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Abstract: Precocious puberty in girls is defined as the onset of pubertal changes before 8 years of age,
and gonadotropin-releasing hormone (GnRH) agonist treatment is available for central precocious
puberty (CPP). The gold standard for diagnosing CPP is the GnRH stimulation test. However, the
GnRH stimulation test is time-consuming, costly, and requires repeated blood sampling. We aimed
to develop an artificial intelligence (AI) prediction model to assist pediatric endocrinologists in
decision making regarding the optimal timing to perform the GnRH stimulation test. We reviewed
the medical charts of 161 girls who received the GnRH stimulation test from 1 August 2010 to 31
August 2021, and we selected 15 clinically relevant features for machine learning modeling. We
chose the models with the highest area under the receiver operating characteristic curve (AUC) to
integrate into our computerized physician order entry (CPOE) system. The AUC values for the CPP
diagnosis prediction model (LH ≥ 5 IU/L) were 0.884 with logistic regression, 0.912 with random
forest, 0.942 with LightGBM, and 0.942 with XGBoost. For the Taiwan National Health Insurance
treatment coverage prediction model (LH ≥ 10 IU/L), the AUC values were 0.909, 0.941, 0.934, and
0.881, respectively. In conclusion, our AI predictive system can assist pediatric endocrinologists
when they are deciding whether a girl with suspected CPP should receive a GnRH stimulation test.
With proper use, this prediction model may possibly avoid unnecessary invasive blood sampling for
GnRH stimulation tests.

Keywords: central precocious puberty; diagnosis; gonadotropin-releasing hormone stimulation test;
machine learning

1. Introduction

Precocious puberty in girls is traditionally defined as the onset of pubertal changes
before 8 years of age. If left untreated, it can lead to compromised final adult height and
early menarche [1]. Furthermore, negative emotional and behavioral consequences have
been reported, such as substance abuse, peer pressure, self-image concerns, social isolation,
early sexual behavior, conduct issues, social isolation, truancy, and having multiple sexual
partners [1,2]. Precocious puberty can be classified into two types: central (gonadotropin-
dependent) and peripheral (gonadotropin-independent). Central precocious puberty (CPP)
results from earlier maturation and activation of the hypothalamic–pituitary–gonadal
axis. It is usually idiopathic in girls, though it can also be caused by pathological condi-
tions, such as central nervous system (CNS) tumors, CNS injury, or genetic syndromes
(neurofibromatosis type 1, tuberous sclerosis, Sturge–Weber Syndrome, etc.). Peripheral
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precocious puberty is gonadotropin-independent. It results from endogenous or exoge-
nous sources of sex steroids, such as congenital adrenal hyperplasia, McCune–Albright
syndrome, gonadal/adrenal tumors, or exogenous sex steroid exposure [1].

The increasing prevalence of obesity has been associated with earlier onset of the-
larche in girls [3]. Moreover, researchers of a cross-sectional study of 20,654 apparently
healthy urban Chinese girls showed that up to 19.57% of these girls had evidence of breast
development at 8 years of age [4]. However, these girls did not necessarily have activation
of the hypothalamic–pituitary–gonadal axis and may have had premature thelarche only.
Therefore, identifying girls with central precocious puberty from those who do not is
important. The gold standard for diagnosing CPP is an evaluation of the hypothalamic–
pituitary–gonadal axis maturation through the gonadotropin-releasing hormone (GnRH)
stimulation test [3,5]. After GnRH injection, blood sampling is performed three to five
times at different time points to measure serum gonadotropin concentration changes. The
diagnosis of CPP is traditionally made if the peak serum concentration after stimulation is
≥5 IU/L [6].

Since the mid-1980s, long-acting GnRH agonists have been used for the treatment
of CPP. Continuous GnRH agonist stimulation on pituitary gonadotrophs causes desen-
sitization and decreased LH release [7]. In Taiwan, the criteria for reimbursement from
the National Health Insurance (NHI) regarding long-acting GnRH agonist treatment in
CPP include a peak LH ≥ 10 IU/L after a GnRH stimulation test. If a girl obtains a peak
LH level ≥5 IU/L but <10 IU/L, she likely needs to repeat the GnRH stimulation test a
few months later in order to apply for the reimbursement of GnRH agonist treatment to
determine if the criterion of LH ≥ 10 IU/L is met.

The GnRH stimulation test is time-consuming, costly, and requires repeated blood
sampling, which is uncomfortable for patients [3]. The optimal timing for arranging
the GnRH stimulation test in a girl with suspected CPP is a challenge frequently faced by
pediatric endocrinologists. If a girl has a high chance of showing a negative result, she is less
likely to benefit from the GnRH stimulation test. However, if the test is arranged too late into
the clinical course, treatment for the patient may be delayed. The local insurance policy is
another consideration. Taking Taiwan as an example, obtaining the probability of receiving
a stimulated peak LH ≥ 10 IU/L would be very helpful for pediatric endocrinologists.
In this study, we aimed to develop an artificial intelligence (AI) prediction model for the
results of the GnRH stimulation test, which may help pediatric endocrinologists make
decisions regarding the optimal timing for arranging the GnRH stimulation test.

2. Methods
2.1. Study Design, Setting, and Samples

We retrospectively reviewed the medical charts of all pediatric female patients who
received the GnRH stimulation test in Chi Mei Medical Center between 1 August 2010 and
31 August 2021. We obtained approval from the Institutional Review Board of the hospital
before data collection (IRB No.: 11011-001).

We excluded patients with menarche because a very high chance of a positive GnRH
stimulation test result can be assumed in these cases without assistance from a prediction
model. We also excluded patients whose medical records had missing items. Two girls
received the GnRH stimulation test due to secondary amenorrhea, and two other girls
received it due to delayed puberty. We excluded these four girls from our study because
their GnRH stimulation tests did not indicate suspected CPP. The overall study flow is
described in detail in Figure 1.
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scores for height and weight according to the data published by Chen et al. in 2010 [8]. We 
interpreted the BA using the Greulich and Pyle method [9]. PAH was calculated using BA 
and published data (Chen et al., 2010) based on Taiwanese children and adolescents [8]. 
The GnRH stimulation tests were performed with an intravenous bolus of 0.1 mg 
gonadorelin acetate. Blood samples were obtained for the baseline and at 30, 60, and 90 
min after gonadorelin injection. Serum LH, FSH, and E2 were measured using the Abbott 
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test results of the positive group (LH ≥ cutoff after stimulation) to that of the negative 
group (LH < cutoff after stimulation). 

2.3. Statistical Analysis and Model Building 
For practical implementation, we selected features based on statistical significance 

and clinical experts’ opinion. We then randomly stratified the data into a training dataset 
(70% data) for model building and a testing dataset (30% data) for model validation. Be-
cause the number of negative test result cases was lower than that of positive test result 
cases, we used the SMOTE method (synthetic minority over-sampling technique) to im-
prove the data imbalance in the training dataset [10]. We paired each outcome with 4 

Figure 1. Study Flow. CPP, central precocious puberty; GnRH, gonadotropin-releasing hormone; HIS,
hospital information system; LH, luteinizing hormone; NHI: National Health Insurance.

2.2. Features and Outcome Variables

We collected data from electronic medical records of the following variables generally
available for data collection in clinical practice: chronological age (CA), age of thelarche,
height, height SDs, weight, weight SDs, BMI, paternal height, maternal height, mid-parental
height (MPH), predicted adult height (PAH), annual growth rate, bone age (BA), Tanner
stage (for breast and pubic hair development), lab result (random serum LH, FSH, E2), and
birth history (gestational age, birth body weight). We calculated MPH via the following
formula: (paternal height + maternal height − 13)/2. We calculated the z-scores for height
and weight according to the data published by Chen et al. in 2010 [8]. We interpreted the
BA using the Greulich and Pyle method [9]. PAH was calculated using BA and published
data (Chen et al., 2010) based on Taiwanese children and adolescents [8]. The GnRH
stimulation tests were performed with an intravenous bolus of 0.1 mg gonadorelin acetate.
Blood samples were obtained for the baseline and at 30, 60, and 90 min after gonadorelin
injection. Serum LH, FSH, and E2 were measured using the Abbott Architect i2000SR
immunoassay analyzer (Abbott Laboratories, Irving, TX, USA). We chose two cutoff values
of stimulated LH as the prediction outcomes for establishing our AI models: LH ≥ 5 IU/L
(level for CPP diagnosis) and ≥10 IU/L (level for NHI reimbursement for CPP treatment in
Taiwan). We compared the demographics of the stimulation test results of the positive group
(LH ≥ cutoff after stimulation) to that of the negative group (LH < cutoff after stimulation).

2.3. Statistical Analysis and Model Building

For practical implementation, we selected features based on statistical significance and
clinical experts’ opinion. We then randomly stratified the data into a training dataset (70%
data) for model building and a testing dataset (30% data) for model validation. Because the
number of negative test result cases was lower than that of positive test result cases, we
used the SMOTE method (synthetic minority over-sampling technique) to improve the data
imbalance in the training dataset [10]. We paired each outcome with 4 machine learning
algorithms to build the predictive models. These algorithms were as follows: (1) logistic
regression (LR), (2) random forest (RF), (3) LightGBM, and (4) XGBoost. We used Python
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and scikit-learn machine learning tools. We used a grid search with 5-fold cross validation
to tune the hyper-parameters to build the best models based on the training dataset.

2.4. Model Evaluation and Practical Implementation

After building the models, we used the test dataset to validate the models according
to well-defined model performance indicators: accuracy, sensitivity, specificity, and AUC
(area under the receiver operating characteristic curve). We regarded the model with the
highest AUC value as the best model and used it to further implement a prediction system
for practical use. We built the model with the Python language and scikit-learn libraries.
We developed a web-based prediction system with Microsoft Visual Studio® 2017 and
integrated it into the existing hospital information system (HIS). The prediction system
can immediately capture feature values from the HIS and display the risk probabilities for
predicting LH > 5 and LH > 10.

3. Results
3.1. Enrollment and Baseline Statistical Tests

As presented in Figure 1, during the study period of 1 September 2011 to 31 August
2021, 161 GnRH stimulation tests were performed for 140 pediatric female patients with
early thelarche and suspected CPP. A total of 15 Patients received the GnRH test twice
due to negative results from the first test. A total of three patients received the GnRH
test three times due to negative results from the first two tests. Using the peak LH cutoff
level of 5 IU/L, we allocated 24 tests to the “Peak LH < 5 IU/L group” and 137 tests to the
“Peak LH ≥ 5 IU/L group”. For the LH cutoff level of 10 IU/L, we allocated 65 tests to the
“Peak LH < 10 IU/L group” and 96 tests to the “Peak LH ≥ 10 IU/L group”. The detailed
baseline characteristics and grouping based on the LH cutoff values of 5 and 10 are shown
in Tables 1 and 2.

Table 1. Demographics of groups, with a cutoff value of peak LH levels at 5 IU/L.

Variable
Negative Test Result
(Peak LH < 5 IU/L)

(n = 24)

Positive Test Result
(Peak LH ≥ 5 IU/L)

(n = 137)
p-Value

Age at test (yr) 8.55 (0.63) 8.51 (1.17) 0.389
Age of breast development (yr) 6.55 (1.14) 6.50 (1.00) 0.777
Ht (cm) 133.52 (4.53) 135.04 (9.16) 0.120
Ht SD 0.79 (0.69) 1.07 (1.15) 0.137
Wt (kg) 34.74 (8.18) 32.57 (6.98) 0.443
Wt SD 1.08 (1.05) 0.82 (0.95) 0.340
BMI 19.35 (3.67) 17.69 (2.46) 0.057
BMI classification 0.046 *

underweight 0 1 (0.73)
NR 15 (62.50) 101 (73.72)
overweight 2 (8.33) 23 (16.79)
obese 7 (29.17) 12 (8.76)

Father Ht (cm) 172.79 (6.76) 171.42 (5.94) 0.304
Mother Ht (cm) 157.06 (5.69) 157.47 (4.71) 0.673
Mid-parental height (MPH, cm) 158.43 (5.00) 157.94 (4.15) 0.818
Bone age (yr) 10.36 (1.22) 10.65 (1.46) 0.205
BA advancement (yr) 1.81 (1.10) 2.14 (0.98) 0.297
∆BA/∆CA 1.67 (1.46) 1.98 (1.55) 0.337
Predicted adult height (PAH, cm) 154.40 (4.78) 153.89 (4.98) 0.885
PAH-MPH (cm) −4.02 (5.92) −4.05 (4.96) 0.911
Annual growth rate (cm/yr) 7.10 (1.55) 8.35 (2.19) 0.007 *
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Table 1. Cont.

Variable
Negative Test Result
(Peak LH < 5 IU/L)

(n = 24)

Positive Test Result
(Peak LH ≥ 5 IU/L)

(n = 137)
p-Value

Tanner stage for breast development 0.001 *
2 17 (70.83) 38 (27.74)
3 6 (25.00) 70 (51.09)
4 1 (4.17) 27 (19.71)
5 0 2 (1.46)

Tanner stage for pubic hair development 0.344
1 23 (95.83) 109 (79.56)
2 1 (4.17) 19 (13.87)
3 0 8 (5.84)
4 0 1 (0.73)

Axillary hair 0.742
None 22 (91.67) 118 (86.13)
Present 2 (8.33) 19 (13.87)

Baseline FSH (mIU/mL) 2.19 (1.00) 3.66 (1.84) <0.001 *
Baseline LH (mIU/mL) 0.21 (0.20) 1.42 (1.72) <0.001 *
Baseline E2 (pg/mL) 21.57 (16.46) 26.77 (20.00) 0.146
LH/FSH ratio 0.09 (0.05) 0.34 (0.30) <0.001 *
GA (wk) 38.23 (1.89) 38.64 (1.31) 0.544
Premature birth 0.213

No 21 (87.50) 129 (94.16)
Yes 3 (12.50) 8 (5.84)

BBW (g) 2792.83 (493.94) 2964.34 (368.74) 0.093
Size for gestational age 0.113

SGA 15 (62.50) 110 (80.29)
AGA 8 (33.33) 23 (16.79)
LGA 1 (4.17) 4 (2.92)

LH peak (mIU/mL) 3.75 (1.02) 22.39 (20.09) <0.001 *

Categorical variables are presented as frequencies with a percentage, n (%). Continuous variables are presented as
means with standard deviations (mean ± SD). * p < 0.05. AGA, appropriate for gestational age; BA, bone age;
BBW, birth body weight; BMI, body mass index; CA, chronological age; E2, estradiol; FSH, follicle-stimulating
hormone; GA, gestational age; GnRH, gonadotropin-releasing hormone; LGA, large for gestational age; LH,
luteinizing hormone; MPH, mid-parental height; PAH, predicted adult height; SD, standard deviation; SGA, small
for gestational age.

Table 2. Demographics of groups, with a cutoff value of peak LH levels at 10 IU/L.

Variable
Negative Test Results
(Peak LH < 10 IU/L)

(n = 65)

Positive Test Results
(Peak LH ≥ 10 IU/L)

(n = 96)
p-Value

Age at test (yr) 8.48 (0.85) 8.54 (1.25) 0.144
Age of breast development (yr) 6.44 (0.95) 6.55 (1.07) 0.216
Ht (cm) 133.88 (6.07) 135.44 (9.99) 0.040 *
Ht SD 0.93 (0.87) 1.10 (1.23) 0.292
Wt (cm) 33.17 (6.87) 32.71 (7.43) 0.996
Wt SD 0.93 (0.99) 0.80 (0.95) 0.420
BMI 18.40 (3.04) 17.62 (2.45) 0.150
BMI classification 0.542

underweight 0 1 (1.04)
NR 44 (67.69) 72 (75.00)
overweight 11 (16.92) 14 (14.58)
obese 10 (15.38) 9 (9.38)
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Table 2. Cont.

Variable
Negative Test Results
(Peak LH < 10 IU/L)

(n = 65)

Positive Test Results
(Peak LH ≥ 10 IU/L)

(n = 96)
p-Value

Father Ht (cm) 172.12 (6.21) 171.29 (5.97) 0.182
Mother Ht (cm) 157.79 (5.31) 157.15 (4.53) 0.562
Mid-parental height (MPH, cm) 158.46 (4.38) 157.72 (4.19) 0.225
Bone age (yr) 10.47 (1.09) 10.71 (1.62) 0.047 *
BA advancement (yr) 1.99 (0.90) 2.16 (1.06) 0.473
∆BA/∆CA 1.79 (1.41) 2.04 (1.61) 0.347
Predicted adult height (PAH, cm) 154.10 (5.02) 153.88 (4.90) 0.918
PAH-MPH (cm) −4.36 (5.17) −3.83 (5.06) 0.391
Annual growth rate (cm/yr) 7.22 (1.75) 8.80 (2.17) <0.001 *
Tanner stage for breast development 0.001 *

2 32 (49.23) 23 (23.96)
3 28 (43.08) 48 (50.00)
4 5 (7.69) 23 (23.96)
5 0 2 (2.08)

Tanner stage for pubic hair development 0.078
1 59 (90.77) 73 (76.04)
2 5 (7.69) 15 (15.62)
3 1 (1.54) 7 (7.29)
4 0 1 (1.04)

Axillary hair 0.803
None 56 (86.15) 84 (87.50)
Present 9 (13.85) 12 (12.50)

Baseline FSH (mIU/mL) 2.80 (1.44) 3.87 (1.91) <0.001 *
Baseline LH (mIU/mL) 0.37 (0.38) 1.83 (1.89) <0.001 *
Baseline E2 (pg/mL) 22.83 (15.59) 28.13 (21.65) 0.114
LH/FSH ratio 0.12 (0.07) 0.43 (0.32) <0.001 *
GA (wk) 38.64 (1.50) 38.53 (1.35) 0.466
Premature birth 1.000

no 61 (93.85) 89 (92.71)
yes 4 (6.15) 7 (7.29)

BBW(g) 2935.89 (393.59) 2940.73 (394.54) 0.989
Size for gestational age 0.889

SGA 52 (80.00) 73 (76.04)
AGA 11 (16.92) 20 (20.83)
LGA 2 (3.08) 3 (3.12)

LH peak (mIU/mL) 6.07 (2.23) 28.78 (20.95) <0.001 *

Categorical variables are presented as frequencies with a percentage, n (%). Continuous variables are presented as
means with standard deviations (mean ± SD). * p < 0.05. AGA, appropriate for gestational age; BA, bone age;
BBW, birth body weight; BMI, body mass index; CA, chronological age; E2, estradiol; FSH, follicle-stimulating
hormone; GA, gestational age; GnRH, gonadotropin-releasing hormone; LGA, large for gestational age; LH,
luteinizing hormone; MPH, mid-parental height; PAH, predicted adult height; SD, standard deviation; SGA, small
Therefor gestational age.

3.2. Characteristics and Features

When choosing the cutoff level of≥5 IU/L for stimulated peak LH, there was a borderline
difference in BMI classification between the negative test result and the positive test result
groups (p = 0.046). The positive test result group (stimulated peak LH ≥ 5 IU/L) had a
higher frequency of underweight BMIs (0.73% vs. 0%), normal BMIs (73.72% vs. 62.50%),
and overweight BMIs (16.79% vs. 8.33%), and we observed a lower frequency for obesity
(8.76% vs. 29.17%) when compared with the negative test result group. The positive test result
group also had a significantly higher annual growth rate (8.35 vs. 7.1 cm/yr, p = 0.007). In
addition, the positive test result group also had a significantly lower frequency of Tanner
stage B2 (27.74% vs. 70.83%) and a higher frequency of Tanner stage B3 (51.09% vs. 25%),
Tanner stage B4 (19.71% vs. 4.17%), and Tanner stage B5 (1.46% vs. 0%). For the laboratory
characteristics, the positive test result group had a significantly higher baseline FSH (3.66
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vs. 2.19, IU/L, p < 0.001), baseline LH (1.42 vs. 0.21, IU/L, p < 0.001), and LH/FSH ratio
(0.34 vs. 0.09, p < 0.001).

We noted similar findings when choosing the cutoff level of ≥10 IU/L for stimulated
peak LH. The positive test result group (stimulated peak LH ≥ 10 IU/L) had a significantly
lower frequency of Tanner stage B2 (23.96% vs. 49.23%) and a higher frequency of Tanner
stage B3 (50% vs. 43.08%), Tanner stage B4 (23.96% vs. 7.69%), and Tanner stage B5
(2.08% vs. 0%) when compared with the negative test result group. The positive test result
group also had a significantly higher annual growth rate (8.8 vs. 7.22, cm/yr, p < 0.001).
For the laboratory characteristics, the positive test result group had a significantly higher
random FSH (3.87 vs. 2.8, IU/L, p < 0.001), random LH (1.83 vs. 0.37, IU/L, p < 0.001),
and LH/FSH ratio (0.43 vs. 0.12, p < 0.001). In the positive test result group, we observed
a significantly greater height (135.44 vs. 133.88cm, p < 0.04). However, Ht SDs had no
significant difference. Bone age was significantly more advanced in the positive test result
group (10.71 vs. 10.47, yr, p = 0.047). However, we found no difference in BA advancement
(BA-CA) or in ∆BA/∆CA between the two bone age films.

3.3. Model Building and Evaluation

We used four machine learning algorithms, LR, RF, LightGBM, and XGBoost, to
build the prediction models with the training dataset. We used a grid search with five-
fold cross-validation to tune the hyper-parameters for each algorithm to obtain the best
model. We tested the prediction models with the test dataset and evaluated the metrics of
their accuracy, sensitivity, specificity, and AUC. Among the four algorithms, the XGBoost
algorithm had the best performance with the highest AUC (see Table 3, Figure 2).

We further compared our machine learning algorithms to a practical scoring system
based on breast Tanner stage, basal LH, and basal FSH, which was proposed in a recent
study from Taiwan [11] (see Table 4). The AUC for all machine learning algorithms was
higher than the scoring system. Accuracy and specificity were also better when adjusting
to the same sensitivity.

Table 3. Performance of the two outcome predictive models (peak LH cutoff of 5 IU/L and peak LH
cutoff of 10 IU/L).

Predictive Models
with Each ML Algorithm Accuracy Sensitivity Specificity AUC 95% CI (AUC)

Peak LH cutoff of 5 IU/L
Logistic regression 0.939 0.952 0.857 0.884 0.686–0.999

Random forest 0.857 0.881 0.714 0.912 0.825–0.998
LightGBM 0.898 0.905 0.857 0.942 0.877–0.999
XGBoost 0.878 0.905 0.714 0.942 0.876–0.999

Peak LH cutoff of 10 IU/L
Logistic regression 0.837 0.862 0.800 0.909 0.830–0.988

Random forest 0.878 0.897 0.850 0.941 0.876–0.999
LightGBM 0.857 0.862 0.850 0.934 0.849–0.999
XGBoost 0.837 0.931 0.700 0.881 0.786–0.976

AUC, area under the receiver operating characteristic curve; LH, luteinizing hormone; ML, machine learning.

Table 4. Comparison of machine learning algorithm to another clinical scoring system (Yeh et al. [11])
for predicting LH Peak Cutoff of 10 IU/L.

Algorithms Accuracy Sensitivity Specificity AUC AUC 95% CI p-Value

Scoring system 0.735 0.966 0.400 0.683 0.568–0.798 -
Logistic regression 0.796 0.966 0.550 0.909 0.830–0.988 0.001

Random forest 0.878 0.966 0.750 0.941 0.876–0.999 <0.001
LightGBM 0.918 0.966 0.850 0.934 0.849–0.999 <0.001
XGBoost 0.837 0.966 0.650 0.881 0.786–0.976 0.003

Comparing the two AUCs using DeLong’s test. AUC, area under the receiver operating characteristic curve.
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3.4. Prediction System Development and User Evaluation

The LightGBM prediction model for the LH cutoff value of 5 IU/L was the best model
because it had the highest AUC and accuracy, and the random forest prediction model was
the best model for the LH cutoff value of 10 IU/L. We therefore used these best models
for the development and deployment of a clinical prediction system. The AI Center and
Department of Information Systems of Chi Mei Medical Center embedded the best models
in a web-based AI system for predicting the test results of gonadotropin-releasing hormone
stimulation tests (see Figure 3). It launched in March 2022.

We showed the AI system to three clinicians in the pediatric endocrinology department
and gained high recognition. The system is a potentially useful tool in the decision-making
process of whether the GnRH stimulation test should be performed. The graphic display of
AI-calculated probability can also aid clinicians with explanations to patients and parents.

3.5. Case Scenarios

As shown in Figure 4A, a physician performed an AI prediction for a patient in the
outpatient clinic. The result showed a low probability for both stimulated LH > 5 IU/L
(30.09%) and stimulated LH > 10 IU/L (4.29%). With such results, the clinician may
need to re-evaluate the patient and reconsider arranging the GnRH stimulation test. In
Figure 4B, another patient showed a high probability for both stimulated LH > 5 IU/L
(74.07%) and stimulated LH > 10 IU/L (60%). The result was consistent with the clinician’s
evaluation, and the patient would likely benefit from arranging the GnRH stimulation test.
As shown in Figure 4C, the prediction results for the third patient showed a high probability
for stimulated LH > 5 IU/L (67.91%). However, the prediction result for stimulated
LH > 10 IU/L was low (6.73%). This prediction result suggests that the patient is likely
to have ongoing central precocious puberty but may not yet fulfill the cutoff for the NHI
reimbursement of GnRH analog treatment. The patient would likely benefit from a close
follow-up and the arrangement of a GnRH stimulation test after a short period of time.
Although the AI prediction system cannot replace the importance of the clinician’s clinical
evaluation, the above three scenarios show that the AI prediction system can be used to
check for consistency with the clinical evaluation. When the prediction result is inconsistent
with the clinical evaluation, a reminder is presented to the clinician to reassess the patient
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and consider the option of further close follow-up rather than immediate arrangement of
the GnRH stimulation test.
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adult height; SD, standard deviation.
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4. Discussion

In this study, we established an AI prediction system and integrated it into our
computerized physician order entry (CPOE) system to predict GnRH stimulation test
results. We demonstrated that, if the GnRH stimulation test is still clinically needed, an
AI prediction system is an ideal method to save time, reduce costs, and avoid unnecessary
repeated blood samplings.

Many studies have attempted to simplify or substitute the GnRH stimulation test.
Various studies have suggested various cutoff values for basal LH, with variable sensitiv-
ity [11–16]. Other studies have tried to reduce the number of blood samplings required for
the GnRH stimulation test, suggesting that a single blood sampling at 30 min or 40 min
post GnRH injection may be adequate [11,17,18]. The subcutaneous administration of
GnRH was also proposed, but multiple blood samplings are still required under such a
protocol [19]. Despite all these attempts, the GnRH stimulation test is still considered the
gold standard test and is more frequently used.

Aside from trying to simplify or replace the GnRH test, using scoring systems or AI models
to predict the probability of a positive test result may provide another solution to this problem.
Researchers of a recent study from Taiwan proposed a practical scoring system using breast
Tanner stage, basal LH, and basal FSH [11]. The scoring system had 76% sensitivity and 72%
specificity. The stimulated LH cutoff level was set as 10 IU/L in the study due to the NHI
reimbursement criteria for GnRH analog treatment. Researchers of another study from Shanghai
proposed a CPP risk score model, which classifies patients into low-, median-, and high-risk
groups [20]. They used a stimulated peak LH ≥ 5 IU/L and a peak LH/FSH ratio ≥ 0.6 for
the diagnosis of CPP. Similar to our study, researchers of a study from Guangzhou proposed
prediction models using machine learning algorithms [21]. However, the diagnostic criteria
include either peak LH levels ≥ 10 IU/L or peak LH levels ≥ 5 IU/L combined with a peak
LH/FSH ratio ≥ 0.6.

In this study, the features we selected were routinely evaluated for suspected CPP
patients in clinical practice. Via history taking, the onset age of thelarche and the age of
the patients during the visit were routinely recorded. Further inquiry about the height of
parents can help calculate the mid-parental height (MPH). Via physical examination, height,
weight, BMI, annual growth rate, and Tanner staging were obtained. Because patients
presented at different ages, we used height SDs and weight SDs in our models to better
represent the heights and weights of the patients compared with girls of the same age.
Laboratory workup, including bone age, LH, FSH, and LH/FSH ratio, can also be easily
obtained at the outpatient clinic.

Compared with the non-CPP group (stimulated peak LH < 5 IU/L), the CPP group
(stimulated peak LH ≥ 5 IU/L) had a significantly higher frequency of underweight,
normal, and overweight BMIs, and the frequency of obesity was lower. This can be
explained by the fact that obese girls presenting breast lumps do not necessarily have
activation of the hypothalamic–pituitary–gonadal axis [3]. However, these girls may be
considered candidates for the GnRH stimulation test because of the earlier onset of thelarche.
The results of the GnRH stimulation tests for these individuals would likely be negative.
Therefore, the clinician should be careful not to overestimate breast development in obese
girls [7]. On the other hand, obese children may have blunted LH response during the
GnRH stimulation test as a result of LH suppression due to androgen/estrogen excess [22].

The Tanner stage is commonly used as the standard for breast and pubic hair de-
velopment ratings in clinical practice [23]. In our study, the Tanner staging for breast
development had a significantly more advanced distribution in the positive test result
group, regardless of the stimulated peak LH cutoff level chosen. However, we found no
significant difference in Tanner staging for pubic hair development and the presence of
axillary hair. This can be explained by the finding that breast bud appearance is the first
pubertal sign in girls. However, the appearance of pubic hair can occur before, after, or
together with puberty onset [24]. Adrenal-derived androgens can cause the appearance of
pubic hair and axillary hair. Premature adrenarche may present with an advanced bone
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age but without breast development [25]. The hypothalamic–pituitary–gonadal axis is not
activated in such circumstances.

A higher growth velocity and advanced bone age were shown as factors for predicting
positive results in the GnRH stimulation test, with a rapid growth velocity suggested as the
most useful predictive factor [26]. In our study, annual growth rate was significantly higher
in the positive test result group, regardless of the stimulated peak LH cutoff level chosen.
In addition to bone age, we also included factors such as BA-CA and ∆BA/∆CA. However,
we found no significant difference in these factors between the positive and negative test
result groups. Intraoperator and interoperator variability in bone age determination using
an atlas-based method is not uncommon [27]. This provides an explanation for our results
because bone age reports are generated by different radiologists in our hospital.

In the laboratory features, our results show a higher basal FSH, basal LH, and basal
LH/FSH ratio in the positive GnRH stimulation test result group. This is consistent with
previous studies, in which basal LH, FSH, and LH/FSH ratio were found to be significantly
higher in individuals with a positive GnRH stimulation test result [11,26].

The strength of the prediction models in our study is that our models can be used
to predict the probability of either stimulated LH ≥ 5 IU/L or stimulated LH ≥ 10 IU/L.
A physician may have different considerations while arranging the GnRH stimulation
test. The prediction model for CPP diagnosis (stimulated LH ≥ 5 IU/L) can help decide
whether the GnRH stimulation test is helpful in confirming the diagnosis for a girl with
suspected CPP. However, if the reimbursement of the GnRH agonist treatment is also a
consideration, the prediction model for treatment coverage (stimulated LH ≥ 10 IU/L) can
be used together with the prediction model for CPP diagnosis (stimulated LH ≥ 5 IU/L).
When used together, the two models can help predict whether the test result would reveal
that the patient does not have CPP (LH < 5 IU/L), that the patient has CPP but does not
meet NHI treatment criteria (≥5 IU/L but <10 IU/L), or that the patient has CPP and meets
the NHI treatment criteria (LH ≥ 10 IU/L).

However, our model still has some limitations. First, this study has a retrospective
design. Potential problems, such as missing or inaccurate data, could have occurred. How-
ever, all the features used in our model are basic information obtained via history taking
and physical exams. The lab data, including LH, FSH, and E2, were also routinely obtained
in girls who received the GnRH stimulation test. Therefore, we did not encounter any
missing data during data collection. Second, we interpreted bone age reports from different
radiologists, and interoperator variability could have occurred, even when using the same
Greulich and Pyle method. We did not include pelvic echo information for the same reason
because such measurements can be even more operator-dependent. Third, we collected
our data from a single medical center in Southern Taiwan. The study population is mostly
composed of members of the Han Chinese ethnic group, with few ethnically Southeastern
Asian individuals. Therefore, our model may not be suitable in other populations or re-
gions. Finally, although our model shows a good AUC, as clinicians, we also need to take
sensitivity into account, since we would not want to miss the diagnosis on any patient. To
address this, we can lower the classification threshold to improve model sensitivity, but
false alarms (false positives) may increase and affect model performance. Therefore, we
would suggest using our model to assist predicting the result of the GnRH stimulation
test and seek better timing with an appropriate evaluation threshold for test arrangement
(0.5 by default), rather than using it to rule out the diagnosis. The diagnosis should be
based on the overall clinical picture instead. Furthermore, though the model shows a good
AUC, we did not prospectively validate the model. We plan to address this issue in our
future work via real-time prediction using the AI system launched in March 2022.

5. Conclusions

Our machine learning models can provide valuable information to pediatric endocri-
nologists when they need to decide whether a girl with suspected CPP should receive
a GnRH stimulation test. The two models may be used alone or together for predicting
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whether the stimulated LH level would be <5 IU/L, between 5 and 10 IU/L, or ≥10 IU/L.
With the assistance of these prediction models, pediatric endocrinologists can choose the op-
timal timing for arranging GnRH stimulation tests. To the best of our knowledge, very few
studies have used machine learning approaches to build prediction models regarding the
optimal timing for arranging GnRH stimulation tests, and even fewer have implemented
real-time AI system prediction in a clinical setting. Thus, the results of our study have
profound academic and practical novelty and value. We call for future researchers to con-
sider including more parameters to improve prediction performance. We also encourage
broadening the retrospective data to include multiple centers.
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