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Abstract: This paper proposes ensemble strategies for the deep learning object detection models
carried out by combining the variants of a model and different models to enhance the anatomical and
pathological object detection performance in brain MRI. In this study, with the help of the novel Gazi
Brains 2020 dataset, five different anatomical parts and one pathological part that can be observed
in brain MRI were identified, such as the region of interest, eye, optic nerves, lateral ventricles,
third ventricle, and a whole tumor. Firstly, comprehensive benchmarking of the nine state-of-the-art
object detection models was carried out to determine the capabilities of the models in detecting the
anatomical and pathological parts. Then, four different ensemble strategies for nine object detectors
were applied to boost the detection performance using the bounding box fusion technique. The
ensemble of individual model variants increased the anatomical and pathological object detection
performance by up to 10% in terms of the mean average precision (mAP). In addition, considering
the class-based average precision (AP) value of the anatomical parts, an up to 18% AP improvement
was achieved. Similarly, the ensemble strategy of the best different models outperformed the best
individual model by 3.3% mAP. Additionally, while an up to 7% better FAUC, which is the area under
the TPR vs. FPPI curve, was achieved on the Gazi Brains 2020 dataset, a 2% better FAUC score was
obtained on the BraTS 2020 dataset. The proposed ensemble strategies were found to be much more
efficient in finding the anatomical and pathological parts with a small number of anatomic objects,
such as the optic nerve and third ventricle, and producing higher TPR values, especially at low FPPI
values, compared to the best individual methods.

Keywords: anatomical and pathological object detection; model ensemble; benchmark; brain MRI

1. Introduction

Imaging technologies are frequently used for disease detection and evaluation in the
medical domain to overcome the uncertainty and limited detectability of human perception.
Different imaging methods such as magnetic resonance imaging (MRI), positron emission
tomography (PET), single-photon emission computed tomography (SPECT), ultrasound,
computed tomography (CT), and X-ray are actively used for medical analysis. MRI is
very frequently used in the quantitative assessment of brain-related disorders such as
Alzheimer’s disease, epilepsy, schizophrenia, multiple sclerosis, and brain cancer [1]. The
anatomical examination of the brain and determination of the anatomical regions is an
important research area since conditions such as deformity in the anatomical parts can be a
symptom of a disease. For this reason, detecting anatomical regions is frequently used in
subjects such as anatomical development, computer-assisted detection, computer-assisted
diagnosis, and patient follow-up [2].

Brain-specific anatomical studies are carried out to reveal many different structural
and functional functions: extraction of the brain atlas [3], clipping areas that do not belong
to the brain, such as the eye and skull, that are visible in MRI [4,5], revealing degenerations
in anatomical parts [6], quantitative analysis of diseases [6], and estimation of brain age [7].
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Bermudez et al. have shown that anatomical context and features increase the prediction
success [7]. However, in some cases, anatomical regions such as the eye or skull visible
on MRI may be evaluated as tumors by automated systems or cause bias. To avoid these
negative effects, regions are detected in the preprocessing step and are not included in the
analysis [6].

When studies on the detection of anatomical regions in the medical field are exam-
ined in detail, it is seen that early studies used traditional image processing techniques
and generally aimed at enhancing image interpretation [8,9]. Then, studies began to pro-
pose machine learning and artificial intelligence-based solutions. These solutions mainly
focused on object recognition, object detection, and segmentation. Heckemann et al. de-
veloped a prediction method for automatic brain MRI segmentation [10]. In the study
of Tu et al., machine-learning-based discriminative/generative models were proposed
for brain anatomical structure segmentation [11]. Bagci et al. proposed a hierarchical
ball scale-based method for multiobject recognition in 3D anatomical structures [12]. They
evaluated the technique they developed on both CT and MRI datasets. Cerrolaza et al. intro-
duced a new hierarchical segmentation framework that used wavelet transform to segment
anatomical structures containing multiple objects [13]. Bagci et al. developed a graph-based
joint segmentation method that used anatomical and functional images together from a
different perspective [14]. Brebisson and Montana presented a deep neural network-based
novel proposal for anatomical brain segmentation [15]. Finally, Alansary et al. used deep
reinforcement learning for anatomical landmark detection in brain MRI [16].

The segmentation task is frequently preferred in deep learning-based anatomical
brain MRI studies. Segmentation is generally performed to extract normal regions (e.g.,
white matter, gray matter, and cerebrospinal fluid) [17] and abnormal regions (e.g., tumor
and edema) [18]. One of the most important reasons for this situation is that the existing
medical datasets are sufficient for only this much, both in the number and number of labels.
In addition, it is imperative to detect anatomical structures that belong to the brain and
do not belong to the brain, such as the eye and skull, because making this determination
has direct effects on the high success rate of the automated systems. Segmentation studies
are divided into three primary CNN-based groups based on the deep learning architecture
used: patch-wise, semantic-wise, and cascaded architectures [4]. Patch-wise architectures
are one of the primary approaches, and the training in these architectures is performed
with NxN patches around the relevant pixel. In semantic-wise segmentation, each pixel is
assigned to one of the predetermined class labels to make it meaningful. Lastly, in cascaded
architectures, more than one CNN architecture is used together, and the output of the
former is used as the latter’s input. In this context, Akil et al. performed fully automatic
brain tumor segmentation for high-grade and low-grade glioblastoma with convolutional
neural network CNN-based selective attention using overlapping patches and multiclass
weighted cross entropy [19]. Liu et al. proposed an anatomical landmark-based deep
feature learning framework for automatically extracting patch-based representation from
brain MRI for Alzheimer’s disease [20]. Finally, Basher et al. suggested a two-stage
ensemble CNN for real-time 3D anatomical structure localization from MRI [21].

Segmentation approaches are dominant in anatomical studies specific to brain MRI.
One of the most important reasons for this is the characteristics of the publicly available
datasets. However, it is seen that adding an object detection framework improves the
performance and stability of brain tumor segmentation models [22]. Object detection
describes the process of accurately representing relevant objects in an image in terms
of their position, size, and shape definition. Object detection approaches are generally
divided into two categories [23]: data-centered, such as edge detection and region growth;
and goal-directed, such as knowledge-guided boundary detection. In this context, object
detection offers great opportunities for disease diagnosis and treatment planning. However,
object detection models are mostly designed for general images, and medical images differ
significantly from general images due to features such as adverse viewing conditions, noise,
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and other artifacts. Therefore, object detection models may result in poor performance
when applied directly to the medical field.

Ensemble techniques are one of the methods used to improve performance in brain MRI
studies for several tasks as in many other fields. According to the current ensemble studies
summarized in Table 1, the model ensemble can be achieved through two different tech-
niques, namely feature-level ensemble and combining model outputs. In the feature-level en-
semble technique, the features of various inputs are combined during model training; while
in the model output combining technique, the outputs of multiple models are combined
using various strategies without being limited to a single classifier/segmenter/regressor
model, resulting in more accurate and reliable results. As seen in Table 1, these studies
are used in segmentation, classification, and regression tasks in many areas such as age
estimation, Alzheimer’s detection, tumor segmentation, and tumor classification.

In Aurna et al.’s study, a two-stage ensemble-based model was proposed for the tumor
classification problem by combining the features extracted from deep learning architectures
such as Custom CNN, EfficientNet-B0, and ResNet-50 and classifying them using classical
machine learning methods such as support vector machine (SVM), random forest (RF),
etc. [24]. Similarly, Aamir et al. also combined features extracted from EfficientNet and
ResNet50 architectures for ensemble learning to perform tumor classification. Feature-level
ensemble strategies have also been used for tumor segmentation tasks [25]. In Liu et al.’s
study, an architecture called PIF-Net was proposed, based on the combination of features
from different MRI modalities [26]. In Kua et al.’s study, brain age estimation with the
scope of the regression task was performed using ridge regression and support vector
regression (SVR) with ResNet [27].

In contrast to feature-level ensemble strategies, Dolz et al. improved brain tissue segmen-
tation performance for infants by combining the results of customized 3D CNN variants using
the majority voting method [28]. For the tumor segmentation task, Cabria et al. improved the
performance by combining the results of the potential field segmentation, FOR, and PFC meth-
ods with rule-based [29], Feng et al. took the average of the results of 3D Unet variants [30],
and Das et al. combined the results of the Basic Encoder–Decoder, U-Net, and SegNet models
according to their success rates [31]. For the classification task, Tandel et al. combined the
outputs of the AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50 models using the major-
ity voting method [32], while Islam et al. combined the outputs of the DenseNet121, VGG19,
and Inception V3 models [33], and Ghafourian et al. combined the outputs of SVM, naive
Bayes, and KNN [34] in a similar manner. In Kang et al.’s study, the results of multiple models
were combined by taking their average values, resulting in improved tumor classification
results [35]. For Parkinson’s detection, Kurmi et al. used a fuzzy logic-based ensemble
strategy with the VGG16, ResNet50, Inception-V3, and Xception models [36]; while for
Alzheimer’s detection, Chatter et al. combined the outputs of the SVM, logistic regression,
naive Bayes, and K nearest neighbor methods using majority voting [37]. Finally, in Za-
hoor et al.’s study, both feature-level and model-level ensemble strategies were employed
using multiple models for tumor classification [38].

Upon reviewing the literature, we observed that most of the ensemble studies were
conducted for the tasks of tumor classification and segmentation. To the best of the author’s
knowledge, there is currently no comprehensive ensemble study for the object detection
task for brain MRI studies. The main contributions of this paper are as follows:

• A comprehensive ensemble-based object detection study for anatomical and patholog-
ical object detection in brain MRI.

• A total of nine state-of-the-art object detection models were employed to propose and
evaluate four distinct ensemble strategies aimed at improving the accuracy and ro-
bustness of detecting anatomical and pathological regions in brain MRIs. The efficacy
of these strategies was empirically assessed through rigorous experiments.

• A comparative evaluation of the current state-of-the-art object detection models for
identifying anatomical and pathological regions in brain MRIs was conducted as a
benchmarking study in the novel Gazi Brains 2020 dataset.
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• Five different anatomical structures such as the brain tissue, eyes, optic nerves, lateral
ventricles, and the third ventricle, as well as pathological objects including whole
tumor parts seen in brain MRI, were detected simultaneously.

Table 1. Current studies in the brain MRI literature using ensemble strategies.

Ref. Purpose Methods Ensemble Strategy Learning Task Year

[28] Brain tissue segmentation
for infant Custom 3D CNN Model outputs are combined

using majority voting Segmentation 2019

[29] Tumor segmentation Potential Field Segmentation,
FOR, and PFC

Model outputs are combined
by rule Segmentation 2016

[32] Tumor classification AlexNet, VGG, ResNet,
and GoogleNet

Model outputs are combined
using majority voting Classification 2022

[24] Tumor classification

Custom CNN, EfficientNet-B0,
and ResNet, Support Vector

Machine, Random Forest,
K-Nearest Neighbor,

and AdaBoost.

Feature level ensemble Classification 2022

[25] Tumor classification EfficientNet and ResNet Feature level ensemble Classification 2022

[37] Alzheimer’s disease
classification

SVM, Logistic Regression, Naive
Bayes, and K-Nearest Neighbor

Model outputs are combined
using majority voting Classification 2022

[36] Parkinson’s detection VGG16, ResNet, Inception-V3,
and Xception

Model outputs are combined
using fuzzy logic Classification 2022

[30] Tumor segmentation and
survival prediction 3D U-Net Variants Model outputs are averaged Segmentation 2020

[31] Tumor segmentation Basic Encoder–Decoder, U-Net,
and SegNet model

Models outputs are combined
based on accuracy Segmentation 2022

[26] Tumor segmentation PIF-Net Pixel and feature level ensemble Segmentation 2022

[27] Age estimation
Ridge Regression and Support
Vector Regression (SVR) and

Resnet
Feature level ensemble Regression 2021

[33] Tumor detection with
federated learning

DenseNet, VGG,
and Inception V3

Model outputs are combined
using majority voting Classification 2022

[35] Tumor classification

ResNet, DenseNet, VGG,
AlexNet, Inception V3, ResNext,

ShuffleNet, MobileNet,
MnasNet, FC layer, Gaussian

NB, AdaBoost, K-NN, RF, SVM,
and ELM

Model outputs are averaged Classification 2021

[38] Tumor classification

VGG, SqueezeNet, GoogleNet,
ResNet, XceptionNet,

InceptionV3, ShuffleNet,
DenseNet, SVM, MLP,

and AdaBoost

Features and
classifiers ensemble Classification 2022

[34] Tumor classification SVM, Naive Bayes, and K-NN Model outputs are combined
using majority voting Classification 2023

This study Anatomical and pathological
object detection

RetinaNet, YOLOv3, FCOS,
NAS-FPN, ATSS, VFNet, Faster

R-CNN, Dynamic R-CNN,
and Cascade R-CNN

Model bounding box outputs
are recalculated using weighted

sum
Object Detection

2. Materials and Methods
2.1. Dataset

Datasets used in brain MRI studies are generally subject-specific, small, and non-
public [39–41]. Researchers have difficulty in making the brain MRI data open for interdis-
ciplinary study due to the necessity for domain experts to label this data, the time taken to
label data, ethical issues for data sharing, etc. Therefore, although the number of medical
images taken for disease detection and follow-up is relatively high, the conversion rate of
these images into datasets is low.

The Gazi Brains 2020 dataset [42] was used in this study because it contains rich
labeling information for both abnormal and normal patients, including various anatomical
structures. The Gazi Brains 2020 dataset includes not only the anatomical parts of the
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brain but also anatomical parts such as the eye and optic nerve that can be seen in any
brain MRI. In addition, considering the changes in anatomical parts such as the lateral and
third ventricles, especially in the slices where the tumor is seen, it is a more challenging
dataset in terms of finding these anatomical parts. The Gazi Brains 2020 dataset includes
50 normal and 50 histologically proven high-grade glioma (HGG) patients and has a total
of 12 different types of label information provided by medical experts. All 100 patients
have FLAIR, T1w, and T2w sequences, while 50 HGG groups and 12 normal patients have
post-contrast T1 sequences. There are anatomical structures and pathological entities in
the 12 different labels. In this study, the brain ROI (brain tissue and orbital CSF), eye,
optic nerve, lateral ventricle, third ventricle, peritumoral edema, contrast-enhancing part,
necrosis of tumor, hemorrhage, and the no contrast-enhancing part were used for the object
detection models. The dataset statistics used in this study are given in Table 2. The labels
for peritumoral edema, contrast-enhancing part, necrosis of tumor, hemorrhage, and no
contrast-enhancing part were combined as the whole tumor objects.

Table 2. Gazi Brains 2020 Dataset Statistics.

Total Patients 100 patients (50 normal, 50 HGG)

Total Number of Slices 2209

Number of Anatomical and Pathological Objects

Brain ROI: 2209
Eye: 476
Optic Nerve: 233
Lateral Ventricle: 789
Third Ventricle 388
Peritumoral Edema: 427
Contrast Enhancing Part: 309
Tumor Necrosis: 221
Hemorrhage: 23
No Contrast Enhancing Part: 77

Number of Structures Seen in Slices

Brain ROI: 2628
Eye: 928
Optic Nerve: 357
Lateral Ventricle: 1988
Third Ventricle: 403
Whole Tumor: 556

In this study, the BraTS 2020 HGG dataset was also used for only pathological object
detection. In total, 19,176 slice analyses with any tumor labels (NCR/NET—label 1, ED—
label 2, ET—label 4) were used in the BraTS 2020 HGG dataset [39,43,44]. Slices without
any labels were excluded from the analyses.

The dataset preparation process is visualized in Figure 1. The same dataset preparation
process was performed as proposed by Terzi et al. [45]. Accordingly, each independent
mask was defined as an object in a slice. Thus, there could be several different objects
belonging to an anatomical structure in a slice. For example, in the top row of Figure 1b,
there are several independent whole tumor masks, highlighted in white. Similarly, there
are two independent lateral ventricles, the optic nerve, and the eye in the bottom row of
Figure 1b. They were all taken as different objects, and these objects were used in the model
training process as shown in Figure 1c.
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Figure 1. An example of the dataset preparation: (a) an original FLAIR slice; (b) segmented by
experts; and (c) the extracted anatomical objects (red: ROI, green: eye, blue: optic nerve, yellow:
lateral ventricle, magenta: third ventricle, white: whole tumor).

2.2. Deep Learning Architectures for Anatomical and Pathological Object Detection

Object detection is basically evaluated under two models: one-stage and two-stage [46].
In two-stage techniques, first, the regions of objects are identified; then, the model is fed
with region proposals for object classification and localization. Nonetheless, in one-stage
techniques, a single model is applied that divides the image into regions and reveals the
bounding box and label possibilities for each region.

In this study, all the models were trained using MMDetection [47], an object detection
toolbox, to avoid various model implementation problems and to provide a standard
training pipeline. A total of nine different state-of-the-art object detection models were
used, as given below.

• One-Stage Object Detection Models: RetinaNet [48], YOLOv3 [49], FCOS [50], NAS-
FPN [51], ATSS [52], and VFNet [53];

• Two-Stage Object Detection Models: Faster R-CNN [54], Dynamic R-CNN [55], and
Cascade R-CNN [56].

Two-stage object detection models consist of two stages: the region proposal network
(RPN) and the detector. In the RPN stage, candidate regions are proposed, and in the
detector stage, bounding box regression and classification are performed. Two-stage object
detection models are also known as the R-CNN family, and there are many examples of
this type of model.

Faster R-CNN is an improved version of the Fast R-CNN model that has a faster run
time. To realize this, it uses a CNN-based feature extractor for proposing rectangular objects
instead of a selective search in the proposal stage. The proposed object features are shared
with the detector and used for bounding box regression and classification. A bounding box
is defined as four different coordinates b =

(
bx, by, bw, bh

)
, and the regression is performed

using the smoothed L1 loss function (Equation (2)) between the ground truth bounding box
and the candidate bounding box. The loss function learns the coordinates from the data
by trying to minimize the distance. For the classification process, the classifier performs
learning by minimizing the classification cross-entropy loss (Equation (1) for binary cross-
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entropy) on the training set. During the learning process, positive and negative detections
are identified based on the IoU metric according to Equation (3)

pl =

{
p if y = 1
1− p otherwise,

CE(p, y) = CE(pt) = − log(pt),

(1)

where p represents the class probability, and y represents the ground truth label.

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

, (2)

where x represents the regression label,

label =


1, if max IoU(b, G) ≥ T+

0, if max IoU(b, G) < T−
−1, otherwise.

(3)

Here, b represents the bounding box, G represents the ground truth, and T+ and T−
represent the positive and negative thresholds for the IoU, respectively.

The Cascade R-CNN performs object detection by taking into account different IoU
overlap levels compared to Faster R-CNN. The Cascade R-CNN architecture proposes
a series of customized regressors for different IoU overlap threshold values, as given in
Equation (4). N represents the total number of cascade stages, and d denotes the sample
distribution in the equation.

f (x, d) = fN ◦ fN−1 ◦ · · · ◦ f1(x, d) (4)

The Dynamic R-CNN involves a dynamic training procedure compared to Faster and
Cascade R-CNN. In this method, instead of using predefined IoU threshold values in the
second stage, where the regressor and classifier are used, a dynamically changing procedure
based on the distribution of region proposals is proposed given in Equation (3). For this
purpose, the dynamic label assignment (DLA) process given in Equation (5) is first used
according to the T threshold value updated based on the statistical distribution of proposals
for object detection. For the localization task (bounding box regression), the Dynamic
Smooth L1 Loss given in Equation (6) is used. Similarly to the DLA, the DSL also changes
the regression labels based on the statistical distribution of proposals.

label =

{
1, if max IoU(b, G) ≥ Tnow

0, if max IoU(b, G) < Tnow
(5)

where Tnow represents the current IoU threshold and updates according to the data distribution,

DSL(x, βnow ) =

{
0.5|x|2/βnow , if |x| < βnow

|x| − 0.5βnow , otherwise
, (6)

where βnow represents the hyperparameters to control smooth loss.
The main difference between one-stage object detection models and two-stage object

detection models is that one-stage models do not involve a region proposal stage. Therefore,
they generally provide faster detector performance compared to the two-stage methods.
One-stage object detection models show diversity in many aspects. These models can be
divided into various subcategories based on the differences in their architectures (such as
anchor-based, anchor-free, feature pyramid, context, etc.). The following is a summary of
the one-stage object detectors used in this study.
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The most important component of the RetinaNet architecture is a loss function called
Focal Loss, given in Equation (7). This proposed loss function solves the problem of class
imbalance during training. It allows the rarer class to be learned better than the classic
cross-entropy loss (Equation (1)), leading to a balanced model training. The focal loss
equation is defined as the focal loss. RetinaNet is an anchor-based architecture that uses the
Resnet-based FPN as its backbone. While the backbone is used to extract the convolutional
features from the input, two different subnets that take the backbone’s outputs as inputs
are used for object classification and bounding box regression.

FL(pt) = −αt(1− pt)
γ log(pt) (7)

YoloV3 is a variant of Yolo, which is an improved version of YoloV2 in various aspects.
The most important factor that makes Yolo models faster than other object detection models
is that they do not contain a complex pipeline. In this architecture, the entire image is used
as the input to the network, and bounding box regression and object detection are directly
performed on this image. The main differences between YoloV3 and YoloV2 are that YoloV3
uses a deeper architecture called Darknet-53 for feature extraction and predicts bounding
boxes in three different scales.

FCOS is an anchor-free object detection model that performs object classification and
bounding box regression without requiring overlap (IoU) calculations with anchors or
detailed hyperparameter tuning. Anchor-based methods consider the center of anchor
boxes as the location in the input image and use it to regress the target bounding box.
However, FCOS considers any point inside the ground truth box as a location and uses the
distance t∗ = (l∗, t∗, r∗, b∗) (given in Equation (8)) for regression. If a point is inside multiple
bounding boxes, it is considered an ambiguous example, and multilevel prediction is used
to reduce this situation. FCOS also uses the centeredness strategy to improve the bounding
box detection quality (given in Equation (9)). To do this, FCOS adds a parallel stage to the
classification task to predict whether a location is a center or not. The centeredness value is
trained using binary cross-entropy loss and added to the FCOS’s loss function.

l∗ = x− x(i)0 , t∗ = y− y(i)0 ,

r∗ = x(i)1 − x, b∗ = y(i)1 − y,
(8)

where l∗, t∗, r∗, and b∗ are the distances calculated from the bounding box.

centeredness ∗ =

√
min(l∗, r∗)
max(l∗, r∗)

× min(t∗, b∗)
max(t∗, b∗)

. (9)

The NAS-FPN model has made improvements to the FPN model architecture used
in object detection models for extracting visual representations. Unlike other models that
use manual FPN architecture design, this model narrows down a wide search space for
FPN architecture through the neural architecture search algorithm to extract the effective
FPN architectures.

The ATSS model proposes a method that performs adaptive sampling of training set
examples by utilizing the statistical characteristics of positive and negative examples, based
on the fact that they have a significant impact on the model’s performance. This approach
has led to significant improvements in both anchor-based and anchor-free detectors, filling
the performance gap between these two different architectures.

VarifocalNet proposed a different approach compared to the other models in evalu-
ating candidate objects during training by considering not only a classification score or a
combination of classification and localization scores but also an IoU-based classification
score (IACS) that takes detection performance into account. This approach takes both
the localization accuracy and the object confidence score into consideration, resulting in
successful results, especially in dense object detection scenarios. To estimate the IACS score,
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the varifocal loss (given in Equation (10)) and star-shaped bounding box representation
were proposed.

VFL(p, q) =

{
−q(q log(p) + (1− q) log(1− p)) q > 0
−αpγ log(1− p) q = 0,

(10)

where p represents the predicted IACS score, and q represents the target score.

2.3. Model Ensemble

The ensemble methods include combining the results of many models belonging to
an object detection architecture, as well as combining the results of models with different
architectures. In this study, four different ensemble strategies were presented as follows:

• Strategy 1: an ensemble of all cross-validated folds for a model;
• Strategy 2: an ensemble of the best folds for a model;
• Strategy 3: an ensemble of different models fold-by-fold;
• Strategy 4: an ensemble of the best different models.

In Figure 2, an ensemble method is presented in which the deep learning architecture
is kept constant, and the predictions of many model variants belonging to the relevant
architecture are combined to realize this ensemble strategy. Nine different object detection
models with tenfold cross-validation were used to measure the efficiency of the ensemble
strategy for each model. The numbers indicated in Figure 2 (e.g., A.1, A.10, etc.) represent
the fold number of the relevant models. In Figure 2(a.1), the predictions of all model
variants belonging to the tenfold cross-validated Model A are combined without any fold
selection criteria. In Figure 2(a.2), instead of the ensemble of all the tenfold predictions,
the predictions of the best top-k cross-validated models for Model A are combined with
the best model selection criteria. In this study, the top-k models were selected as the
folds that produced an mAP above the average mAP value, which came from the tenfold
cross-validation. Ensemble strategies for a relevant model produce a single ensemble result
for all and the top-k folds.

An ensemble strategy of different models is presented in Figure 2b. In the figure, unlike
the ensemble strategy in Figure 2a, the fold number is kept constant, and the predictions
of the different models are combined. In Figure 2(b.3), the predictions of the models that
come from tenfold cross-validation for each different model are combined fold-by-fold
without any selection criteria. This ensemble strategy generated a total of ten ensemble
results, with one ensemble result per fold. In Figure 2(b.4), for each fold, the best model
among all models is selected, and the best models corresponding to each fold are combined
to produce a single ensemble result in this strategy.

Predictions of the models and the bounding boxes for each object were combined using
the weighted boxes fusion (WBF) [57] method for all ensemble strategies. For the WBF,
firstly, the confidence score was calculated for each model as in Equation (11). The coordi-
nates of the new bounding boxes were recalculated with the help of Equations (12) and (13).
In the equations, C represents the confidence score, T represents all boxes, and X and Y rep-
resent the new bounding box coordinates. In this study, the confidence score for each model
prediction was used as the average score of the intersecting bounding boxes. The new
coordinates were calculated using the weighted sum of the confidence scores of the boxes.
Thus, the effectiveness of the boxes with higher confidence scores was increased.

C =
∑T

i=1 Ci

T
(11)

X1, 2 =
∑T

i=1 Ci ∗ X1, 2i

∑T
i=1 Ci

(12)
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Y1, 2 =
∑T

i=1 Ci ∗Y1, 2i

∑T
i=1 Ci

(13)

Figure 2. Workflow of the proposed methodology and ensemble strategies for anatomical and
pathological object detection: (a) An ensemble of different variants of a model; (1) for all folds,
Strategy 1, and (2) for the best folds, Strategy 2. (b) An ensemble of different models fold-by-fold;
(3) for all models, Strategy 3, and (4) for the best different models, Strategy 4.

3. Results
3.1. Evaluation Metrics

Object detection aims to detect objects in an image, their classes, and their locations.
For this reason, the object detection task has its own evaluation metrics. Two different
popular object detection metrics, the Intersection over Union (IoU) and the mean average
precision (mAP), were used to evaluate the results of this study.

Considering the ground truth (A) and the predicted bounding box (B) as two different
clusters, in this situation, the ratio of the intersection of these two clusters to the union
represents the IoU [58] value (Equation (14)).

IoU =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| (14)

Precision (P) and Recall (R), which are classical machine learning metrics, are used
as the basis for calculating the mAP value. As can be seen from Equations (15) and (16), P
indicates the model’s accuracy in classifying a sample as positive, while R indicates the
power of the model to detect positive samples. In the equations, TP (True Positive) refers to
the model correctly detecting the object. FN (False Negative) means the object cannot be
detected by the model, although there is an object in the image. FP (False Positive) means
an object is detected, even though there is no object present. In the object detection task,
these metrics are calculated according to the case that the IoU value between the predicted
boxes and the ground truth boxes is above a certain threshold value.

P =
TP

TP + FP
(15)
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R− Recall − Sensitivity(TPR) =
TP

TP + FN
(16)

Therefore, these two metrics are also important, and for this reason, the P–R curve was
used, which shows the balance between the P and R for different thresholds. The average
precision (AP) summarizes the P–R curve and was calculated according to Equation (17)
(Rn = 0, Pn = 1, n = the number of thresholds). After calculating the AP value for each
class, the mAP value was found by taking the average of them [59]. In this study, the FROC
curves were plotted using the FPPI (Equation (18)) and TPR (Equation (16)) to measure
how changes in the confidence score affected both the False Positive rate per image and the
TPR performance.

AP =
k=n−1

∑
k=0

(Rk − Rk+1)Pk (17)

FPPI =
FP

ImageNumbers
(18)

3.2. Experimental Setup

In this study, 2029 axial brain MRI slices belonging to 100 patients in the Gazi Brains
2020 dataset were separated on a patient basis. First, 202 slices belonging to 10 patients
including five normal and five tumorous patients (Patient IDs: Sub-10, 14, 15, 19, 32, 53,
59, 61, 84, and 94) were selected randomly for testing purposes only. Then, 1827 slices
belonging to the remaining 90 patients were divided into training and validation sets
according to the tenfold cross-validation method. Each fold included 1644 (±5) training
slices and 182 (±5) validating slices. In each fold, the model with the best mAP value
in the validation set was selected and tested. This process was repeated for all folds,
and benchmarks were made to report. For the BraTS 2020 HGG dataset, the dataset was
divided on a patient basis into 60% training, 20% validation, and 20% testing, randomly. All
models were selected based on the validation performance and then tested for reporting.

The FLAIR, T1w, and T2w sequences, which were spatially aligned and common
sequences for all patients as three channels, were prepared for the model training. The back-
bone, hyperparameters, and augmentation techniques used in the training process of the
models are given in Table 3. All layers of the model were trained with the initial weights
coming from the pretrained models that were obtained from the MMDetection GitHub
repository. All augmentation techniques were applied with 0.5 probability, and finally,
a multiscale flip augmentation technique was applied for the testing pipeline. The default
values came from the MMDetection repository and were used for all the parameters except
the hyperparameters specified in Table 3.

During the model testing process, non-maximum suppression (NMS) was applied
to the model predictions by using 0.6 IoU and 0.1 score threshold values. After applying
the NMS to the predictions, the WBF was applied for the ensemble strategies. The WBF
weights were taken equally as 1. Moreover, 0.6 IoU and 0.16 skip boxes threshold were
used as the WBF hyperparameters.

Table 3. Hyperparameter settings for the models.

Models Backbone Common Hyperparameters

ATSS
Cascade R-CNN
Dynamic R-CNN
Faster R-CNN
FCOS
NAS-FPN
RetinaNet
VFNet
YOLOv3

ResNet_101
ResNext_101
ResNet_50
ResNext_101
ResNext_101
ResNet_50 with RetinaNet
ResNext_101
ResNext_101
Darknet_53

sample_per_gpu:4
workers_per_gpu:2
image_size:512*512

optimizer:SGD
lr_rate:5e-3

lr_config:linear step
epoch_num:50

gpu_num:4
augmentation: random

brightness (0.15)
contrast (0.15)

vertical flip
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3.3. Experimental Results

In this section, two different benchmark results are given for the anatomical and
pathological object detection problem on the Gazi Brains 2020 dataset. The first one aims to
present the performance of each model individually, and the second one aims to present
the ensemble performance of the models within the scope of the determined strategies.

The average values of the tenfold cross-validation results on the test set for each model
are given in Table 4. As can be seen from the table, the best class-based AP(@0.5 IoU)
values varied according to the models. In terms of the detection of each anatomical object,
the benchmarking results were summarized as follows:

• All the models had similar success results for the brain ROI object;
• The Dynamic R-CNN had a 0.95 AP(@0.5 IoU) value for the eye object;
• The RetinaNet and VFNet models had a 0.59 AP(@0.5 IoU) value for the optic nerve object;
• The NAS-FPN and YOLOv3 models had a 0.62 AP(@0.5 IoU) value for the third

ventricle object;
• The NAS-FPN and RetinaNet had a 0.82 AP(@0.5 IoU) value for the tumor object;
• The most successful model according to the mean average precision was the NAS-FPN

with a 0.76 (±0.02) (@0.5 IoU) mAP value.

The ensemble results of different variants for each model are given in Table 5. To realize
this strategy, the models from the tenfold cross-validation of the relevant model were used,
and the efficiency of the ensemble strategies was reported compared to the best model.
In the table, the best fold according to the mAP value (the Best Fold) is compared to the
ensemble outputs of the folds above the average mAP (Mean+ Folds, Figure 2(a.1)) and
all folds without any model selection criteria (All Folds, Figure 2(a.2)). According to the
results reported in Table 5, the ensemble of the models increased the anatomical object
detection success rate for each model. Accordingly, the ensemble strategies produced better
mAP values by 2% for ATSS, 3% for Cascade R-CNN, 4% for Dynamic R-CNN, 2% for
Faster R-CNN, 1% for FCOS, 2% for NAS-FPN, 3% for RetinaNet, 2% for VFNet, and 10%
for YOLOv3. The ensemble strategies performed with the models’ own variants provided
improvements in the better detection of the different anatomical objects for each model.
The most interesting and satisfactory results obtained were 5%, 9%, 11%, 6%, 7%, and 18%
improvements observed in finding the optic nerve object for the ATSS, Cascade R-CNN,
Dynamic R-CNN, Faster R-CNN, VFNet, and YOLOv3 models, respectively. Similarly, 5%
and 8% improvements were observed in the NAS-FPN and RetinaNet models, while a 3%
improvement in finding the tumor object was observed in the FCOS model.

Table 4. Class-based average precision results with tenfold cross-validation on the test set.

Model Brain ROI Eye Optic Nerve Lateral
Ventricle

Third
Ventricle

Whole
Tumor mAP

ATSS 0.96 (±0.01) 0.92 (±0.02) 0.57 (±0.04) 0.64 (±0.02) 0.56 (±0.05) 0.79 (±0.02) 0.74 (±0.01)
Cascade R-CNN 0.96 (±0.01) 0.93 (±0.02) 0.55 (±0.04) 0.63 (±0.02) 0.51 (±0.08) 0.79 (±0.03) 0.73 (±0.02)
Dynamic R-CNN 0.96 (±0.01) 0.95 (±0.01) 0.40 (±0.06) 0.66 (±0.01) 0.45 (±0.06) 0.81 (±0.02) 0.71 (±0.01)

Faster R-CNN 0.95 (±0.01) 0.94 (±0.01) 0.48 (±0.05) 0.64 (±0.01) 0.45 (±0.06) 0.79 (±0.03) 0.71 (±0.02)
FCOS 0.96 (±0.01) 0.94 (±0.01) 0.54 (±0.07) 0.65 (±0.01) 0.55 (±0.06) 0.77 (±0.04) 0.73 (±0.02)

NAS-FPN 0.96 (±0.01) 0.93 (±0.02) 0.58 (±0.08) 0.64 (±0.02) 0.62 (±0.05) 0.82 (±0.04) 0.76 (±0.02)
RetinaNet 0.96 (±0.01) 0.91 (±0.01) 0.59 (±0.04) 0.61 (±0.03) 0.49 (±0.05) 0.82 (±0.02) 0.73 (±0.01)

VFNet 0.96 (±0.01) 0.92 (±0.01) 0.59 (±0.06) 0.66 (±0.02) 0.58 (±0.05) 0.78 (±0.03) 0.75 (±0.02)
YOLOv3 0.74 (±0.03) 0.90 (±0.01) 0.44 (±0.05) 0.57 (±0.02) 0.62 (±0.06) 0.74 (±0.03) 0.67 (±0.01)

The ensemble results of different models are given in Table 6. In the table, the results
obtained from the fold-by-fold ensemble strategy are given for each fold (All Folds- 1,
2,. . . ,10). In addition, the average results of the fold-by-fold ensemble strategy (All Folds—
Mean, Figure 2(b.3)), the results of the best fold according to the mAP value in this strategy
(All Folds–the Best, Figure 2(b.3)), and the ensemble results obtained by selecting the best
model for each fold (the Best Folds, Figure 2(b.4)) were compared.

The ensemble of all the models in any fold gave better results than the best model in
any fold. For example, the best model of the NAS-FPN produced an mAP value of 0.805,
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as indicated in Table 5. However, when the values in Table 6 were examined together,
the different model ensemble strategy was more successful in all the folds except Fold 9.
Similarly, an ensemble of the different models based on the tenfold cross-validation, with a
0.818 (±0.01) mAP, yielded about 6% better mAP results than the best individual model,
which is indicated in Table 4, the NAS-FPN with a 0.76 (±0.02) mAP value.

Table 5. Ensemble Strategy 1 and 2 results for each model.

Model Ensemble Strategy Brain
ROI Eye Optic

Nerve
Lateral

Ventricle
Third

Ventricle
Whole
Tumor mAP Dif.

ATSS
Best Fold 0.97 0.91 0.61 0.66 0.64 0.81 0.765 -

Mean+ Folds 0.97 0.94 0.64 0.67 0.68 0.81 0.784 0.02
All Folds 0.97 0.94 0.66 0.67 0.65 0.82 0.785 0.02

Cascade R-CNN
Best Fold 0.94 0.95 0.58 0.60 0.64 0.81 0.754 -

Mean+ Folds 0.98 0.95 0.66 0.68 0.61 0.82 0.783 0.03
All Folds 0.97 0.95 0.67 0.68 0.60 0.82 0.783 0.03

Dynamic R-CNN
Best Fold 0.96 0.94 0.45 0.67 0.50 0.82 0.723 -

Mean+ Folds 0.97 0.94 0.56 0.67 0.57 0.84 0.757 0.03
All Folds 0.97 0.96 0.52 0.69 0.59 0.83 0.760 0.04

Faster R-CNN
Best Fold 0.96 0.93 0.57 0.63 0.54 0.79 0.738 -

Mean+ Folds 0.97 0.96 0.63 0.66 0.53 0.83 0.762 0.02
All Folds 0.98 0.96 0.61 0.68 0.53 0.81 0.760 0.02

FCOS
Best Fold 0.96 0.93 0.65 0.65 0.61 0.78 0.762 -

Mean+ Folds 0.96 0.95 0.58 0.66 0.55 0.80 0.749 -0.01
All Folds 0.97 0.94 0.65 0.67 0.58 0.81 0.768 0.01

NAS-FPN
Best Fold 0.97 0.95 0.71 0.66 0.69 0.86 0.805 -

Mean+ Folds 0.98 0.95 0.69 0.70 0.69 0.86 0.812 0.01
All Folds 0.98 0.95 0.68 0.71 0.74 0.87 0.820 0.02

Retinanet
Best Fold 0.96 0.91 0.61 0.61 0.54 0.83 0.745 -

Mean+ Folds 0.97 0.91 0.61 0.66 0.59 0.82 0.761 0.02
All Folds 0.98 0.92 0.65 0.65 0.62 0.81 0.770 0.03

VFNet
Best Fold 0.97 0.92 0.62 0.66 0.67 0.79 0.772 -

Mean+ Folds 0.98 0.93 0.69 0.70 0.66 0.82 0.793 0.02
All Folds 0.98 0.95 0.67 0.70 0.65 0.81 0.792 0.02

YOLOv3
Best Fold 0.75 0.90 0.43 0.57 0.70 0.74 0.683 -

Mean+ Folds 0.81 0.93 0.61 0.66 0.80 0.82 0.772 0.09
All Folds 0.84 0.94 0.60 0.67 0.85 0.83 0.787 0.10

Table 6. Ensemble Strategy 3 and 4 results for different models fold-by-fold.

Ensemble Strategy Brain
ROI Eye Optic

Nerve
Lateral

Ventricle
Third

Ventricle
Whole
Tumor mAP

All Folds - 1 0.98 0.95 0.67 0.73 0.72 0.87 0.820
All Folds - 2 0.98 0.97 0.70 0.71 0.74 0.85 0.825
All Folds - 3 0.98 0.96 0.68 0.71 0.67 0.86 0.810
All Folds - 4 0.98 0.97 0.73 0.71 0.73 0.85 0.828
All Folds - 5 0.98 0.96 0.67 0.70 0.77 0.85 0.821
All Folds - 6 0.98 0.96 0.68 0.71 0.72 0.85 0.815
All Folds - 7 0.98 0.98 0.69 0.69 0.75 0.85 0.824
All Folds - 8 0.98 0.97 0.67 0.71 0.76 0.86 0.822
All Folds - 9 0.98 0.96 0.68 0.71 0.64 0.86 0.804

All Folds - 10 0.98 0.95 0.70 0.69 0.67 0.85 0.808

Mean 0.98 0.96 0.69 0.71 0.72 0.86 0.818
the best (Fold-4) 0.98 0.97 0.73 0.71 0.73 0.85 0.828

Best Folds * 0.98 0.97 0.75 0.73 0.73 0.87 0.838
* The NAS-FPN for Folds 1, 3, 4, and 7; FCOS for Fold 2 and 6; VFNet for Fold 5 and 8; ATSS for Fold 9; and
Cascade R-CNN for Fold 10 were selected as the best models for the ensemble strategy.

Finally, an ensemble of the different best model variants with a 0.838 mAP value as
indicated in Table 6 was 1.8% and 1% better than the other ensemble strategies, such as
the ensemble of the NAS-FPN model variants with a 0.82 mAP value in Table 5 and an
ensemble of the best different models fold-by-fold with a 0.828 mAP value in Table 6. It
was also 3.3% better than the individual NAS-FPN best models with a 0.805 mAP value in
Table 5.

The comparative FROC curves with the FAUC values representing the area under
these curves are provided in Figure 3 for each anatomical and pathological region using
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the best individual models and the ensemble strategy (Strategy 4—Best Folds) specified
in Table 6. Thus, the effect of the changes in the confidence scores ranging from 0 to
1 with intervals of 0.02 on the FPPI and TPR were measured on the Gazi Brains 2020
dataset. According to the results provided in the figure, the ’Best Folds Ensemble’ strategy
outperformed with an approximately 1%, 2%, 1%, 2%, and 7% better FAUC performance
for the RoI, optic nerve, eye, lateral ventricle, and third ventricle, respectively, compared to
the best individual model.

In this study, experiments were also conducted on the benchmark of the models and
the ensemble strategy of the best models for detecting the pathological regions on the BraTS
2020 HGG dataset. The anatomical regions were not considered because the BraTS 2020
HGG dataset lacks labels for the anatomical regions. When considering the AP metric with
a 0.2 confidence score and a 0.5 IoU threshold for a tumor, the ATSS, Cascade R-CNN,
Dynamic R-CNN, Faster R-CNN, FCOS, Nas-FPN, RetinaNET, VfNet, YOLOV3, and the
ensemble strategy of different models produced AP values of 0.77, 0.782, 0.784, 0.783, 0.774,
0.788, 0.8, 0.791, 0.742, and 0.843, respectively. The ensemble strategy outperformed the
best individual model by approximately 4%. Furthermore, Figure 4 presents the FROC
curves of the models based on their TPR and FPPI values, considering different confidence
scores. The ensemble strategy of different models outperformed with an approximately 2%
better FAUC performance than the best individual model (Faster R-CNN).

Figure 5 visualizes the efficiency of the model ensemble. For visualization purposes,
we selected the best ATSS, NAS-FPN, Cascade R-CNN, Dynamic R-CNN, Faster R-CNN,
FCOS, and YOLOv3 models from left to right, respectively. Moreover, the classification
confidence threshold was selected as 0.3 for each class. As shown in the figure, the ensemble
results using different models found anatomical parts that could not be found by a single
model and reduced unnecessary predictions and false positives.

Figure 3. Cont.
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Figure 3. FROC curves based on the TPR and FPPI for each anatomical and pathological region for
the best ensemble strategy and the best individual models on the Gazi Brains 2020 dataset.

Figure 4. FROC curve for the pathological region for the best different model strategy on the BraTS
2020 Dataset.
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Figure 5. Example results for the best different models ensemble strategy on the FLAIR sequence.
The first row shows the ground truth, the second row shows the best individual model, and the third
row shows the ensemble results for the different best models. (red: ROI, green: eye, blue: optic nerve,
yellow: lateral ventricle, magenta: third ventricle, white: whole tumor).

4. Discussion

Automatic anatomical object detection models based on deep learning, as a computer-
aided diagnostic tool, support the decision-making processes of clinicians by presenting
the location, shape, and size of the object in the medical image. However, sometimes the
performance of these models cannot meet clinical expectations due to some issues arising
from medical images. Anatomical objects do not always differentiate well in contrast and
may appear similar to neighboring structures. Even if the characteristics of an anatomical
object are known, they often vary from case to case. At the same time, most different types
of objects have similar characteristics in size and shape. In addition, noise and artifacts
greatly alter the depicted objects. On the other hand, although valuable information is
gained about anatomy, extensive expert knowledge is needed to fill the semantic gap
between the depicted objects and the image data. Annotating is time-consuming and
expensive, as this process involves experts interpreting the medical images and combining
them with other test results if necessary. Due to all these problems, medical object detection
models may not be as robust as expected.

As in many of the studies listed in Table 2, this study was also conducted with a
single dataset. This can lead to overfitting risks for deep learning models developed on
limited datasets, limiting their generalization abilities. Although it may be possible to
combine data from different open sources, finding datasets with similar labels or similar
tasks is almost impossible. In this study, the performance of models was measured using
the tenfold cross-validation method on the Gazi Brains 2020 open dataset and the BraTS
2020 HGG dataset. As expected, ensemble strategies are more effective in relatively small
datasets such as Gazi Brains 2020, but they also prove to be effective in larger datasets such
as BraTS 2020 HGG. This is particularly important in situations where data are limited,
highlighting the necessity of ensemble strategies.

Therefore, this study aimed to combine decisions from multiple models using different
ensemble strategies and to improve anatomical object detection model performance. In this
study, nine different models were compared for the anatomical object detection problem,
and four different ensemble strategies were proposed. The proposed ensemble strategies
ensured that each model individually boosted the anatomical object detection capacity and
achieved the highest success rates by combining different models.
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5. Conclusions

According to the obtained results, the ensemble strategies performed on the model
variants were found to change the individual performance of the models, improving the
mAP values between 1% and 10% compared to the relevant best model. Similarly, when
looking at the changes in the detection performance of the anatomical parts, an improve-
ment of up to 18% AP was observed. In particular, ensemble strategies were found to be
much more efficient in determining anatomical parts with a small amount of data, such as
the optic nerve and third ventricle. As seen in Table 5, the highest performance increase in
eight of the nine models was for the optic nerve and third ventricle anatomical objects. It
was also observed that the ensemble of different models outperformed the individual best
model in almost all cases, and the ensemble of the different best models was 3.3% better
than the best individual model, which was the NAS-FPN. Another important output of the
ensemble strategies was that, as seen in Figures 3 and 4, they produced higher TPR values,
especially at low FPPI values, compared to the best individual methods.

It is planned to implement ensemble strategies for different tasks such as classification
and segmentation in future studies. It is also planned to use anatomical object detection
methods in the cascaded architectures for extracting better anatomic patches to realize
better segmentation tasks.
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