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Abstract: Polycystic ovary syndrome (PCOS) is a complex and heterogeneous disorder that commonly
affects women in the reproductive age group. The disorder has features that propose a blend
of functional reproductive disorders, such as anovulation and hyperandrogenism, and metabolic
disorders, such as hyperglycemia, hypertension, and obesity in women. Until today, the three
implemented groups of criteria for the diagnosis of PCOS are from the National Institutes of Health
(NIH) in the 1990s, Rotterdam 2003, and the Androgen Excess Polycystic Ovary Syndrome 2009
criteria. Currently, the most widely utilized criteria are the 2003 Rotterdam criteria, which validate
the diagnosis of PCOS with the incidence of two out of the three criteria: hyperandrogenism (clinical
and/or biochemical), irregular cycles, and polycystic ovary morphology. Currently, the anti-Müllerian
hormone in serum is introduced as a substitute for the follicular count and is controversially emerging
as an official polycystic ovarian morphology/PCOS marker. In adolescents, the two crucial factors
for PCOS diagnosis are hyperandrogenism and irregular cycles. Recently, artificial intelligence,
specifically machine learning, is being introduced as a promising diagnostic and predictive tool for
PCOS with minimal to zero error that would help in clinical decisions regarding early management
and treatment. Throughout this review, we focused on the pathophysiology, clinical features, and
diagnostic challenges in females with PCOS.
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1. Introduction

Polycystic ovarian syndrome (PCOS), described as an ovarian dysfunction, is a hetero-
geneous reproductive disorder with hormonal and metabolic implications. It is a common
endocrine disorder that directly causes anovulatory infertility in females of reproductive
age [1]. The prevalence of PCOS ranges between 4% and 20% depending on the set of
diagnostic criteria used [2]. Irregular menstrual cycles, weight gain, hypertension, diabetes,
and infertility are all PCOS symptoms.

The pathogenesis of PCOS is multifactorial, involving an interplay among genetic, en-
vironmental, and trans-generational factors. As a result, the clinical spectrum of PCOS
involves interrelated metabolic, reproductive, and psychological impairments [3,4]. The main
hormones contributing to the development of PCOS are estrogen, androgen, and the anti-
Müllerian hormone (AMH). Due to the heterogeneity of PCOS, its diagnosis and management
are challenging as the leading symptoms vary with age and presentation [5]. A 20-year follow-
up study of women with PCOS by Carmina et al. and Jolanda et al. identified phenotypic
changes associated with PCOS, including an increase in ovulatory cycles and a decrease in
serum androgen levels, luteinizing hormone levels, and ovarian volume [6,7].

The vast array of possible diagnostic criteria, treatment routes, and often incompatible
recommendations have led to international medical controversy. The three diagnostic tools
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for PCOS are the (1) the National Institute of Health 1990, (2) Rotterdam 2003, and (3) the
Androgen Excess-PCOS Society 2006 criteria. Currently, the Rotterdam criteria are the most
commonly used diagnostic tool [3,8]. In 2020, Dokras et al. reported that despite 85% of
obstetrics and gynecology residents using the internationally accepted Rotterdam criteria to
diagnose PCOS, less than 10% were able to identify the five components of the criteria [9].

The standard diagnostic tool for PCOS is transvaginal ultrasound; however, this is ac-
companied by preprocessing downsides, such as the speckle noise reduction
problem [10]. Unwanted speckle noise in ultrasounds results from the interference of
positive and negative spread signals resulting from the human body. Consequently, noise
in an ultrasound contributes to reduced image contrast [11]. Based on various research stud-
ies and relevant clinical queries, artificial intelligence (AI) is being proven as a promising
technology for PCOS diagnosis involving predictive models that aid clinicians in diagnosis
and treatment [12–14]. AI methods can use innovative machine learning and advanced al-
gorithms to understand features from a large dataset in order to develop a valid diagnostic
framework for PCOS [15–17].

2. Pathogenesis of PCOS
2.1. Hyperandrogenism

Hyperandrogenism is a multifactorial PCOS pathology influenced by a combination of
environmental and heritable elements. Hyperandrogenism can result from an imbalance in
the hypothalamus–pituitary–ovarian axis signaling process, leading to excess secretion of in-
sulin and luteinizing hormone [18]. Another cause can be theca cells’ intrinsic dysfunction or
diminished levels of cortisol that stimulate negative feedback on the hypothalamic–pituitary
axis and elevate the synthesis of the hypothalamic adrenocorticotropic hormone after adrenal
steroidogenesis stimulation, a leading factor in adrenal hyperandrogenism [19–21].

Clinically, hyperandrogenism manifests as hirsutism, androgenic acne, and/or alope-
cia resulting from elevated circulating androgen levels [22,23]. While there is no entirely
accepted visual assessment for an androgenic acne diagnosis, the degree and distribution
of alopecia can be evaluated using the Ludwig visual score. Hirsutism is diagnosed using
the modified Ferriman Gallwey score (MFG), which is the standard for the clinical assess-
ment of hirsutism. The score defines hirsutism as the overgrowth of male-type hair in the
nine androgen-sensitive areas of a woman’s body: the upper lip, chin, chest, upper and
lower back, upper and lower abdomen, upper arm, and thighs [24]. The score starts from
0 (no terminal hair growth) to 4 (male pattern hair growth) in each of the nine areas and
requires a minimum score of 8 to diagnose hirsutism. A diagnostic dilemma regarding
using the MFG score for clinical hyperandrogenism diagnosis has arisen, because the score
is examiner-dependent and has been shown to have decent intra-observer reliability, but
inadequate inter-observer reliability [25].

When the clinical signs, especially hirsutism, are absent or unclear, a biochemical
assessment of hyperandrogenism is vital for the diagnosis of PCOS. Hyperandrogenism
is characterized by increased levels of testosterone of ovarian origin, high levels of an-
drostenedione, or increased levels of adrenal androgens dehydroepiandrosterone and
dehydroepiandrosterone-sulfate [26]. Notably, another diagnostic dilemma arises here
because laboratory assays are initially tailored and calibrated to measure androgen levels
in males. However, calibration studies have not been conducted to develop a female
androgen assay. In addition, biochemical evaluation is unreliable in the case of women on
hormonal contraception due to impacts on sex hormone-binding globulin and distorted
gonadotrophin-dependent androgen production [27].

2.2. Insulin Resistance and Hyperglycemia

Insulin is primarily responsible for glucose homeostasis and lipogenesis. Women
with PCOS have intrinsic insulin resistance at a prevalence of 12–60% regardless of the
degree of obesity or the level of androgens [28]. Insulin resistance is defined as a patho-
logical condition characterized by decreased responsiveness or sensitivity to the metabolic
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actions of insulin [29,30]. Insulin resistance plays an influential role in the development
and persistence of PCOS. This is mainly due to a defect in insulin receptors resulting from
excessive serine phosphorylation and decreased tyrosine phosphorylation, which leads
to a decrease in insulin activation of the phosphatidylinositol-3-kinase signaling pathway
that activates glucose transport and consequently increases glucose levels [31,32]. In-
creased insulin secretion directly triggers the pituitary gland to release luteinizing hormone,
which triggers androgen secretion and affects the development and growth of ovarian
follicles [33,34]. Both elevated insulin and androgen levels inhibit sex hormone-binding
globulin (SHBG) secretion, which leads to an increase in free and bioactive androgens [35].

Insulin resistance measurement is complicated; thus, several tests have been developed
to measure this condition. While more readily usable and simple tests are less precise,
some other tests are more complex, but also more reliable. The gold standard for direct
measurement of metabolic insulin sensitivity is the hyperinsulinemic euglycemic glucose
clamp method [36]. Specifically, it quantifies the amount of glucose metabolized by the
body in response to a hyperglycemic stimulus. The method is based on a presumption
that after a continuous insulin infusion, hepatic glucose production will be completely
suppressed by the generated hyperinsulinemic state, while there will be no net change in
the steady-state glucose level [37]. However, this method is not frequently used because of
its complexity as a procedure.

2.3. Anti-Mullerian Hormone

Anti-Müllerian hormone (AMH) is a glycoprotein that belongs to the transforming
growth factor-β (TGFβ) superfamily [38,39]. The production of AMH begins 36 weeks after
conception and its level peaks in neonatal life, after which it remains low until reaching
the puberty phase. In adolescence, AMH levels rise to reach a plateau, followed by a
dramatic drop before menopause. After menopause, the hormone becomes undetectable.
The highest expression of AMH is recorded in preantral and small antral follicles 2–4 mm in
diameter; however, it can also be expressed by growing follicles up to 8 mm [38,40]. AMH
inhibits primary follicle recruitment and may be involved in protecting growing follicles
from premature maturation [41].

Women diagnosed with PCOS have higher AMH levels than normal women, which
leads to the possibility of using AMH as a surrogate marker for the diagnosis of
PCOS [42–44]. The elevation is induced by an increase in the number of preantral fol-
licles and small antral follicles, thus leading to increased secretion within each of these
follicles [45]. However, the increase in AMH levels is not only due to the increased number
of preantral and small antral follicles, because elevated AMH levels have been detected in
both anovulatory PCOS cases and normal-ovulatory PCOS cases in comparison to normal
non-PCOS cases. While no explanations for AMH overproduction have been identified to
date, a positive correlation has been found between androgens and AMH expression [46,47].
In women with PCOS, the overexpression of AMH and AMH type II receptors on granulosa
cells may also be responsible for the overexpression of AMH [48,49].

Although AMH has been related to ovarian follicle count and is considered an ovarian
reserve marker, serum AMH levels have not yet been introduced as an alternative tool for
the detection of polycystic ovary morphology (PCOM), nor as a single test for the diagnosis
of PCOS. AMH’s accuracy has shown significant heterogeneity in studies, making it unsuit-
able for clinical use. There is emerging evidence that with the improved standardization
of assays and established cut-off levels or thresholds based on large-scale validation in
populations of different ages, AMH assays will be more accurate in the detection of PCOM.
Precisely, (1) defined general population-based samples instead of choosing subjects from
high-risk populations, along with (2) well-defined cut-off values for AMH and (3) a clearer
definition of PCOM, are three crucial steps that would benefit the cause [50].
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3. Other Clinical Features of PCOS
3.1. Metabolic Syndrome

The modified American Heart Association/National Heart Lung and Blood Institute
AHA/NHLBI (ATP III 2005) defined metabolic syndrome as having three or more of the fol-
lowing metabolic symptoms: (1) obesity (waist circumference of ≥88 cm),
(2) hypertension (blood pressure ≥130/85 mm Hg), (3) dyslipidemia (high-density lipopro-
tein (HDL) of ≤50 mg/dL), and (4) hyperglycemia (fasting blood sugar of ≥100 mg/dL).
The prevalence of metabolic syndrome among women with PCOS was 45.8%, as found by
Madhusudaran et al. [51]; 46%, as reported by Glueck et al. [52]; and 43.4%, as reported
by Ishak A et al. [53]. It was more prevalent in hyperandrogenic PCOS phenotypes in
comparison to normal androgenic phenotypes.

The metabolic symptoms of PCOS seem to be connected; androgen excess is the be-
ginning of a vicious cycle of metabolic disorders in PCOS patients. A positive correlation
was observed between PCOS diagnosis in women and overweight and abdominal fat
deposition [54]. A study in 2017 by Melal et al. included 1387 women previously diag-
nosed with PCOS and reported at least 52% of them to be struggling with obesity [55].
Hyperglycemia is yet another metabolic disorder associated with PCOS. Findings from
longitudinal cohort studies have reported that developing hyperglycemia is significantly
more common in PCOS-diagnosed women within the age group of 15 to 49 years old
compared to non-PCOS control women [56,57]. Dyslipidemia, reflected by high triglyc-
erides and low HDL cholesterol, is one of the most common metabolic disorders identified
in females with PCOS [58,59]. In multiple cross-sectional studies, PCOS has been linked
to significantly higher blood pressure compared to normal controls, independently of
weight/obesity [60,61].

3.2. Reproductive–Infertility

It is noteworthy that women with PCOS are prone to hormonal imbalances and
ovulatory disturbances, leading to infertility. In PCOS, fertility is adversely affected by
anovulation, increased risk of spontaneous abortion, poor quality of oocytes, elevated
serum LH concentration, and hyperinsulinemia-linked miscarriages [62–64].

Women with PCOS have poor reproductive and pregnancy outcomes and are at
a higher risk of endometrial hyperplasia related to ovulatory dysfunction, as well as
infertility. While PCOS relates to lower pregnancy rates, this is not related to the number of
parities in those women. Multiple studies conducted worldwide have shown that PCOS
is the most conventional trigger of female factor infertility [27,65]. In a cross-sectional
study conducted by Joham et al., infertility was recorded in 72% of women with PCOS
compared to 16% in women without PCOS. In addition, the study discovered significantly
higher use of hormonal fertility treatments among women with PCOS [66]. Moreover,
Bahri et al. presented evidence that women with PCOS have at least a twofold risk
factor for miscarriage, pregnancy-induced hypertension, hyperglycemia, and pre-eclampsia
compared to control women without PCOS [67].

As a result of disrupted ovulatory function, women with PCOS are recommended to
follow oral ovulatory induction therapies, such as letrozole [68]. Even though they are less
effective, lifestyle adjustments alongside the recommended therapies may boost ovulation
frequency and propose a potential adjunct. Upon pregnancy, PCOS patients are also at a
higher risk of gestational diabetes and preeclampsia when compared to control females
without PCOS [27,69].

4. Challenges in the Diagnosis of PCOS and Different Criteria
4.1. NIH Criteria

The National Institutes of Health (NIH) international conference was the first confer-
ence on PCOS that anticipated diagnostic criteria for PCOS in the early 1990s [70]. These
were based on a combination of two criteria: (1) oligo-anovulation and (2) clinical or bio-
chemical signs of hyperandrogenism. Both criteria must be present after excluding all other
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androgen excess-related or anovulatory infertility-related diseases. Further analytical stud-
ies revealed additional characteristics of PCOS that were then evaluated by the European
Society of Human Reproduction and Embryology (ESHRE) and the American Society for
Reproductive Medicine (ASRM), and the Rotterdam criteria were proposed in 2003.

4.2. Rotterdam Criteria

The Rotterdam consensus includes three diagnostic criteria and requires the pres-
ence of two out of the three to confirm PCOS diagnosis. The Rotterdam criteria include
(1) oligo-ovulation or anovulation, (2) clinical/biochemical signs of hyperandrogenism, or
(3) polycystic ovary morphology (PCOM). Based on the Rotterdam criteria, PCOS cases are
distinguished into four different phenotypes based on the presence and/or absence of the
three diagnostic criteria (Table 1).

Table 1. The four PCOS phenotypes are based on the Rotterdam criteria (2003). “*” refers to the
presence of the symptoms.

Anovulation/Oligo-Ovulation Hyperandrogenism PCOM

Phenotype A * * *
Phenotype B * *
Phenotype C * *
Phenotype D * *

Unlike the other criteria, the Rotterdam criteria do not require the presence of irregular
menstrual cycles as a crucial symptom for PCOS diagnosis, but rather considers women
with hyper-androgenesis and PCOM as PCOS cases [71,72]. The rationale behind this
diagnostic consensus is to widen the inclusion criteria and to recognize that PCOS does
not represent a particular entity, but rather occurs in a range of heterogeneous disorders,
in addition to the fact that associated long-term health risks, such as type 2 diabetes
mellitus and cardiovascular diseases, are commonly encountered in women diagnosed
with PCOS [73,74].

While the Rotterdam criteria distinguish between PCOS patients based on their anovu-
latory pattern, hyperandrogenemia, and PCOM (two out of three), they fail to take into
consideration the metabolic status of the patients, which is sometimes reflected in increased
body mass index (BMI) and obesity in some women with PCOS [75].

4.3. Androgen Excess–PCOS (AE-PCOS) Society 2006 Criteria

The most recent diagnostic criteria of PCOS were compiled by the Androgen Excess
and PCOS Society (AE-PCOS) in 2009, which deeply re-examined diagnostic features of
PCOS, including menstrual irregularities, hyperandrogenism, and PCOM. A modified
version with a balance between the NIH criteria and the Rotterdam criteria was intro-
duced, including three criteria: (1) hyperandrogenism; (2) ovarian dysfunction, including
oligo-anovulation and/or PCOM; and (3) exclusion of other androgen excess-related disor-
ders [76]. Specifically, disorders to exclude are Cushing’s disease, 21-hydroxylase-deficient
congenital adrenal hyperplasia, thyroid disorders, premature ovarian failure, and androgen-
secreting neoplasms.

The AE-PCOS criteria are similar to the NIH criteria in that they consider androgen
excess as a necessary component for PCOS diagnosis. Unlike the Rotterdam criteria, PCOM
with ovulatory dysfunction (Phenotype D) alone does not qualify a patient for diagnosis
according to the AE-PCOS criteria (Table 2). Hence, the AE-PCOS criteria are more inclusive
than the NIH version, but less so than the Rotterdam criteria.
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Table 2. Evolution of elements of diagnostic criteria for PCOS.

NIH 1999 ROTTERDAM 2003 AE-PCOS SOCIETY 2006

Both elements are needed: 2 of 3 elements are needed: Both elements are needed:

1 Chronic anovulation Oligo- and or anovulation Oligo-anovulation and/or
polycystic ovarian morphology

2 Clinical and/or biochemical signs
of hyperandrogenism

Clinical and/or biochemical signs of
hyperandrogenism

Clinical and/or biochemical signs
of hyperandrogenism

3 - Polycystic ovarian morphology -

5. Limitations of the Currently Used Diagnostic Criteria

The Rotterdam criteria are most widely used for PCOS diagnosis; however, they do
not take into consideration the difference between adult and adolescent female physiology.
Particularly, diagnosis in adolescents can be challenging due to the overlap of diagnostic
features of PCOS with normal puberty physiology. As such, the Rotterdam criteria would
result in an over-diagnosis of adolescents with PCOS [77], suggesting that further research
should be conducted and modifications should be made to the diagnostic criteria in ado-
lescents [27,78]. For adolescents with PCOS, two essential criteria are irregular menstrual
cycles and clinical and/or biochemical hyperandrogenism [27]. The guideline also rec-
ommends that PCOM should not be considered a criterion for PCOS diagnosis during
the first 8 years of menarche. If only one of the two criteria is met, adolescents should be
treated as cases at high risk of PCOS and should receive adequate medical follow-up and
symptom management [79].

While the Rotterdam criteria grant the diagnosis of PCOS based on PCOM and chronic
anovulation without evidence of hyperandrogenism, the NIH and AE-PCOS criteria per-
ceive hyperandrogenism as the center of the PCOS diagnosis process [80]. The heterogeneity
in the prevalence estimates for each set of criteria reflects not only the potential differences
between study populations, but also the broad clinical spectrum of the condition and the
lack of standardization of the cutoffs for each set of diagnostic criteria. In their 2017 study,
Ding et al. reported that the heterogeneity between diagnostic criteria is a source of over
and/or underdiagnosis of PCOS [81]. Due to the limitations, further research is required to
identify a more objective test.

Despite advances in ultrasound technology, the identification of PCOM remains chal-
lenging with the variation in the standards used to report the follicle count cutoffs, given
that the current threshold of 12 or more follicles is sufficient to diagnose PCOM. As tech-
nology has improved, it has become possible to see/identify more follicles, so the previous
cutoffs are no longer valid. A systematic review that followed the international evidence-
based guidelines, including 11 studies with 2961 participants, analyzed ultrasounds for
the follicular number per ovary criterion for PCOM identification, and concluded that
the optimal follicular number per ovary to be used was ≥20 follicles per ovary in at least
one of the ovaries [27]. In addition, the AE-PCOS society published guidelines in 2014
recommending that the threshold of follicular number per ovary be set at ≥25 when using
up-to-date ultrasound technologies that offer a maximal resolution of ovarian follicles [82].

In the case of teenage patients, ultrasonographic evaluation of ovarian morphology
might not be possible. In this setting, transvaginal ultrasound might be inaccessible due
to virginity combined with possible insufficient imaging by abdominal ultrasound due to
abdominal obesity. Moreover, the multi-cystic appearance of ovaries in teenagers is yet
another limitation in diagnosing PCOM [83].

Multiple factors, such as diet, stress management, BMI, and the perceived stress of the
illness, lead to the exacerbation of PCOS symptoms. Modifications to the patient’s lifestyle
are necessary to deal with the side effects of the disease, including the mental burden [84,85].
Although PCOS has relatively well-defined clinical, biochemical, and ultrasound-based
markers in adult females, the symptoms in adolescents may overlap with those of normal
puberty, making a diagnosis challenging. It is crucial to differentiate between conventional
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adolescence and real ovarian hyperandrogenism, both of which are correlated with the risk
of other health conditions such as diabetes type 2 and cardiovascular disorders [37,86].

6. Artificial Intelligence in PCOS Diagnosis

By definition, AI is a blend of reasoning, language understanding, and problem-
solving perception, among other features. It is currently being utilized in the healthcare
field to obtain better results and decisions by decreasing human error. Beneficially, re-
searchers are applying AI to automatically classify ultrasound images, including transvagi-
nal ultrasounds [87,88]. Through collecting and analyzing clinical data, AI is capable of
learning and extracting characteristics to diagnose PCOS, with the ability to provide results
with minimal to no error and to disregard unwanted data.

Nowadays, AI is branching into various subsets. Among them is machine learning,
which is predominantly spreading in the healthcare field. Machine learning-based AI
provides not only an early detection tool, but also a promising predictive model for clinical
application [89]. Designing promising and accurate machine learning models is based on
keystones of computational and data algorithms for computing data, learning underlying
patterns, and drawing useful knowledge for decision making [89–91]. In particular, ma-
chine learning is used in PCOS to identify its stage and the state of both the uterus and
fallopian tube by ultrasound techniques. It also aids in detecting antral follicular count and
follicular size [12,16].

AI techniques, including various machine learning models, have shown hopeful
markers for the precise and accurate clinical diagnosis of PCOS [12,16]. Machine learning
effectively introduces a well-defined diagnostic mechanism with minimal human error
and high efficiency in providing optimum patient care [88,92]. Bharati et al. presented
a data-driven study on PCOS diagnosis by applying machine learning algorithms [12].
Conducted on 541 women, the study suggested that follicle-stimulating hormone (FSH)
and LH were important markers, detected accurately and with lower computation times
compared to 43 other markers [12]. Another study by Silva et al. investigated 58 different
variables and suggested lipid accumulation product, abdominal circumference, and FSH to
be among the important variables associated with PCOS using BorutaShap and random
forest algorithms [93].

For instance, the random forest algorithm is a machine learning algorithm proposed
by Breiman as an effective tool for regression and classification. This tool classifies datasets
randomly into two categories: the first category is “training data” for learning, and the
second category is validation data for “testing the learning level” in the random forest
algorithm. Following that, decision trees are created whereby randomly picked predictors
at node locations define the branching of each tree. The final estimate of the random
forest algorithm is the average of all of the tree’s results. As a result, for certain weights,
each individual tree has an impact on the random forest estimation. Due to its ability to
arbitrarily accept training data from subsets and to set up trees with arbitrary methods, the
random forest algorithm surpasses other machine learning algorithms [12]. Furthermore,
since training is performed on different randomly selected sub-datasets using bootstrap
sampling, the random forest algorithm maintains a level of overfitting [94,95].

Highly efficient machine learning algorithms such as the Random Forest algorithm
automatically classify PCOS patients into categories according to their clinical patterns [93].
This classification would help in future investigations related to PCOS pathogenesis and,
thus, would improve personalized treatment approaches [12].

To ensure its high value in practice, extensive studies are being conducted on AI-aided
software that employ deep machine learning-based segmentation models of ovary/follicle
imaging [96]. The software, which can be loaded into the ultrasound equipment, aids in
recognizing small-sized follicles and overcoming the preprocessing noise. In particular,
one approach could be based on two major functional phases: the preprocessing phase
and the follicle identification phase. Follicles appear in low-echo areas inside the contours
of the ovaries, which make them difficult to identify. To address this, the preprocessing
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phase selects a region of interest and identifies all the possible candidates using machine
learning-based classifiers such as object-growing algorithms and boundary vector fields [97].
Combining the results of these classifiers with patient diagnostic information could yield a
promising PCOS diagnostic tool for use in clinic [98]. Therefore, this imaging tool has the
potential to become a valuable diagnostic service for PCOS patients.

7. Future Remarks

Leptin is a hormone originating from fat cells that plays a crucial role in regulating
glucose homeostasis. Obese patients have elevated leptin levels, leading to diminished
sensitivity to leptin receptors and increased leptin resistance. Elevations in leptin may im-
pact follicular development and fertility, and are linked to PCOS [99,100]. Excessive leptin
causes triglyceride accumulation in adipose tissue, the pancreas, and the liver, triggering
impaired insulin sensitivity, which leads to insulin resistance [101]. In a study investigating
the association between leptin and PCOS, Peng et al. demonstrated a significant association
between PCOS and leptin levels [99]. In particular, patients with PCOS had higher leptin
levels compared to the controls, and an association between leptin levels and PCOS-related
hyperandrogenism and insulin resistance was concluded. However, the interaction be-
tween leptin, androgen, and insulin in the pathogenesis of PCOS is still vague; thus, leptin’s
role as a predictive marker of PCOS has yet to be established [102–105].

Adiponectin is an adipocytokine expressed by adipose tissues. Similar to leptin,
adiponectin has an effect on metabolic disorders such as insulin resistance, type 2 diabetes,
and obesity [106]. It plays a role in the reproductive system by inhibiting both LH and
gonadotropin-releasing hormone (GnRH) secretion. Consequently, adiponectin is crucial
for modulating the central reproductive axis. A study by Boshku et al. demonstrated
the presence of low adiponectin levels in a group of women with PCOS compared to
a healthy control group [107]. The study also indicated a positive correlation between
adiponectin and LH, as well as adiponectin and LH/FSH ratio, due to adiponectin being
tangled when gonadotropin release is disturbed in women with PCOS [107]. Another study
by Onyegbule et al. highlighted that adiponectin levels were also observed to be much
lower in obese/overweight women with PCOS in comparison to in normal-weight women
with PCOS [108]. The study refers to this finding as an inverse relation between increased
adiposity/BMI in obese patients and reduced adiponectin secretion [109]. This suggests the
possible involvement of serum adiponectin in the pathogenesis of PCOS and introduces
adiponectin as another possible PCOS biomarker in correlation with obesity [110,111].

In a recent genetic investigation, multiple loci were found close to genes participating
in ovarian function, gonadotropin production, and metabolism [88]. Despite the phenotypic
variation among PCOS-diagnosed females, extensive research on one genetic location, the
DENND1A gene, led to its role in ovarian steroids’ origin. Even though AMH has long
been thought to significantly contribute to ovarian dysfunction, recent research studies on
animals have shown that AMH stimulates LH release and increased gonadotropin-releasing
hormone. These findings suggest a link between AMH and endocrine instability [112,113].

Multiple genes have been correlated with PCOS throughout the years due to its mul-
tifactorial etiology. Because a variety of proteins and signaling pathways are involved in
the pathogenesis of PCOS, a single genetic diagnostic approach has not yet been explained.
The aforementioned entities, such as hyperandrogenemia, hyperinsulinemia, insulin resis-
tance, anovulation, abnormal ovarian morphology, and metabolic disorders, may have a
hereditary or epigenetic origin. Existing studies are being conducted to identify genetic
markers that could be used in the future for the diagnosis of PCOS [105,114,115].

8. Conclusions

The pathophysiology of PCOS is heterogeneous and complex in nature. Despite its
prevalence in reproductive-aged women, the identification of PCOS remains challenging
due to its uncertain pathogenesis. Currently, PCOS is prevalent not only in women of
reproductive age, but also among adolescent girls. It is a significant risk factor for metabolic
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disorders and is thus linked to the development of type 2 diabetes. Women with PCOS
face hyperandrogenism and insulin resistance, among other complications, leading to
reproductive and metabolic abnormalities. In addition, anomalous AMH is emerging as a
factor in PCOS pathophysiology; however, it has not yet been incorporated as an adequate
diagnostic test. Herein, we discuss some of the challenges, controversies, and limitations
of the current diagnostic tools. We shed light on future markers that would allow for
more timely and accurate diagnoses, and which will mitigate the complications that lead
to infertility. Using artificial intelligence in the diagnosis of PCOS is highly promising in
terms of conducting personalized therapies along with detecting PCOS at an early stage.
Additional studies are necessary to comprehend the pathogenesis in order to provide a
precise diagnosis.
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