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Abstract: Approximately 32–42% of very preterm infants develop minor motor abnormalities. Earlier
diagnosis soon after birth is urgently needed because the first two years of life represent a critical
window of opportunity for early neuroplasticity in infants. In this study, we developed a semi-
supervised graph convolutional network (GCN) model that is able to simultaneously learn the
neuroimaging features of subjects and consider the pairwise similarity between them. The semi-
supervised GCN model also allows us to combine labeled data with additional unlabeled data to
facilitate model training. We conducted our experiments on a multisite regional cohort of 224 preterm
infants (119 labeled subjects and 105 unlabeled subjects) who were born at 32 weeks or earlier from
the Cincinnati Infant Neurodevelopment Early Prediction Study. A weighted loss function was
applied to mitigate the impact of an imbalanced positive:negative (~1:2) subject ratio in our cohort.
With only labeled data, our GCN model achieved an accuracy of 66.4% and an AUC of 0.67 in the
early prediction of motor abnormalities, outperforming prior supervised learning models. By taking
advantage of additional unlabeled data, the GCN model had significantly better accuracy (68.0%,
p = 0.016) and a higher AUC (0.69, p = 0.029). This pilot work suggests that the semi-supervised GCN
model can be utilized to aid early prediction of neurodevelopmental deficits in preterm infants.

Keywords: preterm infant; machine learning; deep learning; graph convolutional network; diffusion
MRI; T2-weighted MRI; motor abnormality; cerebral palsy; neurodevelopment; prognosis

1. Introduction

Preterm birth poses a high risk of developing motor abnormalities compared to infants
who are term born [1,2]. Very preterm infants (<32 weeks gestational age) are especially
at increased risk [3]. Globally, an estimated 32–42% of very preterm infants develop
minor motor abnormalities [4,5]. Typical motor abnormalities, such as cerebral palsy
and delayed motor development, and poor fine motor skills, are the result of abnormal
brain development or brain injury during the fetal or neonatal period [6–9]. However,
major motor impairments typically cannot be accurately diagnosed until 1–2 years of age,
and minor motor impairments take even longer to diagnose [6]. Earlier diagnosis soon
after birth is urgently needed, as the first 2 years of life represents a critical window of
opportunity for early neuroplasticity in preterm infants [7]. Accurate and early prediction
of motor abnormalities enables us to target early interventions to the highest-risk infants
during periods of optimal neuroplasticity to improve their quality of life.
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Diffusion tensor imaging (DTI) is an advanced MRI technique used to detect how water
molecules travel along the white matter tracts in the brain [10,11]. It allows a more complex
investigation of brain white matter microstructure and macrostructure [3,12,13]. In recent
years, several studies have used DTI-derived features to predict motor abnormalities in
preterm infants [14–18]. Despite the promising results of machine learning, especially deep
learning, in the early prediction of motor abnormalities in neonates, the previous studies
solely focused on analyzing the features of individual subjects in isolation, neglecting
potential pairwise interactions between subjects.

A graph provides a natural framework for capturing pairwise relationships between
individuals [19–21]. In a graph, individuals can be represented as nodes and pairwise
relationships can be represented as edges (binary or weighted). The recent advent of
graph convolutional networks (GCNs) [22,23] has led to advanced disease classification
applications that simultaneously consider features of individual subjects and relationships
between subjects. For example, Parisot et al. [24] constructed sparse population graphs
for the diagnosis of autism spectrum disorder (ASD) and Alzheimer’s disease (AD). In
a more recent work, Jiang et al. [25] developed a hierarchical GCN to further improve
performance in ASD and AD classification tasks. These promising results inspired us to
explore the capabilities of GCN models in the task of predicting motor abnormalities in
very preterm infants.

For node classification tasks, GCN models are actually trained in a semi-supervised
learning manner, enabling us to arbitrarily integrate more data from subjects regardless of
the availability of their labels [22]. Prior early motor abnormality prediction models were all
supervised learning models that used labeled training data only [14–17]. Semi-supervised
learning methods can produce considerable improvement in classification accuracy by
using additional unlabeled data together with labeled data [26,27]. Thus, we set out to
explore whether a semi-supervised GCN model is able to improve prediction of motor
abnormalities by leveraging the available unlabeled data.

In this study, we developed a semi-supervised GCN model for predicting motor
abnormalities at 2 years corrected age using DTI data obtained from very preterm infants
at term-equivalent age. We conducted our work on a multisite regional cohort of preterm
infants born at 32 weeks or earlier from the Cincinnati Infant Neurodevelopment Early
Prediction Study (CINEPS). We sought to test our hypothesis of whether such a semi-
supervised GCN model can improve prediction performance over peer supervised machine
learning and deep learning models. We also hypothesized that the integration of labeled
and unlabeled data will boost the performance of GCN models that used labeled DTI
data alone.

2. Materials and Methods
2.1. Overview

An overview of our semi-supervised GCN framework for early risk prediction of
motor impairment is illustrated in Figure 1. When this work commenced, only about
half of the cohort had received 2-year motor assessment (labeled subjects), while the
other half had not reached 2 years corrected age (unlabeled subjects). For subject (node)
classification tasks, GCN models are trained in a semi-supervised learning manner, a
strategy between supervised learning (with only labeled data) and unsupervised learning
(with only unlabeled data). This allowed us to utilize the whole cohort regardless of
their label availability. Given both labeled (blue and red) and unlabeled (gray) subjects
ready for model learning, our main task was to classify new subjects (yellow) into one of
the label groups. We first constructed an initial cohort graph, represented by a weighted
graph G(v, E , W) (Figure 1A). In this graph, each node v represents a subject associated
with a set of node features, and the weighted edge E represents the similarity between
two subjects associated with a weight W reflecting the similarity scale. This initial cohort
graph includes labeled subjects (positive (P) and negative (N)), unlabeled subjects (U),
and new to-be-classified subjects. We formulated our motor abnormalities prediction task
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as a graph node binary classification problem, where the semi-supervised GCN model
learned the initial cohort graph and assigned labels (i.e., positive for high risk and negative
for low risk of developing motor abnormalities) to subjects in the learned cohort graph.
We obtained DTI-derived brain structural connectomes and utilized vectorized structural
connectivity as the node features (Figure 1B). We calculated the similarity between brain
structural connectomes as the weight W(i, j) of edge E between subjects i and j (Figure 1C).
Additional details are elaborated in the cohort graph construction section.
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Figure 1. The proposed semi-supervised learning framework to predict motor impairment at 2 years
corrected age using brain structural connectomes derived from DTI data acquired at term in very
preterm infants. Given both labeled (blue and red) and unlabeled (gray) subjects ready for model
learning, our task was to classify new subjects (yellow) into one of the label groups. (A) We con-
structed an initial cohort graph, including labeled subjects (positive (P) and negative (N)), unlabeled
(U) subjects, and to-be-predicted new subjects. The semi-supervised GCN model learned the initial
cohort graph and assigned labels (i.e., positive for high risk and negative for low risk of developing
motor impairment) to new subjects in the learned cohort graph. (B) We used diffusion tensor imaging
(DTI)-derived brain structural connectomes as node features and (C) the similarity between brain
connectomes as edge weights between nodes.

2.2. Data Acquisition and Processing
2.2.1. Subjects and MRI Data Acquisition

The Cincinnati Children’s Hospital Institutional Review Board approved this study. A
parent or guardian of each infant gave written informed consent before enrollment. A total
of 264 very preterm infants from five level-III Greater Cincinnati area neonatal intensive
care units were enrolled at the time this work commenced. Cohort exclusion criteria
included: (1) subjects with cyanotic heart disease or chromosomal or congenital anomalies
affecting the central nervous system; (2) subjects who were hospitalized and mechanically
ventilated on more than 50% supplemental oxygen at 45 weeks postmenstrual age (PMA).
All experimental protocols involving human subjects were performed in accordance with
the Declaration of Helsinki.

All study infants were imaged during unsedated sleep between 40 and 44 weeks
postmenstrual age on a 3T Philips Ingenia scanner (Eindhoven, The Netherlands) with
a 32-channel receiver head coil. All MRI scans were performed at Cincinnati Children’s
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Hospital. A skilled neonatal nurse and neonatologist were both present for any scans
requiring positive pressure airway support. The MRI data acquisition parameters were as
follows: B800 DTI: echo time, 88 ms; repetition time, 6972 ms; flip angle, 90◦; field of view,
160 × 160 mm2; 80 × 79 matrix; 2 mm contiguous slices; scan time, 5:58 min. Thirty-six
directions of diffusion gradients were applied with a b-value of 800 s/mm2; low b-value = 0
(4 b0 images were acquired with posterior–anterior phase encoding, and 1 b0 image was
acquired with anterior–posterior phase encoding); axial T2-weighted MRI: echo time,
166 ms; repetition time, 18,567 ms; flip angle, 90◦; voxel dimensions, 1.0 × 1.0 × 1.0 mm3;
scan time, 3:43 min.

2.2.2. MRI Data Preprocessing and Feature Extraction

We excluded 40 subjects due to severe brain injuries or large motion artifacts. The final
cohort in this work contained 224 very preterm infants. For each subject, the DTI data were
preprocessed using FMRIB’s Diffusion Toolbox (in the FMRIB Software Library, FSL, FMRIB
Analysis Group, 6.0.1, Oxford, UK). Diffusion tensor reconstruction and brain fiber tracking
used Diffusion Toolkit (0.6.4, Massachusetts General Hospital, Boston, MA, USA)/TrackVis
(0.6.1, Massachusetts General Hospital, Boston, MA, USA) [28]. Head motion and eddy
current artifacts were mitigated by aligning all diffusion images to their B0 image via an
affine transformation. The fiber tracking was performed employing a deterministic tracking
algorithm and used an angular threshold of 35 degree with a fiber length threshold of
5 mm [29]. The whole-brain structural connectome was constructed based on 90 regions of
interest (ROIs) defined form a neonatal automated anatomical labeling (AAL) atlas [30].
The structural connections between each pair of ROIs were calculated as the mean fractional
anisotropy of each voxel intersecting the tract and then averaged over all tracts between the
two ROIs, resulting in a 90 × 90 symmetric adjacency matrix. This was performed using
the UCLA Multimodal Connectivity Package (1.1, UCLA, Los Angeles, CA, USA) [31].

2.2.3. Motor Abnormalities Evaluation at 2 Years Corrected Age

Motor abnormalities evaluation was conducted for our subjects at 2 years corrected
age as the gold-standard reference. One hundred and nineteen preterm infants had received
the standardized Bayley Scales of Infant and Toddler Development III (Bayley-III) test at
2 years corrected age, and the remaining 105 infants had not yet reached this age at study
commencement [32]. The Bayley-III Motor function composite (of fine and gross motor)
sub-score was utilized to evaluate the risk of motor abnormalities for individual very
preterm infants. The Bayley-III motor scores were normalized to a scale of 40–160, with a
mean of 100 and a standard deviation of 15. We chose one standard deviation below the
mean (i.e., 85) as the cutoff value to dichotomize the cohort into a high-risk group (motor
score ≤ 85; 37 subjects) and a low-risk group (motor score > 85; 82 subjects) in terms of
developing moderate/severe motor abnormalities.

2.3. Semi-Supervised Graph Convolutional Networks
2.3.1. Construction of the Initial Cohort Graph

Graph construction is an important foundation for our semi-supervised learning
framework. In this work, we constructed an initial cohort graph for the semi-supervised
GCN to learn the features of individual subjects and capture their relationships. Specifically,
we represented the very preterm infant cohort using a weighted graph G(v, E , W), where
each node v of the graph represented a very preterm infant, and the weighted edge E
represented the relationship between two infants associated with a weight W. This cohort
graph contained all very preterm infants with or without 2-year motor function follow-up
assessment tests. Each node v was associated with a set of features. In our setting, we
extracted and vectorized the unique connectivity weights of individual brain structural
connectomes as a vector of 4005 features. Furthermore, we applied the natural exponential
of Euclidean distance between node features (i.e., vectorized brain connectomes) as the
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similarity/relationship between very preterm infants. As in a prior study [20], the edge
weight between nodes i and j can be calculated by

W(i, j) = e−
d(SC(i), SC(j))

2σ2

where d is the Euclidean distance, SC(i) and SC(j) are the brain structural connectome fea-
tures of subjects i and j, and σ is a coefficient that determines the edge weight distribution.

The edge weight W is a number between 0 and 1. Figure 2 shows how edge weights
between two nodes change according to the Euclidean distance between the brain con-
nectomes of two nodes. When the Euclidean distance between node features is zero,
that is, when two nodes have the same features, the edge weight is 1. When the Eu-
clidean distance between node features increases, the edge weight decreases. When the
Euclidean distance between node features is infinite, the edge weight becomes zero. The
rationale is that subjects with the same labels (high-risk or low-risk motor impairments)
tend to have more similar brain structural connectomes than subjects with different labels.
The coefficient σ can be optimized to control the edge weight distribution for specific
applications. In this work, we optimized graph construction using various coefficients
σ = [0.7, 1.0, 1.3, 1.6, 1.9, 2.2] based on prediction performance. As such, we defined the
initial cohort graph for our very preterm infants with explicit node features and edge weights.
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brain connectomes of two nodes. Various coefficients σ (i.e., sigma values) determine the edge
weight distribution.

2.3.2. Architecture of the Graph Convolutional Network

In this section, we elaborate the architecture of the semi-supervised GCN model for
the early motor impairment risk prediction task. Given the constructed initial cohort graph
G(v, E , W), the adjacency matrix of the graph is represented as A ∈ RN×N , and the node
feature matrix is represented as X ∈ RN×M, where N is the number of subjects/nodes and
M is the number of features (i.e., 4005 brain structural connectivity weights). The graph
convolutional layer encodes the nodes with a forward propagation rule:

Hl+1 = D̃−
1
2 ÃD̃−

1
2 HlW l

where Ã = A + I is the adjacency matrix with added self-connections and I is the identity
matrix. W l ∈ RM×F is the weight matrix of graph convolutional filters in the layer
l. D̃−

1
2 ÃD̃−

1
2 is the approximation of the normalized graph Laplacian of the weighted

graph G(v, E , W), developed by [22] using a truncated expansion in terms of Chebyshev
polynomials. Hl+1 is the node feature embedding matrix of layer l + 1, aggregating the
node feature embedding Hl from layer l using the graph adjacency matrix A, and H0 = X.

We demonstrate the architecture of the developed semi-supervised GCN model in
Figure 3. Our GCN model consists of a series of L graph learning blocks. Each of the
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first L − 1 graph learning blocks is made of a graph convolutional layer with k graph
convolutional filters, a batch normalization layer, a rectified linear unit (ReLU) activation
layer, and a dropout layer. At the end, we append a block with a graph convolutional layer,
a batch normalization layer, and a SoftMax layer as the output of the GCN model for label
classification. The number of hidden graph learning blocks is selected from [1, 2, 3, 4]. The
number of graph convolutional filters is selected from [512, 256, 128, 64, 32, 16], according
to a prior DTI study [33].
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Figure 3. Architecture of the semi-supervised graph convolutional network (GCN) model. The
model learns the whole cohort graph and outputs labels for individual nodes/subjects. Our GCN
model consists of L hidden graph learning blocks and a final output block with a SoftMax layer for
classifying graph nodes. Labeled samples are marked blue and red, Unlabeled samples are marked
gray. New samples are marked yellow. P: positive, N: negative, U: unlabeled.

2.3.3. Model Training

The proposed semi-supervised GCN model can be trained using the binary cross-
entropy loss function:

L = − 1
N

N

∑
i=1

yi log(p(yi|SC(i))) + (1− yi) log(1− p(yi|SC(i)))

where p(yi|SC(i)) is the probability of the ith subject’s structural connectome SC(i) being
classified as the label yi. However, since only a small portion of the cohort were at high
risk for motor abnormalities, the sample ratio between the high-risk and low-risk motor
impairment groups was highly imbalanced—a unique challenge that was not encountered
in prior graph-based studies [24]. To mitigate the impact of such an imbalanced dataset
issue, we considered a weighted binary cross-entropy loss function:

L = − 1
N

N

∑
i=1

βiyi log(p(yi|SC(i))) + βi(1− yi) log(1− p(yi|SC(i)))

where p(yi|SC(i)) is the probability of the ith subject’s structural connectome SC(i) being
classified as the label yi. The class weight βi =

N
Ci

is computed using the inverse frequency
method, where the variable Ci is the total number of samples for the class group of subject i.

To train the GCN model, we applied the Adam algorithm [34] to optimize the weights
of the model with an initial learning rate of 0.01, the first and second decay rates being
0.9 and 0.999. We set a maximal epoch of 2000. During model training, the whole initial
cohort graph (adjacency matrix A) and their feature vectors (feature matrix X) were inputted
into the model. Only a training subset of the graph nodes was labeled. The remaining
graph nodes (either unlabeled subjects or to-be-classified subjects in the testing set) can
be seen by the GCN model without any label information during training. The features of
these unlabeled nodes/subjects would impact the graph convolutions of labeled subjects
when the GCN model performed the forward propagation. This makes the GCN model
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learn both labeled subjects (features and labels) and unlabeled subjects (features only) in a
semi-supervised manner.

2.3.4. Model Evaluation

We evaluated the classification performance of the proposed semi-supervised GCN
model through 5-fold cross-validation. The labeled subjects were partitioned into 5 portions.
While one portion of labeled subjects was used for testing, the other 4 portions were used for
model training. The unlabeled subjects (i.e., very preterm infants without 2-year follow-up
tests) were included in the training procedure to aid the GCN model training and were not
included in the testing procedure. This process was repeated 50 times to evaluate model
performance variations.

We also compared our semi-supervised GCN model with several peer machine learn-
ing and deep learning models that have been applied in brain structural connectome
studies [35,36], including a logistic regression model, a ridge classifier model, linear and
nonlinear support vector machine (SVM) models, and deep neural networks. To handle
imbalanced datasets, weighted variations of the aforementioned models were utilized if
applicable. We trained weighted SVM models and also applied weighted cross-entropy loss
functions to train the deep neural networks. After all of the models were trained, we evalu-
ated the model performance by calculating the means and standard deviations (SDs) of
five performance metrics, including accuracy, balanced accuracy, sensitivity, specificity, and
area under the receiver operating characteristic curve (AUC), for binary risk classification
of motor abnormalities.

3. Results
3.1. Subjects

We had a final cohort of 224 very preterm infants in this study after data exclusion
( Section 2). Among them, 119 subjects had received the standardized Bayley III test at
2 years corrected age (labeled subjects), while the other 105 subjects (unlabeled subjects)
had not reached 2 years of age when this study commenced. A cutoff value of 85 (i.e., one
standard deviation below the mean Bayley III motor score) was utilized to dichotomize the
labeled subjects into groups at high risk (≤85; 37 subjects) and at low risk (>85; 82 subjects)
of developing moderate/severe motor abnormalities. Detailed demographics of the study
cohort are listed in Table 1.

Table 1. Demographics of the subjects in the high-risk group, the low-risk group, and the unlabeled group.

High-Risk Group Low-Risk Group Unlabeled Group

Number of subjects N = 37 N = 82 N = 105
Gestational age at birth (weeks) 28.9 (2.6) 29.3 (2.4) 29.5 (2.5)

Postmenstrual age at the scan (weeks) 42.7 (1.1) 42.0 (1.3) 43.0 (1.2)
Female, N (percentage) 11 (29.7%) 43 (52.4%) 45 (42.8%)

Birth weight (gram) 1244.7 (462.8) 1276.0 (424.4) 1353.7 (429.1)
Continuous variables are listed as mean (standard deviation).

3.2. Semi-Supervised GCN Model Optimization

We first conducted optimization experiments to explore the best hyperparameters,
including the weight coefficient σ, the number of graph filters, and the number of graph
layers. Figure 4A demonstrates the model classification performance in terms of AUCs
when the initial cohort graph was constructed using various weight coefficients σ. Given a
GCN model with three layers and 128 graph filters in each layer, the best prediction AUC
was achieved when the initial cohort graph was constructed using coefficient σ = 1.6. This is
likely because the initial cohort graph (σ = 1.6) was optimally constructed to model pairwise
relationships between subjects. Similarly, Figure 4B shows the model’s AUCs obtained by
three-layer GCN models with different numbers of graph filters in individual layers. For
the initial cohort graph (σ = 1.6), the AUC of our GCN model increased as the number of
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graph filters decreased. It reached peak performance (0.69 ± 0.04) when the number of
filters was 128 and then decreased along with the decrease in the number of filters.
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convolutional filters in individual layers.

Next, we continued to optimize the GCN model by searching for the optimal number
of graph convolutional layers in the GCN model. We trained the GCN models with layers
l = [1, 2, 3, 4], and prediction performance with respect to motor impairment risk was
evaluated on testing subjects using the learned cohort graph. As shown in Figure 5, the
model performance increased as we increased the number of graph convolutional layers.
The model performance started to drop when the number of layers in the GCN model
reached four layers. Thus, we obtained an optimal architecture for our GCN model, which
consists of three graph learning blocks. The first and second blocks are made of a graph
convolutional layer with 128 graph convolutional filters, a batch normalization layer, a
ReLU activation layer, and a dropout layer. The third block contains a graph convolutional
layer with 128 graph filters, a batch normalization layer, and a SoftMax layer as the output
of the model. The optimal accuracy (68.0% ± 3.4%), balanced accuracy (66.7% ± 3.8%), and
AUC (0.69 ± 0.04) were achieved by this optimized GCN model.
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3.3. Performance Comparison with Other Models

Next, we compared the proposed GCN model with several peer models (Section 2).
Table 2 shows the model performance comparison for our early motor impairment pre-
diction task. To investigate the effects of unlabeled data, we also trained the GCN model
with and without unlabeled subjects. With the help of unlabeled data, the semi-supervised
GCN model was able to identify subjects at high risk of developing moderate/severe motor
impairment with a mean accuracy of 68.0% and a mean AUC of 0.69, outperforming the
other peer models.

Table 2. Performance comparison for the prediction of very preterm infants at high risk vs. low risk
of developing moderate/severe motor abnormalities at 2 years corrected age.

Models Accuracy (%) BA (%) Sensitivity (%) Specificity (%) AUC

Logistic Regression 60.1 ± 4.0 58.7 ± 3.9 51.6 ± 4.4 65.7 ± 4.0 0.59 ± 0.03
Ridge Classifier 63.3 ± 3.7 61.2 ± 3.8 50.5 ± 4.2 71.9 ± 3.5 0.62 ± 0.04

SVM (linear kernel) 65.7 ± 3.4 64.5 ± 3.7 59.8 ± 5.1 69.1 ± 3.2 0.64 ± 0.03
SVM (rbf kernel) 66.2 ± 3.8 64.9 ± 4.0 61.5 ± 4.3 68.2 ± 4.1 0.65 ± 0.04

Deep neural network 65.9 ± 3.2 64.6 ± 4.4 60.2 ± 4.9 68.9 ± 4.3 0.64 ± 0.05

GCN (ours) 66.4 ± 3.3 65.4 ± 3.4 61.7 ± 4.7 69.0 ± 3.9 0.67 ± 0.05
GCN w/unlabeled (ours) 68.0 ± 3.4 66.7 ± 3.8 63.1 ± 4.9 70.2 ± 3.5 0.69 ± 0.04

Data are presented as mean ± standard deviation. BA—Balanced Accuracy; AUC—area under the receive operat-
ing characteristic curve; SVM—Support vector machine; rbf—radial basis function; GCN—graph convolutional
network. GCN w/unlabeled—GCN trained with labeled and unlabeled data. All other models were trained with
labeled data in a supervised manner.

Among peer supervised learning models, the nonlinear SVM model achieved the
best performance with a mean accuracy of 66.2% and an AUC of 0.65. Although the ridge
classifier reached a specificity of 71.9%, this superior performance was only due to its low
capability to handle the imbalanced dataset, and its sensitivity was undesirably low at
50.5%. Our semi-supervised GCN model without unlabeled data achieved a significantly
higher AUC (p = 0.029) than the nonlinear SVM model, although the accuracy difference
was not significant (p = 0.476). This validated our hypothesis that the semi-supervised GCN
model is able to improve prediction performance over peer supervised machine learning
and deep learning models.

Our GCN model with additional unlabeled data achieved improved prediction per-
formance over the GCN model without using any unlabeled data. By taking advantage
of 105 unlabeled data, the model had significantly better prediction performance in terms
of accuracy (68.0% vs. 66.4%, p = 0.016) and AUCs (0.69 vs. 0.67, p = 0.029). Our semi-
supervised GCN model also achieved better performance than a nonlinear SVM model,
with an increase of 1.8% in accuracy (p = 0.014) and 0.04 in AUC (p < 0.001). This vali-
dated our hypothesis that the integration of labeled and unlabeled data is able to boost the
performance of GCN models that used labeled data alone.

3.4. Impact of Weighted Loss Functions

To investigate the impact of weighted loss functions, we compared the performance
of our semi-supervised GCN model using either typical cross-entropy or weighted cross-
entropy loss functions. Figure 6 displayed the bar plots of five performance metrics from
the GCN models with two different loss functions. The model using the typical cross-
entropy loss function achieved a low sensitivity of 54.7 ± 4.8% and a high specificity of
73.2 ± 4.7%, indicating that this model tends to place more subjects in the low-risk group
than in the high-risk group. In contrast, the GCN model using the weighted loss function
reached a better equilibrium with an improved sensitivity of 63.1 ± 4.9% and a slightly
lower specificity of 70.2 ± 3.5%. Such a better equilibrium was also reflected in the higher
accuracy, balanced accuracy, and AUC of the semi-supervised GCN model trained with the
weighted cross-entropy loss function.
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4. Discussion

Early identification of very preterm infants who may develop moderate/severe motor
impairment is critical to design early personalized clinical intervention for improving their
quality of life. In this work, we developed a semi-supervised GCN model for the early
prediction of motor abnormalities at 2 years of age in very preterm infants using both
labeled and unlabeled neuroimaging data. Our GCN model achieved a mean accuracy of
68.0% and a mean AUC of 0.69 on a partially labeled cohort of 224 very preterm infants
and significantly outperformed multiple prior machine learning and deep learning models.

4.1. Comparison of the GCN Model with Other Models

Several prior studies have used DTI-derived features to predict motor abnormalities
of preterm infants using supervised learning models. Chau et al. [14] documented that
multiple brain regional fractional anisotropy values measured by DTI were associated with
adverse motor development of very preterm infants. Brown et al. [15] calculated topolog-
ical features (e.g., node degrees, clustering coefficients, and global efficiencies) of brain
structural connectomes derived from DTI data for individual very preterm infants, then
applied SVM models to discriminate between normal and abnormally low scores of motor
development. In another study, Kawahara et al. [16] proposed a deep learning framework
with customized convolutional filters to predict motor developmental scores by using
brain structural connectomes derived from DTI data for preterm infants. More recently, we
developed a deep convolutional neural network (CNN)-based multi-modal learning model
to integrate DTI data together with other data modalities to predict motor abnormalities in
very preterm infants [17]. However, these prior supervised learning models [14–17] in the
context of neurodevelopmental outcome prediction did not consider modeling pairwise
interactions between subjects and rather relied on subject-specific imaging feature vectors,
limiting the full potential of the discriminative ability of neuroimaging data.

Graph-based approaches have been successfully applied in disease diagnosis appli-
cations [20,21]. Zhao et al. [20] constructed a compact population graph by representing
AD and normal control subjects as nodes and deriving edge weights using a local recon-
struction method. Then, they conducted a node classification in the constructed population
graph to classify AD patients. Later, Tong et al. [21] developed a nonlinear graph fusion
approach to merge multi-modality data into a unified graph for AD classification. However,
these earlier studies mainly focused on pairwise relationships between subjects and did
not consider features of individual subjects. Compared to other models, the GCN model is
able to simultaneously learn neuroimaging features of subjects and consider the pairwise
similarity between neuroimaging features during the model training procedure. Thus,
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GCN models have achieved state-of-the-art classification results in multiple applications
for disease diagnosis. For example, Parisot et al. [24] applied GCN models in the diagnosis
of ASD and AD. In this study, a vector of neuroimaging features was associated with
nodes that represented subjects, and non-imaging features were used to model pairwise
relationships between subjects as edge weights. Then, GCN models were applied to learn
constructed population graphs and classify individual nodes into normal control or disease
groups. Theoretically, GCNs could be considered as generalizations of the classic CNN
model. Different from CNN models that operate on regular grid-like data/images using a
fixed receptive field, GCN models are able to capture both local and global information in
an irregular graph. Our GCN model outperformed other models in the early prediction of
motor impairment in preterm infants. This is consistent with prior studies [20,21] using
GCN models in other disease diagnosis applications.

4.2. Architecture Optimization of the GCN

In our work, we optimized our model by examining multiple hyperparameters, in-
cluding the edge weight coefficient, the number of graph filters, and the number of graph
layers. Our results showed that prediction performance reached a peak when our model
had three graph convolutional layers. The performance started to decrease once we added
more layers to the GCN model. The final GCN model contains three graph convolutional
layers, each of which has 128 graph filters. The optimal depth of our GCN model depends
on several factors, such as the complexity of the motor impairment prediction task. GCN
models with one or two layers are easy to train with a smaller dataset due to fewer train-
able weights. However, they may not have enough capacity to learn in such a complex
prediction task. On the other hand, GCN models with more layers may have dramatically
increased numbers of trainable weights of graph filters. Without a large dataset, simply
adding more layers to the GCN model may cause an overfitting issue in our early-prediction
task. Therefore, our GCN model with three layers reached the right balance between GCN
model complexity and our dataset size.

4.3. Semi-Supervised Learning Using Unlabeled Datasets

Furthermore, most prior early-prediction studies mainly relied on labeled data to train
supervised learning models. Typically, a large number of labeled training data are essential
to develop robust models with desirable generalizability. Unfortunately, labeled training
data are commonly very limited in most existing motor abnormalities prediction studies,
since it is very challenging to collect large-scale neuroimaging datasets, especially ones
with outcome data [37,38]. Acquiring later outcome data requires long-term follow-up of
subjects to obtain clinical diagnoses. In this sense, a semi-supervised learning strategy that
combines additional unlabeled data with labeled data during training may facilitate the
development of prediction models. It is relatively easy to acquire unlabeled data, since
clinical diagnoses or long-term follow-ups are not necessary. This means that it is feasible
to significantly enrich a dataset for model development. Our results (Table 2) suggest that a
semi-supervised GCN model is capable of leveraging additional unlabeled data to further
improve the prediction of motor abnormalities.

4.4. Weighted Loss Functions for Imbalanced Datasets

The imbalanced dataset issue is a unique challenge in early-prediction studies of
neurodevelopment in very preterm infants [17,35,39]. There are often significantly fewer
subjects who develop moderate–severe motor abnormalities than who do not. Although
this fact is desirable for infants, it creates a challenge for those developing machine learn-
ing models. When there are significantly more subjects in one group (referred to as the
majority group), a model tends to assign undesirably more subjects to this majority group
(i.e., low-risk motor impairment in this study) than to the minority group that contains fewer
subjects (i.e., high-risk motor impairment). To reduce the impact of such imbalanced dataset
issues, we applied a weighted cross-entropy loss function to train our semi-supervised
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GCN model. The results showed that the weighted loss function was effective to handle
this problem and prevent the model being biased toward the majority group.

4.5. Limitations

There are certain limitations to this current study. First, the main limitation of the
current work is that the semi-supervised GCN model represents a type of transductive
learning, which requires training data to be available when the trained model infers an
unseen new sample. This characteristic may limit the model’s applications on certain
low-memory devices, such as mobile devices. Second, the graph construction strategy is
key for a GCN model to perform a node classification task. An inappropriately constructed
graph may negatively impact the learning procedures of semi-supervised GCN models.
To generalize the method and achieve optimal performance in other applications, tailored
adjustments or modifications to the proposed graph construction may be necessary. Finally,
although we demonstrated that our semi-supervised GCN model is able to mitigate the
impact of small datasets, it is possible to further improve the model’s performance by using
additional labeled DTI data.

5. Conclusions

In this study, we strived to develop a semi-supervised GCN model for the early predic-
tion of motor impairment at 2 years corrected age in preterm infants using both labeled and
unlabeled DTI-derived brain structural connectomes. We demonstrated that the prediction
performance of our proposed semi-supervised GCN model exceeded that of several prior
supervised learning models. This semi-supervised GCN model can be generalized to aid
early prediction of various neurodevelopmental deficits in very preterm infants.
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