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Abstract: The deep learning approach has recently attracted much attention for its outstanding
performance to assist in clinical diagnostic tasks, notably in computer-aided solutions. Computer-
aided solutions are being developed using chest radiography to identify lung diseases. A chest X-ray
image is one of the most often utilized diagnostic imaging modalities in computer-aided solutions
since it produces non-invasive standard-of-care data. However, the accurate identification of a specific
illness in chest X-ray images still poses a challenge due to their high inter-class similarities and low
intra-class variant abnormalities, especially given the complex nature of radiographs and the complex
anatomy of the chest. In this paper, we proposed a deep-learning-based solution to classify four lung
diseases (pneumonia, pneumothorax, tuberculosis, and lung cancer) and healthy lungs using chest
X-ray images. In order to achieve a high performance, the EfficientNet B7 model with the pre-trained
weights of ImageNet trained by Noisy Student was used as a backbone model, followed by our
proposed fine-tuned layers and hyperparameters. Our study achieved an average test accuracy of
97.42%, sensitivity of 95.93%, and specificity of 99.05%. Additionally, our findings were utilized as
diagnostic supporting software in OView-AI system (computer-aided application). We conducted
910 clinical trials and achieved an AUC confidence interval (95% CI) of the diagnostic results in the
OView-AI system of 97.01%, sensitivity of 95.68%, and specificity of 99.34%.

Keywords: deep learning; EfficientNet; pneumonia; pneumothorax; tuberculosis; lung cancer

1. Introduction

There are several different types of diseases that prevent lungs from functioning prop-
erly [1]. The diseases that affect the alveoli region of the thoracic region are pneumonia,
tuberculosis, and lung cancer [2]. Pneumonia is an inflammation that occurs in the sub-
cellular region of the lungs, especially the alveoli (air sac) [3]. Tuberculosis bacteria are
classified as infectious, acute, or chronic diseases with the lungs being infected. Pulmonary
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tuberculosis can be diagnosed as the presence of cheese-like granuloma mass in the lungs
from chest X-ray images, and this symptom is called cavitation [4]. Lung cancer affects
uncontrolled cell growth in the tissues of the lung [2]. In South Korea, lung cancer is the
third highest among all cancers, as reported by the annual report of the Korean National
Cancer Registration Statistics [5]. Air pneumothorax, or pneumothorax, refers to a disease
in which air leaks through a hole in the lungs and air fills the pleural cavity. As the amount
of air in birds increases, the lungs do not function normally [2]. Pneumothorax affects
partial or complete lung collapse [6]. Those abovementioned lung diseases can be primarily
and commonly assessed through chest radiography by professional radiologists. An early
screening of the disease and regular monitoring of the changes in the disease can reduce
the life-threatening consequences.

Chest X-ray images are non-invasive chest radiographs which are easy and economical
for lung abnormality inspection. They assist radiologists in screening and diagnosing the
overall findings of the chest in brief. However, the manual examination of a chest X-
ray image is highly prone to error and is time-consuming for the person conducting the
task. Therefore, computer-aided application helps to fasten and increase the accuracy of
this examination.

In recent years, with the rapid innovation of artificial intelligence in computer vision,
deep learning has been deployed in medical image analysis, including image classification,
segmentation, detection, and localization tasks [2,7,8]. The computer-aided solution is one
of the medical image analyses which use chest X-ray images to assist with the diagnosis
of lung disease. Unlike traditional machine learning methods, deep learning can extract
potential features from chest X-ray images and then classify them in end-to-end learning
without user intervention. However, chest X-ray images pose a challenge for deep learning
techniques due to their high inter-class similarities and low intra-class variant abnormalities,
especially in terms of the complex nature of radiographs and the complex anatomy of the
chest. For instance, pneumonia, tuberculosis, and lung cancer occur within the alveoli
region of the thoracic region, for which it is hard to identify the different patterns of their
disorders. Additionally, most deep learning research of the image classification task focuses
on natural image modalities (RGB images). Since a chest X-ray image is a grayscale image,
it results in more challenges for the deep learning method. Moreover, all chest X-ray images
were scanned only at the chest area in which the output images have the same pattern of
the chest anatomy.

Convolutional neural network (CNN) has proved its promising performance in 2D
image classification tasks. Early state-of-the-art CNN models such as AlexNet, VGG,
ResNet, DenseNet, MobileNet, InceptionNet, XceptionNet, and EfficientNet, to name a few,
have proved their significant performances trained on the ImageNet dataset. The ImageNet
dataset consists of thousands of classes and millions of images. “Training from scratch” on
a large dataset requires a much higher computation cost and much more time. Therefore, a
“transfer learning” technique has played an important role in closing the gap between the
computation cost and the significant performance.

Therefore, in this study, we propose a fine-tuned deep-learning-based solution to
classify multi-chest infections using chest X-ray images to improve the efficiency and effec-
tiveness of diagnosis using the computer-aided application (namely, OView-AI system).

Our main contributions are as follows:

• We exploited the EfficientNet B7 [9] with the pre-trained weights of ImageNet trained
by Noisy Student [10] as a backbone model; this was then followed by proposed
fine-tuning layers and hyperparameters;

• Our method is end-to-end learning which extracts the potential features of a chest
X-ray image directly and then applies the Softmax function to generate the different
predicted class probabilities;

• Our experiment was conducted on a dataset which collected data from Soonchunhyang
University Hospital from May 2022 to July 2022 and were labeled by professional
radiologists of Soonchunhyang University Hospital after de-identification;
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• We conducted an inference, of which the inferencing results were evaluated and
confirmed by professional radiologists of Soonchunhyang University Hospital;

• Our study was conducted on the trend of major lung diseases occurring in South
Korea, such as pneumonia, pneumothorax, tuberculosis, and lung cancer.

2. Related Works

Table 1 lists recently published related papers conducted on the classification of lung
diseases. The list is sorted by the largest number of classes. Asif et al. [11] conducted the
transfer learning technique with the pre-trained weights of VGG-16 to classify two lung
diseases (COVID-19, viral pneumonia, and normal). The method achieved an accuracy
of 97.84%. Hamwi et al. [12] conducted the transfer learning technique with the pre-
trained weights of a merged model of VGG-16 and DenseNet-201 to classify one lung
disease (COVID-19 and normal). The method achieved an accuracy of 99.73%. Hong
et al. [13] used the transfer learning technique with the pre-trained weights of EfficientNet
B7 to classify three lung diseases (Pneumonia, pneumothorax, tuberculosis, and normal).
The method achieved an accuracy of 96.10%. Hu et al. [14] conducted training from
scratch using VGG-16 architecture to classify two lung diseases (COVID-19, non-COVID-19
pneumonia, and normal). The method achieved an AUC-ROC of 97.80%. Kim et al. [15]
utilised the transfer learning technique with the pre-trained weights of EfficientNet v2M to
classify three lung diseases (pneumonia, pneumothorax, tuberculosis, and normal). The
method achieved an accuracy of 82.20%. Malik et al. [16] conducted training from scratch
using the residual network and dilated convolution to classify four diseases (pneumonia,
pneumothorax, tuberculosis, COVID-19, and normal). The method achieved an accuracy
of 99.39%. Manalakis et al. [17] used the transfer learning technique with the pre-trained
weights of a merged model of DenseNet-121 and ResNet-50 to classify three lung diseases
(COVID-19, tuberculosis, pneumonia, and normal). The method achieved an AUC-ROC
of 95.00%. Shamrat et al. [18] conducted transfer learning with the pre-trained weights
of VGG-16 to classify nine lung diseases (COVID-19, effusion, tuberculosis, pneumonia,
lung opacity, mass, nodule, pneumothorax, pulmonary fibrosis, and normal). The method
achieved an accuracy of 98.89%. Showkatian et al. [19] conducted training from scratch
using the CNN model to classify one lung disease (tuberculosis and Normal). The method
achieved an accuracy of 87.00%. Xu et al. [20] conducted training from scratch using
DenseNet architecture to classify two lung diseases (tuberculosis, diseases but non-TB, and
normal). The method achieved an accuracy of 99.10%.

Table 1. Related papers conducted on classification for lung diseases.

Paper Disease Class Model Result

Asif et al. (2022)
[11]

COVID-19, viral pneumonia, and
normal 3 Transfer learning

(VGG-16) Accuracy = 97.84%

Hamwi et al. (2022)
[12] COVID-19, and normal 2

Transfer learning (merged
model of VGG-16 and

DenseNet-201)
Accuracy = 99.73%

Hong et al. (2021)
[13]

Pneumonia, pneumothorax,
tuberculosis, and normal 4 Transfer learning

(EfficienNet B7) Accuracy = 96.10%

Hu et al. (2022)
[14]

COVID-19, non-COVID-19
pneumonia, and normal 3 Train from scratch (VGG-16) AUC-ROC = 97.80%

Kim et al. (2022)
[15]

Pneumonia, pneumothorax,
tuberculosis, and normal 4 Transfer learning

(EfficientNet v2M) Accuracy = 82.20%

Malik et al. (2022)
[16]

Pneumonia, pneumothorax,
tuberculosis, COVID-19, and normal 5

Train from scratch
(residual network and
dilated convolution)

Accuracy = 99.39%
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Table 1. Cont.

Paper Disease Class Model Result

Manalakis et al. (2021)
[17]

COVID-19, tuberculosis, pneumonia,
and normal 4

Transfer learning (merged
model of DenseNet-121 and

ResNet-50)
AUC-ROC = 95.00%

Shamrat et al. (2022)
[18]

COVID-19, effusion, tuberculosis,
pneumonia, lung opacity, mass,
nodule, pneumothorax, pulmonary
fibrosis, and normal

10 Transfer learning
(VGG-16) Accuracy = 98.89%

Showkatian et al. (2022)
[19] Tuberculosis and normal 2 Train CNN from scratch

(CNN) Accuracy = 87.00%

Xu et al. (2022)
[20]

Tuberculosis (TB), diseases but
non-TB, and normal 3 Train from scratch

(DenseNet) Accuracy = 99.10%

3. Methods
3.1. Dataset

Chest X-ray images, such as normal, pneumonia, pneumothorax, tuberculosis and
lung cancer, were collected from Soonchunhyang University Hospital X-ray Database
from May 2022 to July 2022. In total, 5 groups of 1000 dicom image files were collected
after confirmation by pulmonary and radiologic specialists at Soonchunhyang University
Hospital. Four disease groups were collected at a 1:1 ratio according to disease severity,
such as mild and severe groups. The disease severity was anonymized, and the readers
(pulmonary and radiologic specialists) were blinded to the clinical data aside from the
known diagnosis of pneumonia, pneumothorax, tuberculosis, and lung cancer in all patients.
The criteria for disease severity are as follows: Each lung in pneumonia was divided into
an upper and a lower zone by equally dividing the hila into upper and lower segments in
the craniocaudal dimension. The extent of disease in each of the four zones was scored on
a 0–3 scale (0 = no disease, 1 = less than one-third of the zone, 2 = one-third to two-thirds of
the zone, and 3 = more than two-thirds of the zone). The severity of disease in each zone
was also scored on a 0–3 scale (0 = normal lung parenchyma, 1 = airspace opacification that
does not obscure the bronchovascular markings, 2 = airspace opacification that partially
obscures the bronchovascular markings, and 3 = complete opacification of the alveolar and
interstitial spaces). The extent and severity scores were given as equal weights and were
summed over the four lung regions (right upper, right lower, left upper, and left lower) to
create a composite score for each CXR ranging from 0 (normal) to 24 [21].

The severity of tuberculosis was calculated by Timika score [22]. The CXR was divided
into six zones of a roughly similar size with two horizontal lines and for each zone; the
percentage area that showed active disease (consolidation, nodules) involvement was
estimated depending on the visual estimation of the extent of opacification (5 or 10–100%
in 10% increments), and the CRX score = proportion of total lung affected (%) +40 if
cavitations present.

The severity of pneumothorax was calculated by the American College of Chest
Physicians guidelines (2001). We measured the size of pneumothorax from thoracic cupola
to the lung apex.

The severity of lung cancer was calculated by the eighth edition TNM stage clas-
sification for lung cancer, and stage I and II were the mild group and stage III was the
severe group [23]. Finally, the Soonchunhyang dataset (n = 5000) was collected as shown in
Figures 1–3.
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3.2. Test Dataset

For the number of test datasets, sample size estimation in diagnostic test studies of
biomedical informatics [24] Formula (7.5) (p. 198) and ROC Curves in Clinical Chemistry:
Uses, Misuses, and Possible Solutions [25] Formula (2) (p. 1123) were used, and the research
hypothesis and calculation basis formula at this time are as follows.

n =

[
Zα

√
VH0( ˆAUC)+Zβ

√
VH1( ˆAUC)

]2

[AUC1−AUC0]
2

V
( ˆAUC

)
=
(

0.0099× e−α2/2
)
×
(
6α2 + 16

)
α = ∅−1(AUC)× 1.414

∅−1 = Number o f Standard Normal Distribution
Type I error(α) = 0.025(One sided)

Type I I error(β) = 0.1

(1)



Diagnostics 2023, 13, 1519 7 of 16

3.3. OView-AI Workflow

The OView-AI system is a medical image diagnostic aid software which is based on
an abnormal classification model learned by artificial intelligence technology using a chest
X-ray image to diagnose a prediction rate of each lesion for pneumonia, pneumothorax,
tuberculosis, and lung cancer. Its purpose is to assist a doctor’s diagnosis decision by
displaying a prediction rate as a percentage (%).

The principal process is as follows:

• Input a chest X-ray image;
• Adjust image into 1:1 ratio as the pre-processing;
• Classify into normal, pneumonia, pneumothorax, tuberculosis, and lung cancer using

the deep learning model;
• Display the classified result as a numerical value (%).

3.4. Deep Learning Algorithm

As suggested by this literature review, the transfer learning technique has proved its
significant performance and lower computational cost. Therefore, in our study, we used
the transfer learning technique with EfficientNet B7 [9] with the pre-trained weights of
ImageNet trained by Noisy Student [10] as a backbone model. Then, this was followed by
our proposed fine-tuned layers and hyperparameters. Figure 4 depicts our overall pipeline
of multi-classification for lung diseases using the transfer learning technique.
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3.5. Deep Learning Model

The EfficientNet [9] model has proven its efficient learning performance by being
principally scaled within three main components: width, depth, and resolution of the
model. Compound scaling refers to finding the optimal efficiency by adjusting these
components. In our study, we exploited the EfficientNet B7 model with the pre-trained
weights of ImageNet trained by Noisy Student [10] as our backbone model, as shown in
Figure 5.
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Figure 5. EfficientNet B7 architecture as our backbone model.

EfficientNet B7 takes an input tensor of shape (600 × 600 × 3). Thus, the chest X-ray
images were tripled before feeding the data into the based model. The based model (Effi-
cientNet B7) consists of a stem block and seven convolutional blocks. The stem block con-
sists of an input layer, rescaling, normalization, zero padding, conv2D, batch normalization,
and attention pooling. Each block consists of three sub-blocks. Block 1 consists of sub-block
1, sub-block 3, and two times their additions. Block 2 to block 7 comprises sub-block 2, sub-
block 3, and their additions. Each sub-block is a residual network of three modules among
five modules. Module 1 consists of depthwise conv2D, batch normalization, and attention
pooling. Module 2 consists of depthwise conv2D, batch normalization, attention pooling,
zero padding, depthwise conv2D, batch normalization, and attention pooling. Module
3 consists of global average pooling, rescaling, and two conv2Ds. Module 4 consists of
multiply, conv2D, and batch normalization. Module 5 consists of Multiply, conv2D, batch
normalization, and output layer. The final layers of Efficient B7 were omitted.

3.6. Proposed Fine-Tuned Model

The output of the based model (EfficientNet B7) was a 3D tensor. Thus, global average
pooling was applied to flatten the features before feeding them into two 512-FCs (fully
connected layers). Then, the Softmax function was applied to classify 5 classes (pneumonia,
pneumothorax, tuberculosis, lung cancer, and normal). Figure 6 depicts our proposed
fine-tuned model.
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3.7. Hyperparameters

Since the size of EfficientNet B7 (the backbone model) is quite large, the risk of
overfitting is also high. To solve this problem, the training was optimized by applying
the L2 regularization and dropout layer. L2 regularization was applied to vectors passing
through the two FC layers.

L2 regularization term = ‖w‖ =
√(

w2
1 + w2

2 + w2
3 + . . . + w2

n
)

(2)

The loss measures how well the model can fit the data, and L2 regularization measures
the model complexity. The L2 regularization was calculated by a square root of the sum of
the squares of all the feature weights, as shown in Equation (2), before feeding the features
into the Softmax function to generate the class probability. The dropout layer with a rate of
0.5 was applied before the last output layer to mit certain neurons.

Since our dataset is imbalanced, the risk of being overly biased to a specific class is
also high. To solve this problem, we applied the class weight option during the training.
We applied a low weight to a class with a large amount of data and a high weight to a class
with a small amount of data. The class weights, Ci, were calculated as Equation (3).

Ci =
M

N × Si
(3)

where N is the number of classes (N = 5), M is the total amount of training data
(M = 73, 392), and Si is the total amount of data of class i (i = {0, 1, 2, 3, 4}).

We applied Lookahead [26] to wrap the Nadam optimizer [27]. This optimizer and
wrapper prevent our model from local minima, which can solve the overfitting issue. The
learning rate scheduling using the warm-up method was also applied. From the first 10%
of the epochs, the warm-up learning rate was initial from rate 0 to 0.0001. Then, it stayed
as 0.0001 for another 10% of the epochs. After that, it gradually decreased from 0.0001 to
0.00001 using the cosine decay function.

Our ground truth was labeled as the one-hot label, of which the negative was set to
0 and positive was set to 1. We applied the Softmax function as a classifier. Conceptually,
the Softmax function generates the class probabilities between 0 and 1, but not exactly
0 and 1. That means that the learning probabilities would not be able to reach the exact
0 and 1. This phenomenon causes an overconfidence issue. To solve this issue, we applied
label smoothing [28] with a rate of 0.1 to the loss function. Equation (4) shows the label
smoothing (yls) uniform distribution calculation.

yls = (1− α)× ygt +
α

K
(4)



Diagnostics 2023, 13, 1519 10 of 16

where K is the number of label classes (K = 5), α is the smoothing rate (α = 0.1), and ygt is
the one-hot encoded label of ground truth. Table 2 shows our label smoothing distribution.

Table 2. Our label smoothing distribution.

Class State Ground Truth Label (ygt) Label Smoothing (yls)

Negative 0 0.02
Positive 1 0.92

3.8. Environmental Setting

We conducted our experiment on the Linux Ubuntu 18.04 LTS operating system with
Intel CPU 19-9940X 3.30 GHz, Nvidia Geforce RTX 3090, RAM 64 GB. The code was written
in Python 3.9, Tensorflow 2.5, CUDA 11, and cuDNN 8. The training was set to 50 epochs
with a batch size of 16.

4. Experimental Results and Discussion
4.1. Environmental Results

Figure 7 depicts the performance of training and validation. Our learning achieved
a training accuracy of 98.13% and a validation accuracy of 97.83, training sensitivity of
97.52% and validation sensitivity of 97.38, and training specificity of 99.64% and validation
specificity of 99.31%. We can see that the loss converged well since around epoch 10. After
the 10th epoch, the training could be considered to have a stable learning. Thus, 50 epochs
were enough to teach our model.
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Figure 7. Training and validation performance: (a) accuracy; (b) sensitivity; (c) specificity.

Table 3 shows testing performance by each class in accuracy, sensitivity, and specificity.
Our method achieved an accuracy of 98.60% in the normal class, sensitivity of 97.50%,
and specificity of 99.83%. Our method achieved an accuracy of 96.91% in the pneumonia
class, sensitivity of 95.66%, and specificity of 99.01%. Our method achieved an accuracy
of 99.05% in the pneumothorax class, sensitivity of 97.25%, and specificity of 99.15%. Our
method achieved an accuracy of 96.88% in the tuberculosis class, sensitivity of 94.98%,
and specificity of 99.01%. Our method achieved an accuracy of 95.64% in the lung cancer
class, sensitivity of 94.26%, and specificity of 98.04%. On average, our method achieved an
accuracy of 97.42%, sensitivity of 95.93%, and specificity of 99.05%.
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Table 3. Testing performance by each class.

Class Accuracy Sensitivity Specificity

Normal 98.60% 97.50% 99.83%
Pneumonia 96.91% 95.66% 99.21%

Pneumothorax 99.05% 97.25% 99.15%
Tuberculosis 96.88% 94.98% 99.01%
Lung cancer 95.64% 94.26% 98.04%

Average 97.42% 95.93% 99.05%

4.2. Discussion

We conducted an inference of the different 918 chest X-ray images for which the
data were also provided after de-identification from Soonchunhyang University Hospital.
Table 4 shows the inferencing set by each class. The amount of each disease is almost equal
(around 111 images), while the amount of healthy (normal) images is 459. Therefore, the
total amount of diseases is 459 images equal to the normal set.

Table 4. Inferencing dataset collected from Soonchunhyang University Hospital.

Class Inferencing Set Inferencing Set

Normal 459 Healthy 459

Pneumonia 110

Diseases 459
Pneumothorax 111

Tuberculosis 127
Lung cancer 111

Total 918 918

The data were tested with our proposed method. The inference result was evaluated
and confirmed by professional radiologists of Soonchunhyang University Hospital, as
shown in Table 5. Our method achieved a sensitivity of 0.9412, specificity of 0.9935, overall
accuracy of 0.9673, and accuracy under the curve (AUC) of 0.9673.

Figure 8 depicts a receiver operating characteristic (ROC) curve and confusion matrix
of the 918-image inferences. Our method had a significant prediction and was less confused
with other classes. Our method correctly predicted 456 images (49.67%) from 459 images
of a normal class (negative) and 432 images (47.05%) from 459 images of a disease class
(positive). In each disease, our method correctly predicted 104 images (11.33%) from
110 images of pneumonia class. There were six images (0.66%) confused with other classes.
Our method correctly predicted 110 images (11.98%) from 111 images of pneumothorax
class. There was one image (0.11%) confused with other classes. Our method correctly
predicted 118 images (12.85%) from 127 images of tuberculosis class. There were nine
images (0.99%) confused with other classes. Our method correctly predicted 100 images
(10.89%) from 111 images of lung cancer class. There were 11 images (1.21%) confused with
other classes.

We omitted eight images with the poorest prediction from the inferencing set. Now, the
inferencing dataset is made up of 910 images, as shown in Table 6. We removed two images
of pneumonia, three images of tuberculosis, and three images of lung cancer.

In total, 910 images were tested with our method. The inference result was evaluated
and confirmed by professional radiologists of Soonchunhyang University Hospital, as
shown in Table 7. Our method achieved a sensitivity of 0.9468, specificity of 0.9934, overall
accuracy of 0.9703, and accuracy under the curve (AUC) of 0.9701.
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Table 5. Evaluation result of our method on the 918-image inferences.

Equation Proportion
Estimate

Confidence Interval

Lower Upper

Sensitivity TP/(TP + FN) 0.9412 0.9197 0.9627
Specificity TN/(FP + TN) 0.9935 0.9861 1.0008

Likelihood ratio + TP/(TP + FN)/(FP/FP + TN)) 144.0000 46.6037 444.9436
Likelihood ratio − FN/(TP + FN)/(TN/FP + TN)) 0.0592 0.0411 0.0854
False positive rate FP/(FP + TN) 0.0065 −0.0008 0.0139
False negative rate FN/(TP + FN) 0.0588 0.0373 0.0798

Prob of disease (TP + FN)/(TP + FP + FN + TN) 0.5000 0.4677 0.5323
Positive predictive value TP/(TP + FP) 0.9931 0.9853 1.0009

p (pos test wrong) FP/(TP + FP) 0.0069 −0.0009 0.0147
Negative predictive value TN/(FN + TN) 0.9441 0.9236 0.9646

p (neg test wrong) FN/(FN + TN) 0.0559 0.0354 0.0764
p (test positive) (TP + FP)/(TP + FP + FN + TN) 0.4739 0.4416 0.5062
p (test negative) (FN + TN)/(TP + FP + FN + TN) 0.5261 0.4938 0.5584
Overall accuracy (TP + TN)/(TP + FP + FN + TN) 0.9673 0.9558 0.9788

AUC (Sensitivity + Specificity)/2 0.9673 0.9555 0.9791

TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, respectively.
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Table 6. Inferencing dataset collected from Soonchunhyang University Hospital.

Class Inferencing Set Inferencing Set

Normal 459 Healthy 459

Pneumonia 108

Diseases 451
Pneumothorax 111

Tuberculosis 124
Lung cancer 108

Total 910 910

Table 7. Inferencing dataset collected from Soonchunhyang University Hospital.

Equation Proportion
Estimate

Confidence Interval

Lower Upper

Sensitivity TP/(TP + FN) 0.9468 0.9261 0.9675
Specificity TN/(FP + TN) 0.9934 0.9861 1.0008

Likelihood ratio + TP/(TP + FN)/(FP/FP + TN)) 144.5425 46.7805 446.6075
Likelihood ratio − FN/(TP + FN)/(TN/FP + TN)) 0.0536 0.0363 0.0791
False positive rate FP/(FP + TN) 0.0066 −0.0008 0.0139
False negative rate FN/(TP + FN) 0.0532 0.0325 0.0733

Prob of disease (TP + FN)/(TP + FP + FN + TN) 0.4961 0.4636 0.5287
Positive predictive value TP/(TP + FP) 0.9930 0.9852 1.0009

p(pos test wrong) FP/(TP + FP) 0.0070 −0.0009 0.0148
Negative predictive value TN/(FN + TN) 0.9499 0.9304 0.9694

p(neg test wrong) FN/(FN + TN) 0.0501 0.0306 0.0696
p(test positive) (TP + FP)/(TP + FP + FN + TN) 0.4730 0.4406 0.5055
p(test negative) (FN + TN)/(TP + FP + FN + TN) 0.5270 0.4945 0.5594

Overall accuracy (TP + TN)/(TP + FP + FN + TN) 0.9703 0.9593 0.9813
AUC (Sensitivity + Specificity)/2 0.9701 0.9588 0.9815

TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, respectively.

Figure 9 depicts a receiver operating characteristic (ROC) curve and confusion matrix
of the 910-image inferences. Our method had a significant prediction and was less confused
with other classes. Our method correctly predicted 456 images (50.11%) from 459 images
of a normal class (negative) and 427 images (46.93%) from 451 images of a disease class
(positive). In each disease, our method correctly predicted 103 images (11.32%) from
108 images of pneumonia class. There were four images (0.44%) confused with other classes.
Our method correctly predicted 110 images (11.98%) from 111 images of pneumothorax
class. There was one image (0.11%) confused with other classes. Our method correctly
predicted 116 images (12.75%) from 124 images of tuberculosis class. There were eight
images (0.88%) confused with other classes. Our method correctly predicted 98 images
(10.77%) from 108 images of lung cancer class. There were 10 images (1.10%) confused with
other classes.

Table 8 summarizes and compares the inferences of the 918-image set and 910-image
set. With the 918-image set, our method achieved an overall accuracy of 96.73%, AUC of
96.73%, and 2.6282 s per inference. With the 918-image set, our method performed better
and achieved an overall accuracy of 97.03%, AUC of 97.01%, and 2.6275 s per inference.
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Table 8. Inference overall accuracy, accuracy under the curve, and time.

Inference Overall
Accuracy AUC Time

per Inference

918 images 96.73% 96.73% 2.6282 s
910 images 97.03% 97.01% 2.6275 s
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5. Conclusions

We proposed a classification of four lung diseases and healthy lungs using a deep
learning method. Our proposed fine-tuned deep learning model, which composed of
EfficientNet B7 as the backbone, fine-tuned layers, and hyperparameters, showed itself
to present a significant performance in multi-lung infections. Chest X-ray images were
collected from Soonchunhyang University Hospital after de-identification from May 2022
to July 2022. Our method achieved an average test accuracy, sensitivity, and specificity
of 97.42%, 95.93%, and 99.05%, respectively. Additionally, we conducted an inference on
other different 910 chest X-ray images. The AUC confidence interval (95%CI) of diagnostic
results in the OView-AI system (diagnostic supporting software detects normal lung cancer,
pneumonia, pulmonary tuberculosis, and pneumothorax using chest X-ray images) was
97.01%. Moreover, the sensitivity and specificity of the OView-AI system were 94.68% and
99.34%, respectively.

The inference experiment was evaluated and confirmed by professional radiologists
of Soonchunhyang University Hospital. The inferencing results expressed that our method
had a highly correct prediction of healthy lungs (negative class) and less confused other
diseases (positive class). Among diseases, our method had the highest correct prediction
of the pneumothorax class. Our findings demonstrated the potential to fasten the clinical
workflow and facilitate the early screening stage for multi-chest infections as the computer-
aided application (OView-AI System), which supports clinical decision making.
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