLP consists of an input layer, many hidden layers
in the middle, and an output layer. Each neuron in an MLP is connected to all the nodes
in the previous layer. Since MLPs have a large number of weights in each layer, it is
difficult to train these models, especially when the data dimension (such as images) is high.
Additionally, as MLPs only accept vectorized features as inputs, they are not a preferrable
model for image data that contain spatial information. More recently, deep neural networks
(DNN) have been commonly utilized to refer to MLP models with a large number of hidden
layers.

Convolutional neural networks (CNN) are the most frequently utilized models for
tackling different medical imaging tasks, such as image classification/regression. Different
from the fully connected neurons in MLPs or DNNs, CNN models rely on shared local
trainable kernels/filters to perform their image convolution operations on the input images
to extract the image features. Compared to MLP models, CNN models not only incorporate
the spatial location of the shared features within the input data/images, but also have
a decreased computational complexity, resulting in less encoding of the overall parame-
ters [20]. Taken together, these characteristics open up the possibility for the application of
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CNN models to more limited, sparse datasets, as seen in the setting of medical imaging
applications. A major milestone in DL history is AlexNet [21], a CNN model that won the
ImageNet competition in 2012 with outstanding scores. Since then, multiple CNN models,
such as the Visual Geometry Group (VGG) [22], GoogLeNet [23], and Residual Networks
(ResNet) [24], have been developed to further improve the capability of image classification
and recognition.

For image segmentation, U-Net [25] or its variations become desirable DL models.
The principle of U-Net is to use a U-shaped CNN architecture with skip connections to
compute attention maps at full input resolution to help in the detection of small objects.
More specifically, U-Net, as well as its variation models (e.g., V-Net and ResU-Net), all
consist of a contracting path and an expanding path. Each path has the repeated block of
convolutional/deconvolutional layers, non-linear activation layers, and pooling layers for
feature learning and reconstruction.

Graph neural networks (GNN) [26] generalize DL models on graph-based data. As
the most classical and widely used GNN, a graph convolutional network (GCN) [27]
has been proposed by Kipf and Welling as an efficient variant of a CNN that performs
convolution on graphs. Various variants of GNN models, such as the Graph Isomorphism
Network (GIN) [28], Graph Attention Network (GAT) [29], and GraphSAGE [30], have
been proposed and adopted to tackle medical image problems at the node level, edge level,
and graph level.

4. XAI Techniques

In recent years, a number of XAI methods have been proposed to explain the above-
mentioned DL models. These XAI techniques can be categorized into model-specific expla-
nations and model-agnostic explanations, according to a survey by Adadi and Berrada [7].
Model-specific explanation methods can only be applied to certain specific models. For
example, an XAI method may use attributes specific to a type of DL model. On the other
hand, model-agnostic explanation methods are independent of DL models, operating solely
on the input and output of the DL models. For example, to explain which regions are
driving the output, the researchers perturb the input to observe what the change is in the
output of the DL models. A distinct advantage of model-specific explanation methods is
their computational cost in contrast to model-agnostic explanation methods. This com-
putational cost could be assessed by comparing how these explanation techniques work,
even if it is rarely mentioned in papers. Model-specific techniques make a fast single pass
back through the neural network, while model-agnostic explanation methods require an
extensive perturbation of the input images to measure the change in the output caused by
the perturbations. For example, using the Grad-CAM approach, researchers solely require
choosing which layer will inspect the activation. On the other hand, model-agnostic tech-
niques rely on relatively complex fine-tuning [31]. Model-agnostic techniques overwhelm
model-specific techniques in terms of the potential of XAI techniques to be “plug-and-play”
(also known as “ease of use”). Consisting of perturbation-based visual explanation, model
agnostic techniques have the highest ease of use, enabling them to be applied to any trained
neural network to provide a visual explanation. In the following section, we elaborate on
techniques in both the model-specific and model-agnostic categories.

4.1. Model-Specific Explanation Methods
4.1.1. Class Activation Mapping (CAM)

Class Activation Mapping (CAM) is one of the early techniques for explaining CNN
models by equipping CNNs with remarkable localization ability [32]. It replaces the fully
connected layers at the end of a CNN with global average pooling on the last convolutional
feature map. The CAM’s heatmap is a weighted linear sum of the presence of visual
patterns captured by the filters at different spatial locations, which can be expressed as
below:

Mc(x, y) = ∑kwc
k fk(x, y), (1)
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where fk(x, y) refers to the activation of unit k in the final convolutional layer and wc
k

represents the importance of fk(x, y) for a certain class c. A multi-scale CAM method has
also been proposed by utilizing the multiple scale information in MRI images. Some studies
have concatenated feature maps at the three scales provided as inputs for the global average
pooling [33], while other works have concatenated each layer’s feature maps before max
pooling, giving these as inputs to the global average pooling layer. The generated activation
maps showed a higher resolution than the single-scale maps and provided more accurate
localizations of brain tumors in MRI scans [34].

4.1.2. Gradient-Weighted Class Activation Mapping (Grad-CAM)

Gradient-weighted Class Activation Mapping (Grad-CAM), a generalization of the
CAM method, is one of the most popular XAI methods for demystifying where CNN
models are looking during inference [35]. Grad-CAM uses the gradients of the target
concept to flow into the targeted convolutional layer and produces a coarse localization
map. By highlighting the important regions in the image, the map makes the prediction of
specific labels more transparent. In practice, to visualize Grad-CAM for a category, all the
feature maps in the last layer of the CNN are taken as partial derivatives. This is because the
last layer is rich in high-level semantic information and detailed spatial information, and
partial derivatives represent the rate of change in the output with respect to the input, that
is, how much the output changes by one unit on the feature map. The partial derivatives
can reflect the output of the degree of sensitivity. If the gradient is large, it will be very
sensitive, indicating that the location is more likely to be the target category. In contrast to
CAM, Grad-CAM acquires the neuron importance weights via flowing back the gradients
that are global-average pooled, calculated as below:

αc
k =

1
Z ∑i ∑j

∂yc

∂Ak
ij

, (2)

where yc is the score for class c and Ak is the feature map of a convolutional layer. The
weights that Grad-CAM computes from the global average of the gradients are equivalent
to those computed by CAM, whose mathematical derivation can be found in the original
paper. Then, the class-discriminative localization map of Grad-CAM can be obtained as
below:

Lc
Grad−CAM = ReLU

(
∑kαc

k Ak
)

. (3)

A graph analogue of the Grad-CAM is proposed to explain the results obtained from
GCN-based models [36]. The first step is to compute the gradient of the class c with respect
to the feature map F as:

αl,c
k =

1
N

N

∑
n=1

∂yc

∂Fl
k,n

, (4)

where Fl
k,n represents the k-th feature for node n at the l-th layer and yc represents the

class score. The contribution vector (CAM) is calculated by a weighted combination of the
forward activation maps at the l-th layer as:

Lc
Grad−CAM(l) = ReLU∑

k
αl,c

k Fl
k,n (5)

Therefore, the Grad-CAM method can be applied to a wide variety of CNN models, as
well as various architectures for tasks, including image classification and image captioning.
Moreover, Guided Grad-CAM, a combination of Grad-CAM and existing fine-grained
visualizations, was proposed in the same paper to create a high-resolution and concept-
specific visualization. It is capable of visualizing important regions of an image in high-
resolution detail, which corresponds to any decision of interest. As a result, it makes up for
the lack of showing fine-grained importance in Grad-CAM.
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4.1.3. Layer-Wise Relevance Propagation (LRP)

Bach et al. introduced layer-wise relevance propagation (LRP) to understand the
classification decisions of the pixel-wise decomposition of nonlinear classifiers [37]. The
LRP approach uses the output of the CNN, such as a classification score between 0 and 1,
and iteratively backpropagates the output throughout the model structure. The realized
backpropagation process follows the conservation property, i.e., the neurons received must
be redistributed to lower layers in equal amounts, as shown below:

∑jRj = ∑kRk. (6)

where j and k are neurons in different layers of the CNN. At the global level, it can be
derived:

∑jRj = f (x), (7)

where f (x) represents the output of the CNN model under the affection of x. It allows
for the visualization of single pixels’ contributions to the predictions for CNNs. LRP also
visualizes these pixel contributions as heatmaps. In each layer, the LRP approach assigns a
relevance score to each of the input neurons from the previous layers, which equals the
sum of the relevance score of its source neuron, in accordance with the conservation law.

4.1.4. Trainable Attention

A trainable attention mechanism has been proposed to highlight which regions of the
MRI images the CNN focuses on [38]. This trainable attention method displays where and
to what extent the CNN ought to pay attention to the input images for the classification,
and uses this attention highlight to further enhance the relevant regions and suppress the
irrelevant regions.

4.1.5. Guided Backpropagation

Springenberg et al. proposed a guided-backpropagation technique explanation, a
gradient-based visualization technique that visualizes the gradient in relation to the images
while backpropagating through the Relu activation function [39]. Guided backpropagation
highlights the pixels that had the highest impact on the analysis output to create saliency
maps. By adding guidance to the normal backpropagation, it limits the return of gradients
less than 0, which corresponds to the undesirable parts of the original graph that weaken
the features we want to visualize.

4.2. Model-Agnostic Explanation Methods
4.2.1. Shapley Additive Explanations (SHAP)

Lundberg and Lee introduced the concept of SHapley Additive exPlanations (SHAP)
to provide explanations for the predictions generated by machine learning models, using
Shapley values from the game theory [40]. Shapley values reflect the marginal contributions
of individual features to the model’s output separately to explicate why the model makes
a certain prediction for a specific instance or sample [41]. By comparing the prediction
with the average prediction distributed among the features, contrastive explanations can
be derived. To approximate the Shapley values for CNNs, an innovative method named
Deep SHAP has been developed. In MRI image analyses, Deep SHAP can be employed to
identify which regions of the MRI image contribute positively or negatively to the output
of the model.

4.2.2. Local Interpretable Model-Agnostic Explanations (LIME)

Ribeiro et al. introduced Local Interpretable Model-agnostic Explanations (LIME),
which interpret the predictions of DL models by approximating a CNN with a linear
model [42]. The output of the complex model changes via perturbing the input data. The
LIME method generates a new dataset (obtained by perturbing around the selected sample
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x) and then trains a simple model (interpretable model) on this new dataset, measuring the
difference between the two models by the following objective function:

ξ(x) = argmin L( f , g, πx) + σ(g), (8)

where f refers to the original model, g refers to the simple model, πx is the similarity of the
perturbed input to the original input, and σ(g) is the complexity of model g. The πx(z) is
used as a weight to guarantee that the explanations generated by the models with highly
perturbed input data have less effect on the final explanation. The LIME algorithm uses the
simpler linear model to learn the mapping between the perturbed input data, as well as the
change in the output. Therefore, the above objective function can be optimized by means
of a linear regression, as shown below:

ξ(x) = ∑z,z′∈Zπx(z)
(

f (z)− g
(
z′
))2. (9)

In MRI, the perturbations can be implemented by using super pixels to show which
regions are of significance for explaining a classification output. There is an important
premise that the simple model that LIME uses for its approximation must have the ability
to distinguish between the positive and negative samples in the vicinity.

4.2.3. Occlusion Sensitivity

Occlusion sensitivity is an analysis technique for visualizing which parts of an image
are most important for classification tasks [43]. For classification methods, a natural
question is whether a model actually determines the location of an object in an image or
just uses the surrounding contextual information. To solve this, this perturbation-based
technique perturbs the input image to assess the importance of certain regions of the target
image. The idea behind this is that if the classification label is wrongly generated after a
certain known key part of the input data (e.g., image) is occluded, the occluded part of the
data is actually correctly learned/recognized by the model.

4.2.4. Prediction Difference Analysis

For the purpose of visualizing the response of CNNs to a certain input, Zintgraf
et al. adapted a prediction difference analysis method [44]. For each pixel considered
to be an unknown feature, the prediction difference analysis method assigns a relevance
value by measuring how the prediction changes. They expanded it by adding conditional
sampling, in which only the analyzed pixels hard to predict were analyzed, simply by
investigating the neighboring pixels. They also analyzed patches of connected pixels by
adding a multivariable analysis.

5. XAI Applications in MRI

In MRI data analysis, XAI techniques have been used to provide explanations for DL
methods performing classification and segmentation tasks. To conduct a study search, we
searched for original published articles in the database of SpringerLink with the following cri-
teria: (a) they contained the keywords “MRI”, “deep learning”, and “XAI”/“explainability”,
AND (b) were written in English, AND (c) had been published since 2017. Then, we manu-
ally assessed the papers in the search results based on their relevance to the application of
XAI in MRI image analysis. Finally, we included 56 of them in our survey (Table 1). We
elaborate on the XAI applications in different parts of the human body in this section.
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5.1. Brain

MRI provides a relatively high spatial resolution and non-invasive observation of
neural activity, including changes in the brain’s oxygen levels, volume, connectivity, and
cortical thickness. It contributes to the wide utilization of DL methods, as well as applica-
tions of XAI in neuroimaging.

5.1.1. Brain Anatomical MRI

There are also multiple XAI methods utilized in MRI image analysis [34,44–66]. The
value of T1-weighted MRI markers as adjuncts is being widely acknowledged by clinical
assessment in the diagnosis and monitoring of progression. For example, T1-weighted MRI
images become a significant part of the diagnoses and predictions of Alzheimer’s disease
(AD). A wide range of model-specific XAI methods have gained highlighted performances
in T1-weighted MRI image analysis. Shinde et al. built a novel CNN-based discrimina-
tive localization model named “high-resolution CAM”, based on the traditional CAM
method [34]. They applied it to classify the ependymomas from a grade IV glioblastoma
on T1-weighted contrast-enhanced (T1-CE) MRI data and to predict Parkinson’s disease
from neuromelanin-sensitive MRI images. The method achieved a high accuracy for the
diagnosis of mild cognitive impairments (MCI) and for yield-focused attention maps on
the specific pathological locations related to MCI progression, which allows for more in-
sights and a better understanding of the progression of MCI to AD. In another study, to
assist clinicians in explaining the neural network decisions for diagnosing AD, Böhle et al.
innovatively adapted the LRP technique to visualize the CNN decisions for AD based on
T1-weighted MRI data [51]. LRP heatmaps can be interpreted as providing individual
AD relevance as opposed to a general susceptibility for small variations in the input data.
Shad et al. used the LIME method on a variety of CNN models, such as VGG, ResNet, and
GoogLeNet, to look at T1-weighted MRI images [53].

Ahmad et al. developed a ResNet-based model that is capable of performing the
accurate classification of brain tumors and tumor segmentation [54]. They relied on the
CAM method to provide an explanation of their model. CAM heatmaps provide clinically
meaningful insights into tumor regions, making the proposed model highly relevant in a
clinical setting. Dubost et al. applied an attention maps approach to their 3D regression
models, aiming at quantifying enlarged perivascular spaces (PVS) and the structural brain
changes visible in MRIs and common in aging [58]. The attention maps were computed via
guided backpropagation in terms of a visual and manual scoring of the PVS. This was the
first qualitative evaluation to check whether a trained neural networks model was able to
identify the structures of interest for PVS.

Furthermore, using both T1-weighted and T2-weighted MRI images, several studies
have adapted the Grad-CAM algorithm to explain CNN models for the analysis of brain
tumors [67–72]. For example, Windisch et al. implemented the Grad-CAM algorithm
on ResNet to visualize the areas that their models used for outputting predictions in
a brain tumor detection task [70]. Using state-of-the-art visualization attention maps,
Zeineldin et al. established a new XAI framework named NeuroXAI based on the Grad-
CAM algorithm for interpreting the behavior of CNNs and demonstrated the significance
of incorporating XAI methods in brain tumor classification and segmentation tasks [71].
Intriguingly, they visualized a series of heatmaps generated by the Grad-CAM method in
multiple individual layers of the U-Net model, demystifying the data flow within their
segmentation model from the input MRI images to the output segmented masks.

5.1.2. Brain Magnetic Resonance Angiography (MRA)

DL approaches have facilitated the diagnosis of vascular diseases and the prediction
of brain ages using MRA [73–75]. Yin et al. made predictions of hemorrhagic and ischemia
moyamoya disease (MMD) from brain TOF-based MRA images using ResNet pretrained
on ImageNet [74]. They used the Grad-CAM technique to detect the ROIs, distinguishing
the different MMD types. Nam et al. performed an age prediction from MRA images
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using a 3D CNN architecture [73]. They generated heatmaps of the MRA images with
Grad-CAM and detected the important vascular structures related to aging. Mouches
et al. predicted biological brain ages from a T1-weighted MRI and TOF-based MRA images
with a multi-modal 3D CNN framework [75]. They drew saliency maps for both image
modalities using SmoothGrad [76], a gradient-based interpretation model.

5.1.3. Brain Diffusion Tensor Imaging (DTI)

Interpretable DL models have provided efficient diagnostic and prognostic models in
the DTI field [77–79]. For example, Vidyadharan et al. calculated the four types of diffusion-
based structural connectomes from a predefined atlas [78]. The structural connectomes
were input into a deep CNN model to classify brain tumor grades. They then used Grad-
CAM to reveal the pattern differences between low-grade glioma and high-grade glioma
patients and found distinct patterns in the frontal, temporal, and parietal lobes. Velazquez
et al., applied an ensemble model of a random forest and a CNN to classify early MCI and
AD, using both DTI data and clinical features as inputs [79]. They also adopted Grad-CAM
as the explanation of the white matter fiber differences between early MCI and AD. Huang
et al. made graph classifications with their proposed GNN (MNC-Net) framework for
early Parkinson’s disease (PD) diagnoses [77]. The model took the FA-based structural
connectivity as node features and the sparse adjacency matrix as a graph. They identified
the class-specific hub brain ROIs with the CAM technique. Occlusion sensitivity was also
utilized to validate the detected ROIs.

5.1.4. Brain Functional MRI (fMRI)

Recently, XAI techniques have been heavily involved in fMRI-related studies on
revealing the dysfunctional ROIs related to brain diseases [80–86]. For example, Zhang
et al. classified seven types of brain tasks using a knowledge-informed self-attention
graph-pooling-based (SAGPool) GCN [81]. The model took the fMRI BOLD signals as
node features and the binarized connectivity matrix of the functional connectomes as the
graph for performing a graph classification. They explained the proposed method with
the CAM method to select the important brain regions. Wen et al. used a prior brain
structural learning-guided multi-view GCN framework to study autism spectrum disorder
(ASD), where they formulated brain graph learning and multi-view learning to obtain
the node features and the graph for each view and performed a graph classification [80].
They explained the model with CAM and identified the subnetworks and inter-subnetwork
relationships related to ASD. Qu et al. used a multi-modal GCN model to predict cognitive
scores with two-task fMRI paradigms, where the node features were the vectorized brain
functional connectivity and the graph was the sparse binarized functional connectome [83].
The results were interpreted with gradient-weighted regression activation mapping (Grad-
RAM, a variant of Grad-CAM) to detect the important brain regions.

5.2. Breast

Various studies have demonstrated that quantitative imaging such as dynamic contrast-
enhanced MRI (DCE-MRI) could be used to characterize the various features related to
tissue types (normal or abnormal tissue) [87]. DCE-MRI images of the breast were used
to study the types of contrast enhancement kinetic curves, which are predictive of malig-
nancy. DL models were available for providing better predictions for breast tumors based
on the information provided by DCE-MRI. XAI methods are adapted to DL models to
visualize the feature heatmaps for breast disease diagnoses [88–91]. For example, given
T1-weighted MRI images being used as inputs, Adoui et al. developed a CNN model to
predict responses to neoadjuvant chemotherapy, which aims to minimize the tumor size
before surgery [89]. They visualized the most useful features contributing to classifying
the pathological complete response (pCR) and non-pCR patients for the breast tumor pre-
diction using the Grad-CAM method. In another study, for the purpose of gaining insight
into the features learned by a CNN trained to classify estrogen receptor statuses (ER+ vs.
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ER−), based on DCE-MRI images of the breast, Papanastasopoulos et al. applied a model
agnostic method called Integrated Gradients [92] to the ROIs from the training set [91].
Using attribution maps generated by this Integrated Gradients method, they identified the
artifacts that may have interfered with the learning, which might provide guidance for
improving our preprocessing steps and fine-tuning the DL models to learn the relevant
features from DCE-MRI breast ROIs. Furthermore, they gained better insight into the
imaging characteristics that may distinguish between ER+ and ER− patient cases.

5.3. Liver

The assessment of liver diseases is commonly involved in medical images. MRI
plays an important role in liver disease detection and progression by assessing the liver’s
morphology, signal intensity, and appearances following intravenous contrast material
administration [93,94]. MRI images have been integrated with AI models to diagnose
liver fibrosis and nonalcoholic fatty liver disease [95,96]. For example, Luetkens et al.
developed DL models based on popular CNN architectures (ResNet50 and DesneNet121)
to differentiate the etiology of liver cirrhosis using T2-weighted sMRI images. Then,
they applied the Grad-CAM technique to explain the DL models’ decision process for
classifying the liver cirrhosis as alcohol-related or non-alcohol related [97]. In another study,
Li et al. developed DeepLiverNet, a multi-channel deep transfer learning convolutional
neural network, to classify the severity of liver stiffness using axial anatomic T2-weighted
abdominal MRI images and clinical features. They visualized the discriminative regions
on T2-weighted liver images using the Grad-CAM technique to demystify the decision
making process of the DeepLiverNet [98].

5.4. Musculoskeletal

MRI is effective in examining physical injuries or structural abnormalities. In lumbar
MRI analysis, XAI methods have been used to provide a high level visualization of CNNs
by generating saliency maps. For instance, Jamaludin et al. compared three backpropaga-
tion methods to extract the saliency maps that highlighted the pixels of T2-weighted sagittal
spinal MRI images that had the highest impact on the localization of the spine patholo-
gies [99]. They implemented contrastive excitation backpropagation and back-propagated
up until the first convolution layer to achieve the best visual results.

MRI images are also a commonly used diagnostic examination for detecting severe
or chronic internal injuries of the knee [100,101]. Using T1-weighted knee MRI images,
Bien et al. developed an MRNet model to assist in the detection of general abnormalities
and specific diagnoses such as meniscal tears. They generated heatmaps via the CAM
technique to examine whether their model was capable of learning pertinent features from
knee images [100].

5.5. Gastrointestinal

With advances in MRI, the difficulty of detecting gastrointestinal diseases declines.
The diagnosis of gastrointestinal diseases may be further improved with AI and XAI
methods. For example, Wang et al. developed a multi-branch cross-attention model to
exploit the information contained in small T2-weighted MRI data sets of rectal cancer to
learn discriminative features [102]. With the Grad-CAM technique, they confirmed that
the highlighted ROIs in the MRI images were most helpful for predicting the Kirsten Rat
Sarcoma virus mutation status, which is critical for clinicians to specify the treatment
options for patients with rectal cancer.



Diagnostics 2023, 13, 1571 13 of 21

5.6. Prostate

Prostate MRI is a desirable technique for an assessment of the extent of prostate
cancer [103,104]. It is valuable to experts in making decisions on whether cancer has spread.
In studying prostate MRI data, Hassan et al. used the LIME method to explain their VGG-
based classification model for prostate cancer detection [104]. The LIME method explained
the classification outcome via generating simulated images from the simplification of the
original model, which initially located the regions that could be worthy of investigation
given the input image. The automated computational approach of LIME identified the
correct regions of interest that contained a malignant lesion with a uniform intact capsule,
which explained why the model classified the patient as malignant. Moreover, the LIME
algorithm could put emphasis on the ROIs that show a hyperechoic prostate with vertebral
involvement, and the prostate’s ROIs annotated by radiologists could also be identified as
important by the XAI approach.

5.7. Whole-Body

A whole-body MRI image looks at the body from head to toe. It is usually applied
to find cancers across multiple tissues/organs. A whole-body MRI can also be applied
to evaluate growth. Focused on images obtained via a whole-body MRI scan, Langner
et al. trained a VGG-based CNN model on a large dataset for age prediction. They
used the Grad-CAM method to generate saliency maps [105]. They not only examined
the recurring patterns in a large number of individual saliency maps but also formed a
combined visualization by aggregating the saliency maps to remove most of the noise, as
well as patient-specific features, allowing for a comprehensive visualization of the most
age-relevant anatomical structures.

5.8. Quantitative Analysis of Reviewed Applications

We conducted a quantitative analysis to investigate the reviewed MRI studies using AI
and XAI techniques. We summarized the distributions of those pioneering works from four
perspectives, including MRI techniques, XAI frameworks, XAI techniques, and anatomical
locations. We display the analyzed distributions using pie charts in Figure 3. As shown in
Figure 3A, 75% of the studies involved the utilization of anatomical MRI techniques, the
most widely used MR imaging technique for various disease diagnoses and prognoses.
Compared to this, other MRI modalities were only applied in relatively small portions of
the research. Figure 3B demonstrates that 84% of the studies utilized XAI approaches that
belong to the model-specific framework to demystify their models. Even though those
model-agnostic approaches are considered “plug-and-play” tools, the trend shows that
our research community prefers to employ model-specific approaches for their particular
models. Figure 3C further illustrates a detailed XAI technique distribution. It is apparent
that XAI in the MRI domain is dominated by CAM-based approaches. Grad-CAM was
used in 34% of studies, while CAM was applied in 30% of them. Combined CAM-based
methods occupied nearly two-thirds of the research. This is clearly due to the superior
capability of Grad-CAM and CAM to explain CNN models. Finally, Figure 3D shows that
most of these studies focused on brain MRI images. However, we believe this is likely
because the MRI technique is the preferred imaging technique for investigating the human
brain, which is irrelevant to XAI algorithms.
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2017. (A) Distribution of MRI techniques, (B) distribution of XAI frameworks, (C) distribution of
XAI techniques, and (D) distribution of anatomical locations. MRA refers to Magnetic Resonance
Angiography. CAM refers to Class Activation Mapping. Grad-CAM refers to Gradient-weighted
Class Activation Mapping. LRP refers to Layer-wise Relevance Propagation. LIME refers to Local
Interpretable Model-agnostic Explanations. SHAP refers to SHapley Additive exPlanations.

6. Evaluation of XAI in MRI

It is challenging and immature to evaluate if XAI algorithms are able to successfully
explain DL models visually, due to the complex environmental and human factors. In
recent years, multiple evaluation techniques for XAI methods have been proposed. Most of
these evaluations are based on existing evaluation metrics, such as accuracy, stability, and
plausibility.

6.1. Accuracy

Accuracy refers to how well XAI methods detect the relevant components of the input
that the DL model trains on. In a recent study, Osman et al. evaluated XAI explanations
on a synthetic dataset of rendered 3D shapes and generated an answering benchmark
for relevant visual questions [106]. As for visual explanations, ground truth masks for
evaluation need a 2D heatmap with a single channel, so they pooled the multiple channels
of the original heatmaps, which mirror the shape of the model input down to a single-
channel one. They also implemented two metrics, relevance mass accuracy and relevance
rank accuracy, to evaluate several XAI methods. The former is calculated as the ratio of the
sum of the relevance values within the ground truth mask over those in the whole image,
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and the latter measures how much high intensity relevance is within the ground truth. The
mass and rank accuracy can be written as below:

Mass Accuracy =
Rwithin
Rtotal

, (10)

Rank Accuracy =

∣∣Ptop K ∩ GT
∣∣

|GT| , (11)

where Rwithin = ∑J

j = 1
s.t.pj ∈ GT

Rpj , Rtotal = ∑N
i=1 Rpi , GT is the set of pixels lying within the

ground truth mask, J is the number of pixels in the mask, Rpj is the relevance value of
the pixel pj, N is the total number of pixels in the image, K is the size of the ground truth
mask, and Ptop K =

{
p1, p2, . . . , pK

∣∣Rp1 > Rp2 > . . . > RpK

}
represents the set of K highest

relevance values. In their experiments, LRP outperformed previous XAI methods such as
Integrated Gradients on both metrics.

6.2. Stability

Stability examines how slight perturbations in the input affect the explanation pro-
vided by XAI techniques [107]. For example, Douglas and Farahani examined the stability
of XAI performance for neuroimaging [108]. They added slight Rician noise to the anatom-
ical MRI data and obtained relevance heatmaps without greatly changing the CNN’s
prediction performance for both the original and attacked images. Then, they conducted
a relevance structural similarity analysis (RSSA) by implementing the method above to
compare the contrast c, luminance l, and structural similarity s of the relevance heatmaps

r between the original images Xr and their corrupted counterpart
∼
Xr. The RSSA was

computed as below:

RSSA
( ∼

Xr, Xr

)
=

[
l
( ∼

Xr, Xr

)
·c
( ∼

Xr, Xr

)
·s
( ∼

Xr, Xr

)]
. (12)

They found that decomposition-based algorithms such as LRP were more stable than
LIME.

6.3. Plausibility

Plausibility assesses how accordable the explanations generated by XAI algorithms
are with their prior knowledge of the application [109]. Human-annotated ground truth
is necessary for an agreeable XAI evaluation. For instance, Taghanaki et al. proposed an
intersection over the predicted area (IoP), a plausible metric, to compare the heatmaps in
a pneumonia disease detection task, which were generated by their InfoMask algorithm
and traditional XAI algorithm, such as Grad-CAM [110]. By reflecting on what percentage
of the region highlighted by XAI algorithms was inside the ground truth bounding box,
the IoP provided a straightforward comparison of these XAI techniques. They observed
that Grad-CAM tended to highlight larger regions of the input outside of the ground truth
bounding box, while their proposed InfoMask generated contiguous attention regions,
which were in most accordance with the ground truth box.

7. Conclusions

We present a survey on the recent advances in XAI algorithms utilized in MRI image
analysis. From a systematic perspective, we first provide an introduction of MRI images
and key DL models. We illustrate the frameworks of XAI methods and explain advanced
XAI techniques. Furthermore, we outline the MRI-based applications that use AI models
and XAI approaches. Finally, we discuss the common metrics in XAI evaluations. Our
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analysis reveals the insights of the MRI research domain into the current state of XAI
techniques in MRI analysis.

AI will inevitably change MRI research. However, these ML and DL techniques are
still subject to comprehensive interpretation/explanations for earning the trust of clinicians
and human experts. To achieve further clinical translation, we need the assistance of more
medical practitioners to evaluate these AI models. The XAI techniques reviewed in this
work will be valuable tools for clinical MRI physicists, radiologists, and MRI technicians to
work closely with. This will allow medical practitioners to have a better understanding of
AI and its potential applications and limitations in clinical practice.

Table 1. Summary of recent XAI applications in various tissues/organs.

Location Author Year Input DL Method Main XAI Method

Brain Baumgartner et al. [45] 2018 T1 MRI GAN CAM
Gao et al. [46] 2019 T1 MRI DenseNet CAM
Li et al. [47] 2019 T1 MRI CNN CAM

Shinde et al. [34] 2019 T1 MRI CNN CAM
Shinde et al. [48] 2019 T1 MRI ResNet CAM

Chakraborty et al. [49] 2020 T1 MRI 3D CNN CAM
Eitel et al. [50] 2019 T1 MRI 3D CNN LRP

Böhle et al. [51] 2019 T1 MRI CNN LRP
Lian et al. [52] 2019 T1 MRI FCN Trainable attention
Shad et al. [53] 2021 T1 MRI VGG, ResNet, Inception LIME

Ahmad et al. [54] 2019 T2 MRI Resnet CAM
Pominova et al. [55] 2018 T2 MRI RCNN, etc. Grad-CAM

Liao et al. [56] 2020 T2 MRI VGG16 Grad-CAM
Grigorescu et al. [57] 2019 T2 MRI 3D CNN LRP

Dubost et al. [58] 2019 T2 MRI ResNet Guided
backpropagation

Dubost et al. [59] 2019 T2 MRI 3D Regression NN Occlusion sensitivity
Ceschin et al. [67] 2018 T1 + T2 MRI 3D CNN CAM
Pereira et al. [68] 2018 T1 + T2 MRI CNN Grad-CAM
Natekar et al. [69] 2020 T1 + T2 MRI Unet Grad-CAM

Windisch et al. [70] 2020 T1 + T2 MRI Resnet Grad-CAM
Zeineldin et al. [71] 2022 T1 + T2 MRI CNN Grad-CAM

Wei et al. [72] 2019 T1 + T2 MRI GAN Guided
backpropagation

Ng et al. [60] 2018 sMRI CNN CAM
Yang et al. [61] 2022 sMRI Unet CAM, LIME, etc.

Hilbert et al. [62] 2019 sMRI Resnet Grad-CAM
Jain et al. [63] 2021 sMRI GAN Grad-CAM

Dubost et al. [64] 2020 sMRI Unet Trainable attention
Shahamat et al. [65] 2020 sMRI + fMRI 3D CNN Occlusion sensitivity

Zintgraf et al. [44] 2017 sMRI CNN Prediction difference
analysis

Seo et al. [66] 2020 sMRI 3D CNN Prediction difference
analysis

Nam et al. [73] 2020 MRA 3D CNN Grad-CAM
Yin et al. [74] 2022 MRA ResNet Grad-CAM

Mouches et al. [75] 2022 MRA 3D CNN SmoothGrad

Huang et al. [77] 2023 DTI GNN CAM, Occlusion
sensitivity

Vidyadharan et al. [78] 2022 DTI CNN Grad-CAM
Velazquez et al. [79] 2022 DTI CNN Grad-CAM

Wen et al. [80] 2022 fMRI GCN CAM
Zhang et al. [81] 2023 fMRI GCN CAM
Kim et al. [82] 2020 fMRI GNN Grad-CAM
Qu et al. [83] 2021 fMRI GCN Grad-CAM

Dang et al. [84] 2019 fMRI MLP LRP
Xu et al. [85] 2019 fMRI CNN LRP

Wang et al. [86] 2020 fMRI CNN(DNN) Guided
backpropagation
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Table 1. Cont.

Location Author Year Input DL Method Main XAI Method

Breast Luo et al. [88] 2019 T1 MRI 3D ResNet CAM
Adoui et al. [89] 2020 T1 MRI CNN Grad-CAM
Velden et al. [90] 2020 T1 MRI 3DregressionNN SHAP

Papanastasopoulos et al. [91] 2020 T1 MRI DCNN Integral Gradient
Liver Li et al. [98] 2021 T2 MRI DeepLiverNet Grad-CAM

Luetkens et al. 2022 T2 MRI ResNet50, DesneNet121 Grad-CAM

Musculoskeletal Bien et al. [100] 2018 T1 MRI + T2
MRI MRNet CAM

Chang et al. [101] 2020 sMRI CSN CAM

Jamaludin et al. [99] 2017 T2 MRI VGG-M Guided
backpropagation

Gastrointestinal Wang et al. [102] 2020 T2 MRI CrossAttention Grad-CAM
Prostate Yang et al. [103] 2017 T2 MRI multimodal CNN CAM

Hassan et al. [104] 2022 sMRI VGG16 LIME
Whole-Body Langner et al. [105] 2019 sMRI CNN Grad-CAM

Author Contributions: J.Q.: investigation, visualization, writing—original Draft. H.L.: conceptual-
ization, investigation, visualization, writing—review and editing. J.W.: investigation, visualization,
writing—review and editing. L.H.: conceptualization, investigation, writing—review and editing,
funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Institutes of Health [R01-EB029944, R01-EB030582,
R01-NS094200 and R01-NS096037]; Academic and Research Committee (ARC) Awards of Cincinnati
Children’s Hospital Medical Center. The funders played no role in the design, analysis, or presentation
of the findings.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Gail Pyne-Geithman for her assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the

state of the art with focus on MRI. J. Magn. Reson. Imaging 2019, 49, 939–954. [CrossRef] [PubMed]
2. Dhawan, A.P. Medical Image Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011.
3. Phillips, J.J. ROI: The search for best practices. Train. Dev. 1996, 50, 42–48.
4. Suzuki, K. Overview of deep learning in medical imaging. Radiol. Phys. Technol. 2017, 10, 257–273. [CrossRef] [PubMed]
5. Castelvecchi, D. Can we open the black box of AI? Nat. News 2016, 538, 20. [CrossRef] [PubMed]
6. Vilone, G.; Longo, L. Classification of Explainable Artificial Intelligence Methods through Their Output Formats. Mach. Learn.

Knowl. Extr. 2021, 3, 615–661. [CrossRef]
7. Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6,

52138–52160. [CrossRef]
8. Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Trans. Neural Netw. Learn. Syst.

2020, 32, 4793–4813. [CrossRef]
9. Günther, H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2013.
10. Dale, B.M.; Brown, M.A.; Semelka, R.C. MRI: Basic Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015.
11. Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.;

Frederiksen, J.L. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15,
292–303. [CrossRef]

12. Young, G.S. Advanced MRI of adult brain tumors. Neurol. Clin. 2007, 25, 947–973. [CrossRef]
13. Plewes, D.B.; Kucharczyk, W. Physics of MRI: A primer. J. Magn. Reson. Imaging 2012, 35, 1038–1054. [CrossRef]
14. Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci.

2008, 34, 51–61. [CrossRef] [PubMed]

https://doi.org/10.1002/jmri.26534
https://www.ncbi.nlm.nih.gov/pubmed/30575178
https://doi.org/10.1007/s12194-017-0406-5
https://www.ncbi.nlm.nih.gov/pubmed/28689314
https://doi.org/10.1038/538020a
https://www.ncbi.nlm.nih.gov/pubmed/27708329
https://doi.org/10.3390/make3030032
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1016/S1474-4422(15)00393-2
https://doi.org/10.1016/j.ncl.2007.07.010
https://doi.org/10.1002/jmri.23642
https://doi.org/10.1007/s12031-007-0029-0
https://www.ncbi.nlm.nih.gov/pubmed/18157658


Diagnostics 2023, 13, 1571 18 of 21

15. Tae, W.S.; Ham, B.J.; Pyun, S.B.; Kang, S.H.; Kim, B.J. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological
Disorders. J. Clin. Neurol. 2018, 14, 129–140. [CrossRef] [PubMed]

16. Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 2011, 22, 133–139. [CrossRef]
[PubMed]

17. Hartung, M.P.; Grist, T.M.; François, C.J. Magnetic resonance angiography: Current status and future directions. J. Cardiovasc.
Magn. Reson. 2011, 13, 19. [CrossRef] [PubMed]

18. Shin, T. Principles of Magnetic Resonance Angiography Techniques. Investig. Magn. Reson. Imaging 2021, 25, 209–217. [CrossRef]
19. Riedmiller, M. Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms.

Comput. Stand. Interfaces 1994, 16, 265–278. [CrossRef]
20. Chua, L.O.; Roska, T. The CNN paradigm. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 147–156. [CrossRef]
21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
22. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
23. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Part III 18. pp. 234–241.

26. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

27. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
28. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
29. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 10–48550.
30. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural

Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA,
4–9 December 2017.

31. van der Velden, B.H.M.; Kuijf, H.J.; Gilhuijs, K.G.A.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-
based medical image analysis. Med. Image Anal. 2022, 79, 102470. [CrossRef]

32. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2921–2929.

33. Liao, W.; Zou, B.; Zhao, R.; Chen, Y.; He, Z.; Zhou, M. Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis. IEEE
J. Biomed. Health Inform. 2020, 24, 1405–1412. [CrossRef]

34. Shinde, S.; Chougule, T.; Saini, J.; Ingalhalikar, M. HR-CAM: Precise localization of pathology using multi-level learning in
CNNS. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International
Conference, Shenzhen, China, 13–17 October 2019; Part IV 22. pp. 298–306.

35. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 618–626.

36. Pope, P.E.; Kolouri, S.; Rostami, M.; Martin, C.E.; Hoffmann, H. Explainability methods for graph convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 10772–10781.

37. Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.R.; Samek, W. On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation. PLoS ONE 2015, 10, e0130140. [CrossRef] [PubMed]

38. Jetley, S.; Lord, N.A.; Lee, N.; Torr, P.H. Learn to pay attention. arXiv 2018, arXiv:1804.02391.
39. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,

arXiv:1412.6806.
40. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the Advances in neural

information processing systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA,
4–9 December 2017.

41. Kuhn, H.W.; Tucker, A.W. Contributions to the Theory of Games; Princeton University Press: Princeton, NJ, USA, 1953.
42. Ribeiro, M.T.; Singh, S.; Guestrin, C. "Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

43. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the Computer Vision—ECCV
2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Part I 13. pp. 818–833.

https://doi.org/10.3988/jcn.2018.14.2.129
https://www.ncbi.nlm.nih.gov/pubmed/29504292
https://doi.org/10.1016/j.nec.2010.11.001
https://www.ncbi.nlm.nih.gov/pubmed/21435566
https://doi.org/10.1186/1532-429X-13-19
https://www.ncbi.nlm.nih.gov/pubmed/21388544
https://doi.org/10.13104/imri.2021.25.4.209
https://doi.org/10.1016/0920-5489(94)90017-5
https://doi.org/10.1109/81.222795
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.media.2022.102470
https://doi.org/10.1109/JBHI.2019.2949075
https://doi.org/10.1371/journal.pone.0130140
https://www.ncbi.nlm.nih.gov/pubmed/26161953


Diagnostics 2023, 13, 1571 19 of 21

44. Zintgraf, L.M.; Cohen, T.S.; Adel, T.; Welling, M. Visualizing deep neural network decisions: Prediction difference analysis. arXiv
2017, arXiv:1702.04595.

45. Baumgartner, C.F.; Koch, L.M.; Tezcan, K.C.; Ang, J.X.; Konukoglu, E. Visual feature attribution using wasserstein gans. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 8309–8319.

46. Gao, K.; Shen, H.; Liu, Y.; Zeng, L.; Hu, D. Dense-cam: Visualize the gender of brains with mri images. In Proceedings of the 2019
International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–7.

47. Li, Q.; Xing, X.; Sun, Y.; Xiao, B.; Wei, H.; Huo, Q.; Zhang, M.; Zhou, X.S.; Zhan, Y.; Xue, Z. Novel iterative attention focusing
strategy for joint pathology localization and prediction of MCI progression. In Proceedings of the Medical Image Computing and
Computer Assisted Intervention—MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Part IV
22. pp. 307–315.

48. Shinde, S.; Prasad, S.; Saboo, Y.; Kaushick, R.; Saini, J.; Pal, P.K.; Ingalhalikar, M. Predictive markers for Parkinson’s disease using
deep neural nets on neuromelanin sensitive MRI. Neuroimage Clin. 2019, 22, 101748. [CrossRef]

49. Chakraborty, S.; Aich, S.; Kim, H.C. Detection of Parkinson’s Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional
Neural Network. Diagnostics 2020, 10, 402. [CrossRef] [PubMed]

50. Eitel, F.; Soehler, E.; Bellmann-Strobl, J.; Brandt, A.U.; Ruprecht, K.; Giess, R.M.; Kuchling, J.; Asseyer, S.; Weygandt, M.; Haynes,
J.D.; et al. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using
layer-wise relevance propagation. Neuroimage Clin. 2019, 24, 102003. [CrossRef] [PubMed]

51. Böhle, M.; Eitel, F.; Weygandt, M.; Ritter, K. Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in
MRI-Based Alzheimer’s Disease Classification. Front. Aging Neurosci. 2019, 11, 194. [CrossRef]

52. Lian, C.; Liu, M.; Wang, L.; Shen, D. End-to-End Dementia Status Prediction from Brain MRI Using Multi-task Weakly Supervised
Attention Network. Med. Image Comput. Comput. Assist. Interv. 2019, 11767, 158–167. [PubMed]

53. Shad, H.A.; Rahman, Q.A.; Asad, N.B.; Bakshi, A.Z.; Mursalin, S.F.; Reza, M.T.; Parvez, M.Z. Exploring Alzheimer’s Disease
Prediction with XAI in various Neural Network Models. In Proceedings of the TENCON 2021–2021 IEEE Region 10 Conference
(TENCON), Auckland, New Zealand, 7–10 December 2021; pp. 720–725.

54. Ahmad, A.; Sarkar, S.; Shah, A.; Gore, S.; Santosh, V.; Saini, J.; Ingalhalikar, M. Predictive and discriminative localization of
IDH genotype in high grade gliomas using deep convolutional neural nets. In Proceedings of the 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 372–375.

55. Pominova, M.; Artemov, A.; Sharaev, M.; Kondrateva, E.; Bernstein, A.; Burnaev, E. Voxelwise 3d convolutional and recurrent
neural networks for epilepsy and depression diagnostics from structural and functional mri data. In Proceedings of the 2018 IEEE
International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 299–307.

56. Liao, L.; Zhang, X.; Zhao, F.; Lou, J.; Wang, L.; Xu, X.; Zhang, H.; Li, G. Multi-branch deformable convolutional neural network
with label distribution learning for fetal brain age prediction. In Proceedings of the 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 424–427.

57. Grigorescu, I.; Cordero-Grande, L.; David Edwards, A.; Hajnal, J.V.; Modat, M.; Deprez, M. Investigating image registration
impact on preterm birth classification: An interpretable deep learning approach. In Proceedings of the Smart Ultrasound Imaging
and Perinatal, Preterm and Paediatric Image Analysis: First International Workshop, SUSI 2019, and 4th International Workshop,
PIPPI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 13–17 October 2019; Proceedings; pp. 104–112.

58. Dubost, F.; Yilmaz, P.; Adams, H.; Bortsova, G.; Ikram, M.A.; Niessen, W.; Vernooij, M.; de Bruijne, M. Enlarged perivascular
spaces in brain MRI: Automated quantification in four regions. Neuroimage 2019, 185, 534–544. [CrossRef] [PubMed]

59. Dubost, F.; Adams, H.; Bortsova, G.; Ikram, M.A.; Niessen, W.; Vernooij, M.; de Bruijne, M. 3D regression neural network for the
quantification of enlarged perivascular spaces in brain MRI. Med. Image Anal. 2019, 51, 89–100. [CrossRef]

60. Ng, H.G.; Kerzel, M.; Mehnert, J.; May, A.; Wermter, S. Classification of MRI migraine medical data using 3D convolutional neural
network. In Proceedings of the Artificial Neural Networks and Machine Learning—ICANN 2018: 27th International Conference
on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Part III 27. pp. 300–309.

61. Yang, G.; Ye, Q.; Xia, J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A
mini-review, two showcases and beyond. Inf. Fusion 2022, 77, 29–52. [CrossRef]

62. Hilbert, A.; Ramos, L.A.; van Os, H.J.A.; Olabarriaga, S.D.; Tolhuisen, M.L.; Wermer, M.J.H.; Barros, R.S.; van der Schaaf, I.;
Dippel, D.; Roos, Y.; et al. Data-efficient deep learning of radiological image data for outcome prediction after endovascular
treatment of patients with acute ischemic stroke. Comput. Biol. Med. 2019, 115, 103516. [CrossRef]

63. Jain, V.; Nankar, O.; Jerrish, D.J.; Gite, S.; Patil, S.; Kotecha, K. A novel AI-based system for detection and severity prediction of
dementia using MRI. IEEE Access 2021, 9, 154324–154346. [CrossRef]

64. Dubost, F.; Adams, H.; Yilmaz, P.; Bortsova, G.; Tulder, G.V.; Ikram, M.A.; Niessen, W.; Vernooij, M.W.; Bruijne, M. Weakly
supervised object detection with 2D and 3D regression neural networks. Med. Image Anal. 2020, 65, 101767. [CrossRef]

65. Shahamat, H.; Saniee Abadeh, M. Brain MRI analysis using a deep learning based evolutionary approach. Neural. Netw. 2020,
126, 218–234. [CrossRef] [PubMed]

66. Seo, D.; Oh, K.; Oh, I.-S. Regional multi-scale approach for visually pleasing explanations of deep neural networks. IEEE Access
2019, 8, 8572–8582. [CrossRef]

https://doi.org/10.1016/j.nicl.2019.101748
https://doi.org/10.3390/diagnostics10060402
https://www.ncbi.nlm.nih.gov/pubmed/32545609
https://doi.org/10.1016/j.nicl.2019.102003
https://www.ncbi.nlm.nih.gov/pubmed/31634822
https://doi.org/10.3389/fnagi.2019.00194
https://www.ncbi.nlm.nih.gov/pubmed/34355224
https://doi.org/10.1016/j.neuroimage.2018.10.026
https://www.ncbi.nlm.nih.gov/pubmed/30326293
https://doi.org/10.1016/j.media.2018.10.008
https://doi.org/10.1016/j.inffus.2021.07.016
https://doi.org/10.1016/j.compbiomed.2019.103516
https://doi.org/10.1109/ACCESS.2021.3127394
https://doi.org/10.1016/j.media.2020.101767
https://doi.org/10.1016/j.neunet.2020.03.017
https://www.ncbi.nlm.nih.gov/pubmed/32259762
https://doi.org/10.1109/ACCESS.2019.2963055


Diagnostics 2023, 13, 1571 20 of 21

67. Ceschin, R.; Zahner, A.; Reynolds, W.; Gaesser, J.; Zuccoli, G.; Lo, C.W.; Gopalakrishnan, V.; Panigrahy, A. A computational
framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks.
Neuroimage 2018, 178, 183–197. [CrossRef] [PubMed]

68. Pereira, S.; Meier, R.; Alves, V.; Reyes, M.; Silva, C.A. Automatic brain tumor grading from MRI data using convolutional neural
networks and quality assessment. In Proceedings of the Understanding and Interpreting Machine Learning in Medical Image
Computing Applications: First International Workshops, MLCN 2018, DLF 2018, and iMIMIC 2018, Held in Conjunction with
MICCAI 2018, Granada, Spain, 16–20 September 2018; 1. pp. 106–114.

69. Natekar, P.; Kori, A.; Krishnamurthi, G. Demystifying Brain Tumor Segmentation Networks: Interpretability and Uncertainty
Analysis. Front. Comput. Neurosci. 2020, 14, 6. [CrossRef]

70. Windisch, P.; Weber, P.; Fürweger, C.; Ehret, F.; Kufeld, M.; Zwahlen, D.; Muacevic, A. Implementation of model explainability for
a basic brain tumor detection using convolutional neural networks on MRI slices. Neuroradiology 2020, 62, 1515–1518. [CrossRef]

71. Zeineldin, R.A.; Karar, M.E.; Elshaer, Z.; Coburger, J.; Wirtz, C.R.; Burgert, O.; Mathis-Ullrich, F. Explainability of deep neural
networks for MRI analysis of brain tumors. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1673–1683. [CrossRef]

72. Wei, W.; Poirion, E.; Bodini, B.; Durrleman, S.; Ayache, N.; Stankoff, B.; Colliot, O. Predicting PET-derived demyelination from
multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med. Image Anal. 2019, 58, 101546. [CrossRef]

73. Nam, Y.; Jang, J.; Lee, H.Y.; Choi, Y.; Shin, N.Y.; Ryu, K.H.; Kim, D.H.; Jung, S.L.; Ahn, K.J.; Kim, B.S. Estimating age-related
changes in in vivo cerebral magnetic resonance angiography using convolutional neural network. Neurobiol. Aging 2020, 87,
125–131. [CrossRef]

74. Yin, H.L.; Jiang, Y.; Huang, W.J.; Li, S.H.; Lin, G.W. A Magnetic Resonance Angiography-Based Study Comparing Machine
Learning and Clinical Evaluation: Screening Intracranial Regions Associated with the Hemorrhagic Stroke of Adult Moyamoya
Disease. J. Stroke Cerebrovasc. Dis. 2022, 31, 106382. [CrossRef]

75. Mouches, P.; Wilms, M.; Rajashekar, D.; Langner, S.; Forkert, N.D. Multimodal biological brain age prediction using magnetic
resonance imaging and angiography with the identification of predictive regions. Hum. Brain Mapp. 2022, 43, 2554–2566.
[CrossRef]

76. Smilkov, D.; Thorat, N.; Kim, B.; Viégas, F.; Wattenberg, M. Smoothgrad: Removing noise by adding noise. arXiv 2017,
arXiv:1706.03825.

77. Huang, L.; Ye, X.; Yang, M.; Pan, L.; Zheng, S.H. MNC-Net: Multi-task graph structure learning based on node clustering for
early Parkinson’s disease diagnosis. Comput. Biol. Med. 2023, 152, 106308. [CrossRef] [PubMed]

78. Vidyadharan, S.; Prabhakar Rao, B.; Perumal, Y.; Chandrasekharan, K.; Rajagopalan, V. Deep Learning Classifies Low- and
High-Grade Glioma Patients with High Accuracy, Sensitivity, and Specificity Based on Their Brain White Matter Networks
Derived from Diffusion Tensor Imaging. Diagnostics 2022, 12, 3216. [CrossRef] [PubMed]

79. Velazquez, M.; Lee, Y. Multimodal ensemble model for Alzheimer’s disease conversion prediction from Early Mild Cognitive
Impairment subjects. Comput. Biol. Med. 2022, 151, 106201. [CrossRef] [PubMed]

80. Wen, G.; Cao, P.; Bao, H.; Yang, W.; Zheng, T.; Zaiane, O. MVS-GCN: A prior brain structure learning-guided multi-view graph
convolution network for autism spectrum disorder diagnosis. Comput. Biol. Med. 2022, 142, 105239. [CrossRef]

81. Zhang, S.; Wang, J.; Yu, S.; Wang, R.; Han, J.; Zhao, S.; Liu, T.; Lv, J. An explainable deep learning framework for characterizing
and interpreting human brain states. Med. Image Anal. 2023, 83, 102665. [CrossRef]

82. Kim, B.H.; Ye, J.C. Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis. Front. Neurosci.
2020, 14, 630. [CrossRef]

83. Qu, G.; Xiao, L.; Hu, W.; Wang, J.; Zhang, K.; Calhoun, V.; Wang, Y.P. Ensemble Manifold Regularized Multi-Modal Graph
Convolutional Network for Cognitive Ability Prediction. IEEE Trans. Biomed. Eng. 2021, 68, 3564–3573. [CrossRef]

84. Dang, S.; Chaudhury, S. Novel relative relevance score for estimating brain connectivity from fMRI data using an explainable
neural network approach. J. Neurosci. Methods 2019, 326, 108371. [CrossRef]

85. Xu, H.; Dong, M.; Lee, M.H.; OrHara, N.; Asano, E.; Jeong, J.W. Objective Detection of Eloquent Axonal Pathways to Minimize
Postoperative Deficits in Pediatric Epilepsy Surgery using Diffusion Tractography and Convolutional Neural Networks. IEEE
Trans. Med. Imaging 2019, 38, 1910–1922. [CrossRef]

86. Wang, X.; Liang, X.; Jiang, Z.; Nguchu, B.A.; Zhou, Y.; Wang, Y.; Wang, H.; Li, Y.; Zhu, Y.; Wu, F.; et al. Decoding and mapping
task states of the human brain via deep learning. Hum. Brain Mapp. 2020, 41, 1505–1519. [CrossRef] [PubMed]

87. Khalifa, F.; Soliman, A.; El-Baz, A.; Abou El-Ghar, M.; El-Diasty, T.; Gimel’farb, G.; Ouseph, R.; Dwyer, A.C. Models and methods
for analyzing DCE-MRI: A review. Med. Phys. 2014, 41, 124301. [CrossRef] [PubMed]

88. Luo, L.; Chen, H.; Wang, X.; Dou, Q.; Lin, H.; Zhou, J.; Li, G.; Heng, P.-A. Deep angular embedding and feature correlation
attention for breast MRI cancer analysis. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—
MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Part IV 22. pp. 504–512.

89. El Adoui, M.; Drisis, S.; Benjelloun, M. Multi-input deep learning architecture for predicting breast tumor response to chemother-
apy using quantitative MR images. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1491–1500. [CrossRef] [PubMed]

90. van der Velden, B.H.M.; Janse, M.H.A.; Ragusi, M.A.A.; Loo, C.E.; Gilhuijs, K.G.A. Volumetric breast density estimation on MRI
using explainable deep learning regression. Sci. Rep. 2020, 10, 18095. [CrossRef] [PubMed]

https://doi.org/10.1016/j.neuroimage.2018.05.049
https://www.ncbi.nlm.nih.gov/pubmed/29793060
https://doi.org/10.3389/fncom.2020.00006
https://doi.org/10.1007/s00234-020-02465-1
https://doi.org/10.1007/s11548-022-02619-x
https://doi.org/10.1016/j.media.2019.101546
https://doi.org/10.1016/j.neurobiolaging.2019.12.008
https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106382
https://doi.org/10.1002/hbm.25805
https://doi.org/10.1016/j.compbiomed.2022.106308
https://www.ncbi.nlm.nih.gov/pubmed/36462371
https://doi.org/10.3390/diagnostics12123216
https://www.ncbi.nlm.nih.gov/pubmed/36553224
https://doi.org/10.1016/j.compbiomed.2022.106201
https://www.ncbi.nlm.nih.gov/pubmed/36370583
https://doi.org/10.1016/j.compbiomed.2022.105239
https://doi.org/10.1016/j.media.2022.102665
https://doi.org/10.3389/fnins.2020.00630
https://doi.org/10.1109/TBME.2021.3077875
https://doi.org/10.1016/j.jneumeth.2019.108371
https://doi.org/10.1109/TMI.2019.2902073
https://doi.org/10.1002/hbm.24891
https://www.ncbi.nlm.nih.gov/pubmed/31816152
https://doi.org/10.1118/1.4898202
https://www.ncbi.nlm.nih.gov/pubmed/25471985
https://doi.org/10.1007/s11548-020-02209-9
https://www.ncbi.nlm.nih.gov/pubmed/32556920
https://doi.org/10.1038/s41598-020-75167-6
https://www.ncbi.nlm.nih.gov/pubmed/33093572


Diagnostics 2023, 13, 1571 21 of 21

91. Papanastasopoulos, Z.; Samala, R.K.; Chan, H.-P.; Hadjiiski, L.; Paramagul, C.; Helvie, M.A.; Neal, C.H. Explainable AI for
medical imaging: Deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI. In Proceedings of
the Medical imaging 2020: Computer-Aided Diagnosis, Houston, TX, USA, 16–19 February 2020; pp. 228–235.

92. Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the International Conference on
Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3319–3328.

93. Tapper, E.B.; Lok, A.S. Use of Liver Imaging and Biopsy in Clinical Practice. N. Engl. J. Med. 2017, 377, 756–768. [CrossRef]
94. Serai, S.D.; Trout, A.T.; Miethke, A.; Diaz, E.; Xanthakos, S.A.; Dillman, J.R. Putting it all together: Established and emerging MRI

techniques for detecting and measuring liver fibrosis. Pediatr. Radiol. 2018, 48, 1256–1272. [CrossRef]
95. Decharatanachart, P.; Chaiteerakij, R.; Tiyarattanachai, T.; Treeprasertsuk, S. Application of artificial intelligence in chronic liver

diseases: A systematic review and meta-analysis. BMC Gastroenterol. 2021, 21, 10. [CrossRef]
96. Dana, J.; Venkatasamy, A.; Saviano, A.; Lupberger, J.; Hoshida, Y.; Vilgrain, V.; Nahon, P.; Reinhold, C.; Gallix, B.; Baumert, T.F.

Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease. Hepatol. Int. 2022, 16,
509–522. [CrossRef]

97. Luetkens, J.A.; Nowak, S.; Mesropyan, N.; Block, W.; Praktiknjo, M.; Chang, J.; Bauckhage, C.; Sifa, R.; Sprinkart, A.M.; Faron,
A.; et al. Deep learning supports the differentiation of alcoholic and other-than-alcoholic cirrhosis based on MRI. Sci. Rep. 2022,
12, 8297. [CrossRef]

98. Li, H.; He, L.; Dudley, J.A.; Maloney, T.C.; Somasundaram, E.; Brady, S.L.; Parikh, N.A.; Dillman, J.R. DeepLiverNet: A deep
transfer learning model for classifying liver stiffness using clinical and T2-weighted magnetic resonance imaging data in children
and young adults. Pediatr. Radiol. 2021, 51, 392–402. [CrossRef]

99. Jamaludin, A.; Kadir, T.; Zisserman, A. SpineNet: Automated classification and evidence visualization in spinal MRIs. Med. Image
Anal. 2017, 41, 63–73. [CrossRef] [PubMed]

100. Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K.; et al.
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
PLoS Med. 2018, 15, e1002699. [CrossRef] [PubMed]

101. Chang, G.H.; Felson, D.T.; Qiu, S.; Guermazi, A.; Capellini, T.D.; Kolachalama, V.B. Assessment of knee pain from MR imaging
using a convolutional Siamese network. Eur. Radiol. 2020, 30, 3538–3548. [CrossRef] [PubMed]

102. Wang, J.; Cui, Y.; Shi, G.; Zhao, J.; Yang, X.; Qiang, Y.; Du, Q.; Ma, Y.; Kazihise, N.G.-F. Multi-branch cross attention model for
prediction of KRAS mutation in rectal cancer with t2-weighted MRI. Appl. Intell. 2020, 50, 2352–2369. [CrossRef]

103. Yang, X.; Wang, Z.; Liu, C.; Le, H.M.; Chen, J.; Cheng, K.-T.; Wang, L. Joint detection and diagnosis of prostate cancer in
multi-parametric MRI based on multimodal convolutional neural networks. In Proceedings of the Medical Image Computing
and Computer Assisted Intervention—MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September
2017; Part III 20. pp. 426–434.

104. Hassan, M.R.; Islam, M.F.; Uddin, M.Z.; Ghoshal, G.; Hassan, M.M.; Huda, S.; Fortino, G. Prostate cancer classification from
ultrasound and MRI images using deep learning based Explainable Artificial Intelligence. Future Gener. Comput. Syst. 2022, 127,
462–472. [CrossRef]

105. Langner, T.; Wikstrom, J.; Bjerner, T.; Ahlstrom, H.; Kullberg, J. Identifying Morphological Indicators of Aging With Neural
Networks on Large-Scale Whole-Body MRI. IEEE Trans. Med. Imaging 2020, 39, 1430–1437. [CrossRef]

106. Osman, A.; Arras, L.; Samek, W. Towards ground truth evaluation of visual explanations. arXiv 2020, arXiv:2003.07258.
107. Farahani, F.V.; Fiok, K.; Lahijanian, B.; Karwowski, W.; Douglas, P.K. Explainable AI: A review of applications to neuroimaging

data. Front. Neurosci. 2022, 16, 906290. [CrossRef]
108. Douglas, P.K.; Farahani, F.V. On the similarity of deep learning representations across didactic and adversarial examples. arXiv

2020, arXiv:2002.06816.
109. Jin, W.; Li, X.; Hamarneh, G. Evaluating explainable AI on a multi-modal medical imaging task: Can existing algorithms fulfill

clinical requirements? In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022;
pp. 11945–11953. [CrossRef]

110. Taghanaki, S.A.; Havaei, M.; Berthier, T.; Dutil, F.; Di Jorio, L.; Hamarneh, G.; Bengio, Y. Infomask: Masked variational latent
representation to localize chest disease. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—
MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Part VI 22. pp. 739–747.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1056/NEJMra1610570
https://doi.org/10.1007/s00247-018-4083-2
https://doi.org/10.1186/s12876-020-01585-5
https://doi.org/10.1007/s12072-022-10303-0
https://doi.org/10.1038/s41598-022-12410-2
https://doi.org/10.1007/s00247-020-04854-3
https://doi.org/10.1016/j.media.2017.07.002
https://www.ncbi.nlm.nih.gov/pubmed/28756059
https://doi.org/10.1371/journal.pmed.1002699
https://www.ncbi.nlm.nih.gov/pubmed/30481176
https://doi.org/10.1007/s00330-020-06658-3
https://www.ncbi.nlm.nih.gov/pubmed/32055951
https://doi.org/10.1007/s10489-020-01658-8
https://doi.org/10.1016/j.future.2021.09.030
https://doi.org/10.1109/TMI.2019.2950092
https://doi.org/10.3389/fnins.2022.906290
https://doi.org/10.1609/aaai.v36i11.21452

	Introduction 
	Overview of MRI Images 
	Anatomical MRI 
	Diffusion MRI 
	Functional MRI (fMRI) 
	Magnetic Resonance Angiography (MRA) 

	Brief Introduction of AI Models 
	XAI Techniques 
	Model-Specific Explanation Methods 
	Class Activation Mapping (CAM) 
	Gradient-Weighted Class Activation Mapping (Grad-CAM) 
	Layer-Wise Relevance Propagation (LRP) 
	Trainable Attention 
	Guided Backpropagation 

	Model-Agnostic Explanation Methods 
	Shapley Additive Explanations (SHAP) 
	Local Interpretable Model-Agnostic Explanations (LIME) 
	Occlusion Sensitivity 
	Prediction Difference Analysis 


	XAI Applications in MRI 
	Brain 
	Brain Anatomical MRI 
	Brain Magnetic Resonance Angiography (MRA) 
	Brain Diffusion Tensor Imaging (DTI) 
	Brain Functional MRI (fMRI) 

	Breast 
	Liver 
	Musculoskeletal 
	Gastrointestinal 
	Prostate 
	Whole-Body 
	Quantitative Analysis of Reviewed Applications 

	Evaluation of XAI in MRI 
	Accuracy 
	Stability 
	Plausibility 

	Conclusions 
	References

