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Abstract: Technology-assisted diagnosis is increasingly important in healthcare systems. Brain
tumors are a leading cause of death worldwide, and treatment plans rely heavily on accurate survival
predictions. Gliomas, a type of brain tumor, have particularly high mortality rates and can be further
classified as low- or high-grade, making survival prediction challenging. Existing literature provides
several survival prediction models that use different parameters, such as patient age, gross total
resection status, tumor size, or tumor grade. However, accuracy is often lacking in these models. The
use of tumor volume instead of size may improve the accuracy of survival prediction. In response
to this need, we propose a novel model, the enhanced brain tumor identification and survival time
prediction (ETISTP), which computes tumor volume, classifies it into low- or high-grade glioma,
and predicts survival time with greater accuracy. The ETISTP model integrates four parameters:
patient age, survival days, gross total resection (GTR) status, and tumor volume. Notably, ETISTP
is the first model to employ tumor volume for prediction. Furthermore, our model minimizes the
computation time by allowing for parallel execution of tumor volume computation and classification.
The simulation results demonstrate that ETISTP outperforms prominent survival prediction models.

Keywords: brain tumor identification; brain tumor classification; medical image processing; image
segmentation; deep learning; survival prediction

1. Introduction

Tumor refers to undesired tissues, which may result in being malign or benign. Brain
tumors are a complex and heterogeneous group of diseases. There are various types of brain
tumors, i.e., gliomas, meningiomas, and pituitary [1–4]. Gliomas are the most common
types of brain tumors, accounting for approximately 80% of all malignant brain tumors.
Gliomas rapidly spread to other tissues, they are hard to detect, and they have the highest
death ratio among the aforementioned tumor types [5,6]. Gliomas are further classified
into low-grade glioma (LGG) and high-grade glioma (HGG) based on their cellular and
genetic characteristics. LGGs are less aggressive and have better prognoses than HGGs.
Contrarily, HGG occurs in the spinal cord and brain; it exhibits a faster growth rate, which
makes it highly dangerous and hard to treat. Hence, HGGs are more malignant and have a
higher mortality rate.

Diagnosing and treating brain tumors are challenging tasks for healthcare systems
globally, and remain dependent on a patient’s survival chances. The current standard of
care for brain tumor patients includes surgery, chemotherapy, and radiotherapy. However,
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the effectiveness and side effects depend on several factors, such as tumor grade, size,
location, patient’s age, and overall health. Brain tumors are one of the biggest contributors
to deaths in human beings worldwide [7–9]. Once a brain tumor is diagnosed, a patient’s
survival rate increases by 36% for the next five years, thereby demanding the urgent
attention of the research community [10,11].

Since tumor diagnosis requires careful assessment to extend a patient’s survival
chances, clinical diagnosis assisted by technology has gained immense importance in
healthcare systems [12–14], giving rise to technology-assisted diagnoses in healthcare sys-
tems [15]. Moreover, the threat level of a tumor impacts the survival time, which depends
on various parameters, such as the patient’s age, tumor type, tumor stage, etc. [16,17]. This
demands the efficient classification of tumors in terms of severity level, which is referred to
as the tumor grade [18].

To address this issue, the existing body of knowledge [19] provides several models.
Survival prediction models have been developed to aid in the diagnosis and treatment
of brain tumors. These models use different clinical parameters, such as patient age,
tumor size, tumor grade, and gross total resection (GTR) status, to predict patient survival
time. The authors in [20] present a novel model for brain tumor identification and patient
survival prediction. Similarly, the authors of [21] predicted tumor growth using parameter
population distribution (PPD). Furthermore, the authors in [22] employed multi-parametric
magnetic resonance images (mpMRI) to identify tumors and analyze their progression;
they are used to predict survival time based on gross total resection (GTR) and patient
age. However, existing models lack the integration of the aforementioned parameters for
identification, classification, and survival prediction. Moreover, these models consider two-
dimensional (2D) tumor sizes, which degrade their performance. Furthermore, existing
models have shown limitations in accuracy due to the complexity and heterogeneity of
brain tumors.

One potential solution to improve the accuracy of survival prediction models is to
integrate multiple clinical parameters, including tumor volume, into the model. Tumor
volume is a critical factor in predicting brain tumor progression and patient survival, and
its integration into the prediction model could improve the accuracy of survival predictions.
Moreover, the parallel execution of tumor volume computation and classification could
minimize the computation time, making the model more practical and efficient.

Motivated by the need for more accurate and efficient survival prediction models
for brain tumors, this paper proposes a novel model, namely, enhanced brain tumor
identification and survival time prediction (ETISTP), with the following contributions.

1. ETISTP enables the improved classification of gliomas with respect to different grades.
2. To the best of the authors’ knowledge, this work pioneers the use of tumor volume for

survival time prediction.
3. This work integrates four different factors to enhance the accuracy of survival time

prediction.
4. The proposed model reduces the computation time by enabling the parallel execution

of tumor volume computation and classification.

The rest of the article is organized as follows. Section 2 critically reviews the related
work on brain tumor classification and survival prediction. Section 3 details our proposed
model. Section 4 evaluates the performance of the proposed method in comparison with the
state-of-the-art. Finally, Section 5 includes the conclusion with future research directions.

2. Related Work

Brain tumors are one of the largest contributors to death in human beings worldwide,
due to their severe adverse effects on the nervous system, which result in high death
rates [17]. Magnetic resonance images (MRIs) are widely utilized in healthcare systems for
tumor diagnosis [18]. However, manual diagnosis by medical practitioners utilizing these
images remains challenging. As a result, researchers have proposed various models that
significantly reduce human intervention in the diagnostic process and improve accuracy.
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This section provides a comprehensive analysis of the existing models by highlighting their
advantages and disadvantages.

The authors in [12] fused computed tomography (CT) and MRIs to acquire new
synthetic images with enriched information that could be exploited to enable enhanced
diagnosis. Image segmentation enables enhanced identification of tumors. To this end,
the authors in [23] presented a novel model based on generative adversarial net (GAN).
Similarly, a convolutional neural network (CNN)-based model, proposed in [24], enables
normalized segmentation that can be used to identify tumor regions. The authors in [25]
reviewed supervised and unsupervised deep learning techniques for tumor identifica-
tion. Tumor growth was analyzed in [22] using various machine learning algorithms that
segment mpMRI images.

The process of successful identification initiates the classification of tumors into dif-
ferent types or grades. The authors of [26] classified brain tumors into three categories
using a probabilistic neural network (PNN). This model extracts features using a gray-level
co-occurrence matrix (GLCM), while segmentation is performed using the K-means algo-
rithm. In addition, the authors of [21] used a classical mathematical parameter population
distribution model to predict tumor growth by estimating an independent parameter vector
of an independent growth curve. In [27], the authors integrated different classifiers, i.e.,
extra trees, random forest, and logistic regression, and achieved better prediction perfor-
mance by utilizing the combined results obtained from the aforementioned classifiers. The
authors in [7] presented an intelligent technique for classification. Another model proposed
in [4] used fuzzy brain-storm optimization, which classifies brain tumors into gliomas,
meningiomas, and pituitary categories. Similarly, MRIs were augmented through pair-wise
GAN in [28]. Shubham et al. [2] presented an enhanced model based on CNN and support
vector machine (SVM) to classify brain tumors into three categories, i.e., glioma, menin-
gioma, and pituitary. Gliomas are categorized as low-grade glioma (LGG) and high-grade
glioma (HGG).

The model proposed in [29] classifies gliomas into the aforementioned grades. Ra-
jnikanth et al. [30] developed a computer-aided diagnosis and detection (CADD) system
that uses convolutional neural network (CNN)-supported segmentation and classification
to identify glioblastoma/glioma-class brain tumors in 2D MRI slices. The effectiveness of
the CADD system was confirmed through an investigation using a benchmark and real clin-
ical brain MRI slices, and the performances of well-known classifiers were compared. They
found that SVM-Cubic achieved the highest accuracy (>98%). These results demonstrate
that using CNN-assisted segmentation and classification can improve disease detection
accuracy. Bajdie et al. [31] used the AlexNet convolutional neural network (CNN) to detect
and classify brain tumors in magnetic resonance (MR) images, achieving an overall accu-
racy of 99.62%. Kurdi et al. [32] used the Harris Hawks optimization CNN (HHOCNN) in
their study to enhance the accuracy of brain tumor recognition in MRI images. Firstly, they
pre-processed the MR images and removed noisy pixels to decrease the rate of false tumor
recognition. Then, they employed a candidate region method to identify the tumor region
by examining the boundary regions using line segments, which helped to retain hidden
edge details. After segmenting the region, various features were extracted and classified
using a CNN model that computed the precise location of the tumor with fault tolerance. By
using the nature-inspired Harris Hawks optimization algorithm, the researchers minimized
the misclassification error rate and improved the overall tumor recognition accuracy to 98%
on the Kaggle dataset.

The Cox proportional hazards (CoxPH) regression model is a popular prediction
model that employs different parameters [33]. The authors of [34] presented an extended
CoxPH model applied to the medical records of breast cancer patients. Similarly, the authors
of [20,22] proposed prediction models, which took the age and GTR as inputs to estimate
the survival time of a patient. These models categorize survival into three classes, i.e., long-
survival, mid-survivors, and short-survivors. The tumor size and other clinical records
are widely used for a patient’s survival prediction [35]. Additionally, the authors of [36,37]
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proposed models to estimate risk factors based on historical and current data. Moreover,
the authors in [38] employed a deep learning method to diagnose Alzheimer’s disease.
Moreover, SAVAE-COX [39], PubMed [40], and Page-Net [41] employ deep learning for
survival time prediction. Similarly, a statistical model (SM) was proposed in [42], which
efficiently predicts the survival time. SAVAE-COX takes into account transfer learning,
which results in a C-Index of 0.71, making it superior to PubMed, Page-Net, and SM.

From the literature review, it is apparent that various parameters are used to estimate
a patient’s survival time, including age, survival days, gross total resection status, tumor
size, or tumor grade. However, the existing models rely on the use of a single parameter or
a combination of a few parameters. The integration of all these parameters is still lacking
in the literature, which can enhance accuracy. Moreover, the consideration of the 2D tumor
size for prediction also reduces the efficiency of these models. To address these issues, this
study presents a novel model that is detailed in the following section.

3. The Proposed ETISTP Model

This section introduces our proposed enhanced brain tumor identification and survival
time prediction (ETISTP) model. ETISTP comprises five phases: pre-processing, tumor
identification, tumor volume computation, tumor grade classification, and survival time
prediction, as shown in Algorithm 1. The model improves brain tumor identification and
classification, and predicts the patient’s survival time in terms of days. There are several
types of brain tumors, including gliomas, meningiomas, and pituitary tumors [2–4]. The
ETISTP model focuses on gliomas, which have the highest death rate worldwide [2,6].

Algorithm 1 Pseudocode of the proposed ETISTP model.

Step 1. Start.
Step 2. Input Brats2020 datasets.
Step 3. Apply pre-processing.
Step 4. Brain tumor Identification from 3D-MRI using U-Net model, as shown in Figure 4
Step 5. Compute tumor volume using Equation (1).
Step 6. Classify the tumor grade based on HGG and LGG using 3D-CNN.
Step 7. Four-factor integration to calculate the hazard value by Equation (2).
Step 8. Using the CoxPH model to calculate the survival rate using Equation (3).
Step 11. End.

The first phase involves pre-processing the magnetic resonance images (MRIs) to
remove noise from the input images. The pre-processed MRIs are then used as input in
the second phase for tumor identification through segmentation. Upon successful tumor
identification, we compute the tumor volume and perform classification in terms of low-
grade glioma (LGG) and high-grade glioma (HGG). The segmented image generated by
the tumor identification phase serves as input for both the tumor volume computation
and tumor grade classification phases. This enables the ETISTP model to carry out tumor
volume computation and classification in parallel, significantly minimizing the overall
response time of our proposed model. Finally, the ETISTP model predicts the patient’s
survival time in terms of days based on four different parameters, namely, tumor type,
tumor volume, patient’s age, and EoGTR. Figure 1 illustrates the procedural flowchart of
our proposed model.

3.1. Pre-Processing

The proposed ETISTP model begins with pre-processing of a three-dimensional (3D)
source image bearing P, Q, and R dimensions, where P = {1, 2, 3, . . . , p}, Q = {1, 2, 3, . . . ,
q}, and R = {1, 2, 3, . . . , r}. Pre-processing eradicates noise from an input source image.
To this end, we employ the median filter, which is one of the most efficient choices [43], as
shown in Figure 2.
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Figure 1. Procedural flowchart of the proposed ETISTP model.

Figure 2. Pre-processing of the input images using a median filter.

The ETISTP model is validated on the benchmark Brats-2020 dataset, which is publicly
available on The Cancer Imaging Archive (TCIA) [10]; it comprises 3D MR images with
240 × 240 × 155 resolutions [22,44,45]. This dataset contains the MRIs of 369 patients
represented in 5 different modalities, i.e., t1, t1ce, t2, t2flair, and segmented, as shown in
Figure 3. The integration of data from various modalities is important for achieving higher
classification accuracy [46,47]. A t1 modality refers to a 3D-weighted image with axial
2D or sagittal native images with 1–6 millimeter (mm) slice thicknesses. This modality
represents the image components as black holes. Moreover, the t1ce modality is a 3D-
weighted contrast-enhanced (Gadolinium) image, with an isotropic voxel size of 1 mm,
showing edges of the blood vessels as white edges. Furthermore, the t2 modality is a 2D-
weighted image with 2–6 mm slice thicknesses; a t2-weighted flair modality produces 2D
axial, coronal, or sagittal images with 2–6 mm slice thicknesses. Finally, a binary segmented
image represents the tumor as the white component. Table 1 demonstrates the demographic
information of 369 patients, which is used in this work. Upon successful execution of the
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pre-processing phase, the ETISTP model enters the tumor identification phase, which is
detailed below.

Figure 3. Different modalities of the images in the Brats-2020 dataset.

Table 1. Demographic information of the patients in Brats-2020.

Factor Minimum Maximum

Age 18.975 86.652

Survival Days 5 1767

GTR Status 1 (N/A) 3 (GTR)

Tumor Volume 7.285 227.126

Tumor Class 76 (LGG) 293 (HGG)

3.2. Tumor Identification

This section identifies the infected area in MRIs. Early and accurate identification is
crucial for better cures, making this phase critical in the proposed ETISTP model. To achieve
this, we employed image segmentation techniques to extract the tumor-infected areas from
3D MRIs. Various segmentation techniques are available in the literature [48], but we chose
to use the Universal Network (U-Net) model [6] for semantic segmentation of the brain
tumor. This model consists of a contracting path that captures the context and a symmetric
expanding path that enables accurate localization. Figure 4 shows the architecture of the
U-Net used in this work, where each gray box corresponds to a multi-channel feature map,
and the number of channels is specified on top of each box. A white box represents the
copied feature maps, and an arrow indicates the direction of an operation.

The proposed ETISTP model trains the U-Net model using the aforementioned modal-
ities to enhance brain tumor identification. Figure 5 depicts the U-Net training summary
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for tumor identification. The U-Net model produces a segmentation map from an input
RGB image (height × width × 3) or a grayscale image (height × width × 1), with each
pixel containing a class label represented as an integer. Figure 6 demonstrates a sample
result in this regard. After training the U-Net model, it is validated on the same dataset.
Some initial numerical results of tumor identification are shown in Table 2. Upon successful
identification of the tumor, the ETISTP model initiates the next phase, which is detailed in
the following subsection.

Table 2. Summary of the tumor identification performance.

Dice Coef Accuracy Precision Sensitivity Specificity

0.25 0.96 0.95 0.90 0.99

Figure 4. U-Net architecture for segmentation.

3.3. Tumor Volume Computation

This section focuses on the computation of the tumor volume. To the best of our
knowledge, the ETISTP model is a pioneering approach that employs the tumor volume
for the classification of tumors and the prediction of survival days using 3D MR images, as
illustrated in Figure 7. A segmented image received from the previous phase is taken as
the input. The volume of tumor (V) is computed using Equation (1) [49], as

V = λµ, (1)

where λ denotes the tumor area and µ refers to the height of the tumor in a 3D MR image,
respectively. The tumor volume remains one of the inputs for survival time prediction,
which is the final phase of our proposed ETISTP model.



Diagnostics 2023, 13, 1456 8 of 22

Model: "UNET" 

 

Layer (type)                   Output Shape         Param #     Connected to                      

=============================================================================================================   

 

input_1 (InputLayer)           [(None, 128, 128, 2  0)]         []                                                             

conv2d (Conv2D)                (None, 128, 128, 32  608)        ['input_1[0][0]']                 

conv2d_1 (Conv2D)              (None, 128, 128, 32  9248)       ['conv2d[0][0]'] 

                  

max_pooling2d (MaxPooling2D)   (None, 64, 64, 32)   0           ['conv2d_1[0][0]']              

conv2d_2 (Conv2D)              (None, 64, 64, 64)   18496       ['max_pooling2d[0][0]']                            

conv2d_3 (Conv2D)              (None, 64, 64, 64)   36928       ['conv2d_2[0][0]'] 

                              

max_pooling2d_1 (MaxPooling2D) (None, 32, 32, 64)  0            ['conv2d_3[0][0]']                           

conv2d_4 (Conv2D)              (None, 32, 32, 128)  73856       ['max_pooling2d_1[0][0]']                        

conv2d_5 (Conv2D)              (None, 32, 32, 128)  147584      ['conv2d_4[0][0]'] 

                                

max_pooling2d_2 (MaxPooling2D) (None, 16, 16, 128)  0           ['conv2d_5[0][0]']                        

conv2d_6 (Conv2D)              (None, 16, 16, 256)  295168      ['max_pooling2d_2[0][0]']                

conv2d_7 (Conv2D)              (None, 16, 16, 256)  590080      ['conv2d_6[0][0]'] 

                            

max_pooling2d_3 (MaxPooling2D) (None, 8, 8, 256)   0            ['conv2d_7[0][0]']                

conv2d_8 (Conv2D)              (None, 8, 8, 512)    1180160     ['max_pooling2d_3[0][0]']                      

conv2d_9 (Conv2D)              (None, 8, 8, 512)    2359808     ['conv2d_8[0][0]']                            

dropout (Dropout)              (None, 8, 8, 512)    0           ['conv2d_9[0][0]']                                

 

up_sampling2d (UpSampling2D)   (None, 16, 16, 512)  0           ['dropout[0][0]']                 

conv2d_10 (Conv2D)             (None, 16, 16, 256)  524544      ['up_sampling2d[0][0]']           

 

concatenate (Concatenate)      (None, 16, 16, 512)  0           ['conv2d_7[0][0]','conv2d_10[0][0]']                              

conv2d_11 (Conv2D)             (None, 16, 16, 256)  1179904     ['concatenate[0][0]']             

conv2d_12 (Conv2D)             (None, 16, 16, 256)  590080      ['conv2d_11[0][0]']                      

 

up_sampling2d_1 (UpSampling2D) (None, 32, 32, 256)  0           ['conv2d_12[0][0]']               

conv2d_13 (Conv2D)             (None, 32, 32, 128)  131200      ['up_sampling2d_1[0][0]']                           

 

concatenate_1 (Concatenate)    (None, 32, 32, 256)  0           ['conv2d_5[0][0]','conv2d_13[0][0]']                           

conv2d_14 (Conv2D)             (None, 32, 32, 128)  295040      ['concatenate_1[0][0]']                       

conv2d_15 (Conv2D)             (None, 32, 32, 128)  147584      ['conv2d_14[0][0]']                        

 

up_sampling2d_2 (UpSampling2D) (None, 64, 64, 128)  0           ['conv2d_15[0][0]']                           

conv2d_16 (Conv2D)             (None, 64, 64, 64)   32832       ['up_sampling2d_2[0][0]']                    

 

concatenate_2 (Concatenate)    (None, 64, 64, 128)  0           ['conv2d_3[0][0]','conv2d_16[0][0]']                       

conv2d_17 (Conv2D)             (None, 64, 64, 64)   73792       ['concatenate_2[0][0]']                  

conv2d_18 (Conv2D)             (None, 64, 64, 64)   36928       ['conv2d_17[0][0]']                       

 

up_sampling2d_3 (UpSampling2D) (None, 128, 128, 64  0)          ['conv2d_18[0][0]']               

conv2d_19 (Conv2D)             (None, 128, 128, 32  8224)       ['up_sampling2d_3[0][0]']         

 

concatenate_3 (Concatenate)    (None, 128, 128, 64  0)          ['conv2d_1[0][0]','conv2d_19[0][0]']                                

conv2d_20 (Conv2D)             (None, 128, 128, 32  18464)      ['concatenate_3[0][0]']           

conv2d_21 (Conv2D)             (None, 128, 128, 32  9248)       ['conv2d_20[0][0]']               

conv2d_22 (Conv2D)             (None, 128, 128, 4)  132         ['conv2d_21[0][0]']  

          

============================================================================================================= 

 

Total params: 7,759,908 

Trainable params: 7,759,908 

Non-trainable params: 0 

 

Figure 5. U-Net model summary.

3.4. Tumor Grade Classification

Glioma is a type of cancer that occurs in the brain and spinal cord; it originates from
the gluey supportive cells. The ETISTP model classifies gliomas into LGG and HGG
categories. LGGs are cancerous tumors that exhibit slow growth rates and arise from glial
cells of the brain, whereas HGGs occur in the spinal cord and brain, have a fast growth rate,
and are highly dangerous and difficult to treat. Classification involves grouping entities
based on a set of ordered features. In this work, 3D convolutional neural networks (3D
CNNs) [50–52] were employed to classify tumors into LGG and HGG categories. The
3D CNNs have successive convolution layers and rectified linear unit (ReLU) functions.
Each layer consists of neurons that learn weights and biases from an input image and use
weighted sums in the activation function. Hidden layers include conv3d, max_pooling3d,
and batch_normalization, as shown in Figure 8. After training, the proposed model is
tested, and initial results for the classification of tumors into HGG and LGG categories
based on t1, t1ce, t2, flair, and segmented modalities are presented in Table 3.
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Figure 6. Example of the segmented tumor from the MRI.

Figure 7. Example of a segmented 3D image in sagittal, coronal, and axial images.

Table 3. Performance of modality-wise classification.

Modality Accuracy Precision F1 Score

T1 94.00 93.81 95.77

T1ce 94.00 93.81 95.77

T2 94.38 93.62 95.65

Flair 93.23 93.81 95.77

Segmented 94.38 93.81 95.77

Average 94.20% 93.77% 95.75%

The segmented image produced by the tumor identification phase is used as input for
both the tumor volume computation and tumor grade classification phases. This allows
the ETISTP model to perform both tasks simultaneously, minimizing the overall response
time significantly. Upon completion of the tumor grade classification and tumor volume
computation phases, the ETISTP model reaches the final phase, which is detailed below.
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Figure 8. Classification of model parameters.

3.5. Survival Time Prediction

The diagnostic process involves identifying the brain tumor and its grade, which
is the responsibility of the tumor identification and tumor grade classification phases of
the proposed ETISTP model. However, this information alone is not sufficient to plan
and enable better treatment. The survival time of a patient is crucial in this regard. Since
medical practitioners cannot compute the exact survival time for a patient, the ETISTP
model includes a prediction phase that estimates the number of days a patient may survive.
This prediction will certainly assist medical practitioners in planning and implementing
effective treatments against brain tumors.

In the literature, there are several prediction models; however, these models signifi-
cantly lack accuracy. To this end, the ETISTP model integrates the patient’s age, EoGTR,
tumor volume, and tumor grade. Tumor grades are indicated using binary values, i.e., zero
(0) and one (1) for LGG and HGG, respectively. The ETISTP model employs the CoxPH
model [34,36,53], which takes into account the tumor volume, tumor grade, age, and GTR
status. This integration of different parameters helps to enhance the accuracy of survival
time prediction, as will be demonstrated in Section 4.
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The results of the Cox Proportional hazard (CoxPH) model provide data about the
relationship between the four factors and the hazard ratio of survival time, as follows.

• The hazard ratio (HR) is the ratio of the hazard rates of two groups, which in this case
is the ratio of the hazard rate of the group with a one-unit increase in the factor to the
hazard rate of the group with the reference level of the factor.

• The coefficient (coef) of each factor is the estimated change in the log hazard ratio for
a one-unit increase in the factor, holding other factors constant.

• The exponentiated coefficient (exp (coef)) is the estimated change in the hazard ratio
for a one-unit increase in the factor, holding other factors constant.

• The standard error (se) of the coefficient is the estimated standard deviation of
the coefficient.

• The 95% confidence interval (CI) of the coefficient provides a range of values for
the coefficient that is likely to contain the true value of the coefficient with a 95%
probability.

• The 95% CI of the exponentiated coefficient provides a range of values for the hazard
ratio that is likely to contain the true value of the hazard ratio with a 95% probability.

• The z-value is the coefficient divided by the standard error and indicates the signifi-
cance of the coefficient.

• The p-value is the probability of observing a z-value that is as extreme as (or more
extreme than) the observed z-value under the assumption that the null hypothesis,
which states that the coefficient is zero, is true.

• The −log2(p) is the negative logarithm (base 2) of the p-value and it indicates the
strength of evidence against the null hypothesis.

Table 4 includes a summary of the parameters that are used to train the CoxPH with
the aforementioned four parameters.

Table 4. Summary of the parameters used for training the CoxPHFitter model.

Model lifeline.CoxPHFitter

Duration Column days

Event Column event

Baseline Estimation Breslow

Number of observations 228

Number of events observed 228

Partial log-likelihood −994.44

Table 5 demonstrates the coefficient results of the patients for each factor. These results
can be interpreted as follows:

• Age: The coefficient of age is 0.04, indicating that the hazard ratio of survival time
increases by 4% for a one-year increase in age, assuming that all other factors remain
constant. This effect is statistically significant (z = 5.45, p < 0.005). The 95% confi-
dence interval (CI) of the hazard ratio ranges from 1.02 to 1.05, indicating that the
hazard ratio is likely to increase between 2% and 5% for a one-year increase in age.

• GTR: The coefficient of GTR is 0.04, which means that the hazard ratio of survival time
increases by 4% for GTR, holding other factors constant. However, this effect is not
statistically significant (z = 0.52, p = 0.60). The 95% CI of the hazard ratio is 0.90 to
1.19, which means that the hazard ratio can decrease by 10% or increase by 19% for
GTR, but the uncertainty is high.

• Class: The coefficient of ’class’ is -0.64, which means that the hazard ratio of survival
time decreases by 47% for class, holding other factors constant. This effect is marginally
significant (z = −1.75, p = 0.08), indicating weak evidence against the null hypothesis.
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The 95% CI of the hazard ratio is 0.26 to 1.08, which means that the hazard ratio can
decrease by 74% or increase by 8% for class, but the uncertainty is high.

• Volume: The coefficient of volume is 0.00, which means that the hazard ratio of
survival time does not change for volume, holding other factors constant. This effect
is not statistically significant (z = −1.73, p = 0.08). The 95% CI of the hazard ratio is
1.00 to 1.00, which means that the hazard ratio is likely to remain the same for volume.
However, the upper bound of the CI is 1.08, indicating that there is a small possibility
that the hazard ratio can increase by up to 8% for a one-unit increase in volume, but
the uncertainty is high.

In summary, the CoxPH model indicates that age is a significant predictor of survival
time, with a higher age associated with an increased hazard of death. However, the effects
of GTR, class, and volume are less clear and require further investigation. It is important
to note that the interpretation of these results should be made in the context of the study
population and the specific research question being addressed.

Finally, the concordance of our trained CoxPH model is represented in Table 6. The
concordance analysis result of the CoxPH model provides an assessment of the model’s
predictive accuracy. In this case, the concordance value is 0.74, indicating that the model
has a moderately good ability to discriminate between subjects who experience the event
of interest (death) and those who do not. A perfect concordance value is 1.0, indicating
perfect prediction accuracy, while a concordance value of 0.5 indicates random prediction.
The partial AIC (Akaike information criterion) value is 1999.20, which is a measure of the
model’s goodness-of-fit, with lower values indicating a better fit. The log-likelihood ratio
test (LRT) value is 38.17 on 4 degrees of freedom (df), which compares the fit of the full
model with a reduced model that does not include any of the predictor variables. The LRT
assesses whether the addition of the predictor variables significantly improves the model’s
fit, with a higher value indicating a better fit. In this case, the LRT value is significant,
with a −log2(p) value of 23.20, indicating that the model with the predictor variables fits
significantly better than the reduced model without any predictor variables. Overall, these
results suggest that the CoxPH model with the four predictor variables (age, GTR, class,
and volume) has a reasonably good ability to predict the survival time and provides a
better fit than a model without any predictor variables.

We keep an 80% to 20% ratio for the training and testing in this phase. The ETISTP
model computes the hazard values using Equation (2) [33,34], as

h(t) = ho(t)
n

∑
i=1

exp(biwi), (2)

where h represents the hazard value, ho is a baseline hazard function that reflects the
underlined hazard value for a case where all of the covariates are zero, t refers to the
time at which a hazard value is recorded, b represents the hazard factor, w denotes the
coefficient value for the concerned hazard value, and n (ranging from 0 through 3) refers to
the risk factors.

Table 7 shows hazard factor weights for the risk factor, coefficient, and Exp (coef). In
this model, the tumor volume has a coefficient of 0.01, but its hazard ratio is 1.00, which
suggests that a one-unit increase in tumor volume does not significantly impact the risk of
the event of interest. The tumor type has a coefficient of 0.15, and its corresponding hazard
ratio is 1.16, indicating that patients with a different tumor type have a 16% higher risk of
the event of interest, after adjusting for other variables in the model. The patient’s age has
a coefficient of 0.03, and its corresponding hazard ratio is 1.04, indicating that for every
one-year increase in age, the risk of the event of interest increases by 4% while controlling
for other factors. The extent of GTR has a coefficient of 0.04, and its corresponding hazard
ratio is 1.04, suggesting that patients with more extensive GTR have a 4% higher risk of the
event of interest than those with less extensive GTR, after adjusting for other variables in
the model. Overall, these results indicate that the tumor type, patient’s age, and the extent
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of GTR are significant predictors of the event of interest, while the tumor volume does not
appear to have a significant effect on the risk of the event in this particular model.

Table 5. The parameter coefficient values from the CoxPH model.

Factor Coef Exp
(Coef)

Se
(Coef)

Coef
Lower

95%

Coef
Upper
95%

Exp (Coef)
Lower
95%

Exp (Coef)
Upper
95%

z p −log2(p)

Age 0.04 1.04 0.01 0.02 0.05 1.02 1.05 5.45 <0.005 24.26

GTR 0.04 1.04 0.07 −0.10 0.17 0.90 1.19 0.52 0.60 0.73

Class −0.64 0.53 0.37 −1.36 0.08 0.26 1.08 −1.75 0.08 3.63

Volume 0.00 1.00 0.00 −0.00 0.08 1.00 1.00 −1.73 0.08 3.58

Table 6. Concordance results of the CoxPH model.

Concordance 0.74

Partial AIC 1999.20

Log-likelihood ratio test 38.17 on 4 df

−log2(p) of ll-ratio test 23.20

Table 7. Hazard Factor Weight.

Risk Factor Coefficients Exp (Coef)

Tumor Volume 0.01 1.00

Tumor Type 0.15 1.16

Patient’s Age 0.03 1.04

Extent of GTR 0.04 1.04

ETISTP keeps the target value of the survival rate within the range of 0 to 1, where
0 refers to the minimum chances of the patient’s survival and 1 denotes the maximum
chances. To compute the probability of a patient’s survival time in terms of days, the
ETISTP model uses Equation (3) [53], as

ln S(ti) = −
∫ t

0
hi(t)d(t), (3)

where S denotes the survival rate for a certain time t and i represent the time range,
e.g., i = 1, 2, 3, 4, . . . , n. h(t) is the hazard value obtained from Equation (2) and d(t) is a
derivative for the integration in the equation.

Figure 9 shows the initial results for the survival probability of a single patient with
specifications provided in Table 8.

Table 8. Single Patient input data.

Patient’s No. Age (Years) GTR Tumor Class Volume

102 85.942 1 HGG 58.208
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Figure 9. Single patient survival rate.

Similarly, the initial results for multiple patients are shown in Figure 10 with respect
to the parameters specified in Table 9. Moreover, Figure 11 shows the survival rate for the
LGG patient, whereas Figure 12 depicts the same for the HGG patient. These plots are
based on the data provided in Table 10.

Table 9. Sample input data for survival prediction.

Patient’s No. Age GTR Class Volume

150 63.805 3 1 095.391

054 66.510 3 2 118.394

168 64.378 3 2 099.624

102 85.942 1 2 058.208

050 52.348 3 2 121.570

155 81.112 3 2 162.623

003 39.068 1 1 103.496

076 79.211 1 2 050.183

Figure 10. Survival rate of multiple patients.
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Figure 11. Survival rate for the LGG patient.

Figure 12. Survival rate for the HGG patient.

Table 10. Input data for LGG and HGG patients.

Patient’s No. Age (Years) GTR Tumor Class Volume

3 39.068 1 LGG 103.496

155 81.112 3 HGG 162.623

4. Performance Evaluation

This section evaluates the performance of our proposed ETISTP model. For tumor
identification, the ETISTP model is compared with BU-Net [6], FCN [35], BrainSeg [54],
and U-Net [24]. Moreover, to evaluate the classification performance, the proposed model
is compared with 3DCNN [55] using five modalities, i.e., t1, t1ce, t2, Flair, and segmented.
The survival prediction efficiency is evaluated in comparison with SAVAE-COX [39],
CoxPH [40], PAGE-Net [41], the statistical machine learning algorithm [42], SVM [35],
and the random forest classifier [20]. The following subsection details the simulation
parameters used in this work.

4.1. Simulation Setup

The simulation results were obtained using TensorFlow v1.12 with Keras in an Ana-
conda environment, which provides extensive built-in library support. This was utilized
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for the state-of-the-art segmentation and classification of MRIs, brain tumor volume com-
putation, and prediction of patients’ survival [56].

The hardware platform includes Dell OptiPlex 9020 with an Intelr Core i7TM−4770
processor, 8 gigabytes of memory, and running Microsoft © Windows 10 (Home-20H2
Edition). Moreover, we used the Brats2020 dataset, which consists of MR images for
369 patients with 5 different modalities, i.e., t1, t1ce, t2, t2flair, and seg [10,22,44,45]. Each
presented result is an average of over 20 replicated simulation runs, where all parameters
were kept fixed, and only the input values were randomly changed.

4.2. Performance Evaluation Criteria

To evaluate the performance of the proposed ETISTP, we employed the Dice score
for tumor identification [57,58]. Moreover, for the classification comparative analysis, this
work used the confusion matrix for tumor classification [14,28,55]. Finally, the Concordance
Index (Ci) was utilized to evaluate the performance of our proposed model in terms of
survival prediction, which is widely used for survival analyses in different models [39,40].

4.3. Results and Discussion

This section presents the simulation results with their respective discussions. Figure 3
depicts sample MRI images in five modalities from the Brats2020 dataset.

4.3.1. Tumor Identification

Tumor identification leads to effective survival prediction for a patient, which can
enable healthcare centers to save the precious lives of patients. The Dice score is used to
evaluate the tumor identification efficiency of the aforementioned models, which is used by
state-of-the-art models for quantitative comparison. A Dice score identifies the similarity
between two sets, e.g., P and Q [57], as

Dice =
2× |P ∩Q|
|P + Q| (4)

where |P| and |Q| refer to the cardinalities of the sets P and Q, respectively.
We compare our ETISTP model with the identification models presented in [6,20,24,35,54].

The results depicted in Table 11 show the superior performance of ETISTP, where it achieves
a considerably high Dice score in comparison with the aforementioned models.

Table 11. Tumor identification results with respect to the Brats2020 dataset.

S No. Author(s) Dice Score

1. Rehman et al. [54] 0.790

2. Rehman et al. [6] 0.837

3. Amian et al. [20] 0.840

4. Ilhan et al. [24] 0.880

5. Islam et al. [35] 0.899

6. The proposed ETISTP model 0.902

4.3.2. Classification

The appropriate classification of brain tumors is crucial to enable effective cures and
to predict a patient’s survival time. The ETISTP model classifies brain tumors in terms
of LGG and HGG. To evaluate the classification performance, we employed confusion



Diagnostics 2023, 13, 1456 17 of 22

matrix, where accuracy, precision, and the F1 score, which determine the efficacy of a model.
Classification accuracy is computed using Equation (5) [4], as

Accuracy =
STP + STN

STP + SFP + STN + SFN
, (5)

where STP and STN denote true positive and true negative values, respectively. Similarly,
SFP refers to the false positive value, whereas SFN is a false negative value. Furthermore,
precision in classification is evaluated using Equation (6) [4], as

Precision =
STP

STP + SFP
. (6)

Finally, the F1 score is calculated using Equation (7) [4], as

F1score =
STP

STP + 1
2 (SFP + SFN)

. (7)

The classification efficacy of ETISTP, in terms of HGG and LGG, is evaluated in
comparison with state-of-the-art models proposed in [4,14,28,55]. Table 12 presents the
simulation results that affirm the superiority of the proposed ETISTP model in comparison
with the aforementioned models. Moreover, the training accuracy and training loss for the
five different modalities, i.e., t1 through seg, are shown in Figures 13–17, respectively.

Table 12. Classification of a brain tumor with respect to LGG and HGG.

S No. Author(s) Accuracy Precision F1 Score

1. Chenjie et al. [28] 88.22% 86.76% 85.18%

2. Zahraa et al. [55] 91.02% 87.07% 88.44%

3. Attique et al. [14] 92.50% 88.37% 89.12%

4. Narmatha et al. [4] 93.85% 94.77% 95.42%

5. The proposed ETISTP model 94.20% 95.77% 95.75%

Figure 13. T1: Model accuracy and loss for 10 epochs.

Figure 14. T1ce: Model accuracy and loss for 10 epochs.
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Figure 15. T2: Model accuracy and loss for 10 epochs.

Figure 16. Flair: model accuracy and loss for 10 epochs.

Figure 17. Segmented: model accuracy and loss for 10 epochs.

4.3.3. Survival Time Prediction

This section presents simulation results obtained for the proposed ETISTP model in
terms of survival time prediction, in comparison with existing models from the literature.
Successful classification of brain tumors into LGG and HGG leads to the next step, i.e.,
survival time prediction. To this end, we use Harrell’s Concordance Index (Ci), which is
widely used for survival analysis in various models [39,40]. The Ci value ranges from 0 to 1,
where Ci < 0.5 indicates ineffective, whereas Ci ≥ 0.5 indicates effective survival prediction.
Ci is evaluated using Equation (8), as

Ci =
∑i,j I(Ti > Tj)I(Yi < Yj)Sj

∑i,j I(Ti > Tj)Sj
l, (8)

where i and j denote a pair of subjects, Ti and Tj refer to the survival times, and Yi and
Yj are the predicted risk scores, respectively. Sj ∈ {0, 1}, where 0 indicates a subject as
censored, where 1 shows otherwise. I(.) is the indicator function, which is interpreted as
a fraction for subjects with correctly ordered risk scores. Here, Ci remains proportional
to the survival time in terms of days. To evaluate the ETISTP model for survival time
prediction, we compare it with the models presented in [39–42]. The simulation results
presented in Table 13 confirm our claim of enhanced performance, where the ETISTP model
outperforms the aforementioned models by a considerable margin. Moreover, the survival
rate is evaluated by the ETISTP model for brain tumor patients.

4.4. Computational Efficiency

This section evaluates the computational efficiency of our proposed ETISTP model
in comparison with random forest (RF) [20], SVM [35], and CoxPH [34]. The execution
time is taken in seconds (s) for each aforementioned model on its application to Brats2020.
Since the ETISTP model enables the parallel execution of tumor volume computation and
classification, it achieves the smallest execution time among the aforementioned models.
To this end, Table 14 demonstrates the results that confirm our claim; the ETISTP model
outperforms the rest by a significant margin.
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Table 13. Patient’s survival prediction based on the Brats2020 dataset.

S No. Author(s) Method(s) Concordance p-Value

1. Moradmand et al. [40] CoxPH 0.58 0.006

2. Hao et al. [41] PAGE-Net 0.64 0.007

3. Senders et al. [42] Statistical machine learning algorithm 0.69 0.008

4. Meng et al. [39] SAVAE-COX 0.71 0.009

5. The proposed ETISTP model CoxPH using the integrated parameters 0.74 0.050

Table 14. Computational efficiency analysis.

S No. Model(s) Time

1. RF [20] 12.348 s

2. SVM [35] 8.692 s

3. CoxPH [34] 7.417 s

4. The proposed ETISTP model 0.005 s

5. Conclusions

Technology-assisted diagnosis plays a critical role in determining the efficacy of a
healthcare system. Brain tumors are a major cause of death worldwide, and the survival
time of patients is crucial for prioritizing treatment and improving outcomes. Gliomas are a
particularly deadly type of brain tumor, and are further classified into low- and high-grade
gliomas, which makes survival prediction even more challenging. The existing literature
offers several survival prediction models that use different parameters, such as patient
age, survival days, gross total resection status, tumor size, or tumor grade. However, a
comprehensive model that integrates all of these parameters is still lacking. Moreover, these
models use tumor sizes that adversely impact the accuracy of survival prediction. To this
end, we propose a novel model, ETISTP, which integrates the patient’s age, survival days,
gross total resection status, tumor grade, and brain tumor volume, to improve survival time
prediction. The ETISTP model is a pioneering model that employs tumor volume to enhance
the accuracy of survival prediction. Additionally, our model also minimizes computation
time by enabling parallel execution of tumor volume computation and classification. The
simulation results affirm our claim that the ETISTP model outperforms eminent survival
prediction models from the literature in terms of survival time prediction. Future extensions
of this work may consider the inclusion of artificial intelligence-based decision-making
for treatment. Moreover, the proposed prediction model can further be validated using
larger datasets. Additionally, different clinical variables, e.g., genetic information, can be
investigated to further enhance the prediction process.
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