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Abstract: The air kerma, which is the amount of energy given off by a radioactive substance, is
essential for medical specialists who use radiation to diagnose cancer problems. The amount of
energy that a photon has when it hits something can be described as the air kerma (the amount of
energy that was deposited in the air when the photon passed through it). Radiation beam intensity is
represented by this value. Hospital X-ray equipment has to account for the heel effect, which means
that the borders of the picture obtain a lesser radiation dosage than the center, and that air kerma is
not symmetrical. The voltage of the X-ray machine can also affect the uniformity of the radiation. This
work presents a model-based approach to predict air kerma at various locations inside the radiation
field of medical imaging instruments, making use of just a small number of measurements. Group
Method of Data Handling (GMDH) neural networks are suggested for this purpose. Firstly, a medical
X-ray tube was modeled using Monte Carlo N Particle (MCNP) code simulation algorithm. X-ray
tubes and detectors make up medical X-ray CT imaging systems. An X-ray tube’s electron filament,
thin wire, and metal target produce a picture of the electrons’ target. A small rectangular electron
source modeled electron filaments. An electron source target was a thin, 19,290 kg/m3 tungsten
cube in a tubular hoover chamber. The electron source–object axis of the simulation object is 20◦

from the vertical. For most medical X-ray imaging applications, the kerma of the air was calculated
at a variety of discrete locations within the conical X-ray beam, providing an accurate data set for
network training. Various locations were taken into account in the aforementioned voltages inside the
radiation field as the input of the GMDH network. For diagnostic radiology applications, the trained
GMDH model could determine the air kerma at any location in the X-ray field of view and for a wide
range of X-ray tube voltages with a Mean Relative Error (MRE) of less than 0.25%. This study yielded
the following results: (1) The heel effect is included when calculating air kerma. (2) Computing the air
kerma using an artificial neural network trained with minimal data. (3) An artificial neural network
quickly and reliably calculated air kerma. (4) Figuring out the air kerma for the operating voltage of
medical tubes. The high accuracy of the trained neural network in determining air kerma guarantees
the usability of the presented method in operational conditions.

Keywords: GMDH neural network; X-ray tube; medical diagnostic radiology; air kerma

1. Introduction

There are two steps in the process by which photons impart their energy to matter.
The interaction of photons with matter first transfers energy to the charge carriers of matter.
The charge carriers’ kinetic energy is then deposited by the ionized and excited atoms. By
dividing the total kinetic energy of the charged particles (such as electrons, protons, and
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other charged atoms) that are released when the rays impact something, we may obtain
a measure of the radiation that goes through that item; this measure is called the kerma.
Kinetic energy divided by matter mass yields this value [1]. Ionizing radiation without
a charge is referred to as “kerma” by scientists. The quantity of radiation that has been
absorbed is equal to the amount of kerma, which is measured in gray. A mass of air has
the same amount of kerma as another mass of air. As measuring air kerma is much easier
than measuring the dosage, it is often used for radiation equipment calibration [2]. In
interventional radiology, if the skin dosage is high enough to induce radiographic burns to
the patient, air kerma computation is also used to forecast the skin dose [3]. Researchers
have recently been interested in studying the air kerma created by X-ray tubes. Another
article looked at how changing the anode angle or the wave voltage of the X-ray tube
affected the air kerma. A Philips MCN165 was used to test the X-ray tube model at a
voltage range of 40 to 140 kV [4]. In this investigation, it was found that raising the anode
angle had the same effect on airflow as raising the supply voltage. They also claim that the
air kerma lessens the severity of wrinkles. After introducing the Monte Carlo simulator
for a sodium iodide detector, Oliveira et al. [5] developed a spectral separation method
for determining the air kerma from X-rays. Without the suggested spectrum stripping
procedure, the discrepancy between the derived spectrum and the reference spectrum was
over 63%, but it was reduced to less than 0.2%. The kerma of the chest wall in kids and teens
was investigated by Porto et al. [6]. According to the findings of this study, air tension falls
as tube voltage rises and exposure falls. Air kerma has been measured and reported on by
researchers in the medical and industrial sectors [7–15]. These analyses did not include the
rest of the X-ray tube’s radiation field in their estimation of air kerma at the tube’s core. It
should be noted that the quantity of air kerma changes with the angle inside the X-ray beam,
even when the anode is kept at a constant distance. The anode heel effect is the source of
this discrepancy. These analyses did not include the rest of the X-ray tube’s radiation field in
their estimation of air kerma at the tube’s core. Notably, the quantity of air kerma changes
with distance from the anode in the radiation field. The anode heel effect is to blame for
the discrepancy between these values. Some researchers have investigated the heel effect
in the radiation field. In Ref. [16] researchers have tried to determine air kerma using an
intelligent method. Although they used the MLP neural network to predict air kerma, the
accuracy of the methodology they presented in air kerma prediction was not high. In the
next research [17], the researchers investigated the performance of the RBF neural network
for forecasting air kerma. Although the accuracy increased, it is predicted that by selecting
the appropriate neural network, the accuracy in determining air kerma can be increased
even more. Despite the existence of the anode heel effect, this research presents a technique
for accurately estimating air kerma. The air kerma was computed and simulated using the
Monte Carlo N Particle (MCNP) algorithm at six different X-ray tube voltages and various
distances to the source. Using the MCNP code’s sparse data, a Group Method of Data
Handling (GMDH) neural network is trained to generate predictions about the air kerma.
The trained neural network can calculate the air kerma for any given X-ray tube voltage and
position in the X-ray field. While the MCNP algorithm may be used to calculate air kerma,
this is a time-consuming procedure, hence it is more efficient to employ a neural network
to make predictions about air kerma. The present investigation is organized as follows: A
thorough description of the structure that the MCNP algorithm simulates is provided in
Section 2. In the next section, these simulation data are used to teach the GMDH neural
network. The findings and conclusions are presented in Sections 4 and 5, respectively.

The following are some of the major findings of this study.

1. The heel effect is taken into account while calculating air kerma.
2. Calculating the air kerma by employing an artificial neural network and training it

with a limited amount of data in varying angles, distances, and voltages of tubes.
3. Using an artificial neural network, the calculation of air kerma was executed extremely

quickly and accurately compared to earlier efforts.
4. Calculating the air kerma for medical tubes’ operating voltage.
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2. Methodology

As shown in Figure 1, the two main components of a medical X-ray CT imaging system
are the X-ray tube and the detector. An X-ray tube’s electron filament (a thin wire) and metal
target allow for the production of an X-ray image (the object the electrons hit). After being
generated by the filament, electrons are propelled through a large potential difference in
the X-ray source’s hoover chamber before striking the target. The Bremsstrahlung process
converts just a small proportion of the energy in electrons into photons, therefore most of
the energy ends up as heat. Several projections, or 2D pictures, are taken when the X-ray
tube and detector spin around the subject at the same time. The system takes 2D photos of
the patient and uses powerful computer technology to recreate 3D images of their body
in accordance with Lambert Beer’s law. In the medical X-ray imaging sector, air kerma
has only been studied using a model of an X-ray tube (as shown in Figure 2). A medical
X-ray tube is simulated using code written in MCNPX. To model electron filaments, a tiny
rectangular electron source was examined. If you want to simulate focal spots, you will
need to use a surface source rather than a point source. A thin tungsten cube with a density
of 19,290 kg/m3 was placed in a tubular vacuum chamber as an electron source target. The
electron source–object axis of the simulation object has an angle of 20◦ to the vertical. It is
important to note that at the maximum tilt angle of the X-ray tube target, the emitted X-rays
leave the tube within the cone. To create the illusion of a hoover chamber, the electrons
and the target are encased in a steel shell. The only section of the hoover chamber that has
any action was the exposed circle. At the entrance to the vacuum chamber is a beryllium
window with a density of 1850 kg/m3 and a thickness of 1 mm. Two-stage point detector
counting was used to determine air kerma (tally F5). At each detector, the photon flux
was first measured. The floating air kerma conversion factor recommended in the ICRP-51
report of the International Committee on Radiation Protection was used to determine the
air kerma in the second stride [18]. It should be noted that the overall statistical uncertainty
did not exceed 4% in all Monte Carlo simulations in this study. In this article, we employ a
spherical coordinate system to precisely locate point detectors (according to the inherent
spherical symmetry of the X-rays produced) at various tangent angles (0◦, 2◦, 4◦, 6◦, 8◦, and
10◦, point detectors were placed at 25, 50, 75, 100, and 125 mm from the source at 12◦, 14◦,
16◦, 18◦, and 20◦, respectively) and polar angles (Φ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦,
120◦, 135◦, 150◦, 165◦, 180◦, 195◦, 210◦, 225◦, 240◦, 255◦, 270◦, 285◦, 350◦, 330◦, 345◦, and
360◦). The air kerma was calculated from the installed control points for tube voltages of
40, 60, 80, 100, 120, and 140 kV. Calculating the air kerma map for a given set of parameters
required about 96 h when using a personal computer with an Intel(R) Core(TM) i7 CPU
and 8GB RAM for Monte Carlo simulation.
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Figure 2. The X-ray tube: (1) shield, (2) electron filament, (3) target, (4) X-ray radiation beam, and
(5) window.

GMDH Neural Network

In recent years, researchers have used mathematical models called artificial neural
networks to help them understand how radiation interacts with tissue [18–31]. Moreover,
the strong mathematical tool of numerical computing [32–38] has been employed to solve
various engineering challenges, most notably in the field of artificial networks [39–44].
One of the intelligent methods for solving complex and nonlinear problems was devel-
oped in 1968 by M.G. Ivakhnenko and named GMDH [45]. In fact, these algorithms
create self-examination methods with prediction, classification, control synthesis, and sys-
tem debugging capabilities. The characteristics of the network structure, including the
number of layers, the number of important input features, and the ideal network configura-
tion, were all detected automatically using Ivahnenko’s method. This method presumes
that Kolmogorov–Gabor polynomials of higher order determine the system’s input and
output equations.
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x(x1, x2, . . . , xm) represents the input (the features vector), a(a1, a2, . . . , am) repre-
sents the coefficient or weight, and y(x) represents the network’s output. The following
procedures should have been carried out in order to use a GMDH network:

In the first step, new variables should have been created and quadratic regression
polynomials are calculated based on Equation (2) for each combination and two at a time
for all characteristics (x1, x2 . . . xm).

Z = c1 + c2xi + c3xj + c4x2
i + c5x2

j + c6xixj (2)

Coefficient C was determined using the least squares method in this investigation.
Take note of how each of the quadratic polynomials computed is quite close to the target
value. A quadratic polynomial is calculated by each neuron. Secondly, dead neurons
are those that could not accurately forecast the required product. The leftover neurons
are employed for the layer-up procedure. This process not only creates the first neural
layer, but also chooses the most effective neurons. The third phase involves using the
polynomial found in the second stage to generate the next layer. This means that the old
polynomial is used as a basis for creating a new polynomial, and the second step is repeated
until an effective neuron is located. The GMDH neural network is not complete until this
process is repeated several times. In the final stage, accuracy is guaranteed and test data
are used to assess the efficiency of the designed network. Training data and test data are



Diagnostics 2023, 13, 1418 5 of 18

created throughout the neural network construction phases. The training data are used
to create the neural network, and the error is minimized by tuning the network’s various
parameters. After the training process is complete, the network’s effectiveness ought to be
evaluated against data it has never seen before to ensure it has retained what it has learned.
If this step is completed successfully, the network will behave as expected under operating
circumstances. Around 70% of the data were used for training and the remaining 30% of
the data were used for evaluation.

3. Results

For this research, the air kerma was calculated using a GMDH neural network. After
extracting the function, it was fed into the network. For accurate air kerma estimation,
the functions φ, θ, r, and V were found to be most useful. Figure 3 depicts the intended
structure of the GMDH neural network.
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Figure 3. The architecture of the proposed GMDH neural network.

The GMDH network took into consideration the voltage of the X-ray tube and the
position inside the radiation field as inputs. Output was measured in kerma of air. A neural
network was trained by randomly picking 5775 samples from the provided data. When
training was complete, the remaining data was utilized to evaluate the neural network.
Two hidden layers, each with 4 neurons, were able to give accurate correlations between
inputs and outputs. Two error measures, mean relative error (MRE) and root mean square
error (RMSE), were used to determine the discrepancy between the MCNP code’s air kerma
volume and the neural network’s air kerma prediction. These requirements are represented
by the following equations:

MRE% = 100 × 1
N∑N

j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (3)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(4)

X(Exp) and X(Pred) are the experimental and predicted values, whereas N is the total
number of samples.

4. Discussion

The air kerma, calculated using the Monte Carlo model, is shown in Figure 4 for
two different tube voltages (60 kV and 120 kV) based on the X-ray field of view at a
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distance of 75 mm from the source. Figure 4a,b demonstrate how the heel effect of the
X-ray tube causes the anticipated air kerma to be smaller on the right side of the field of
view (towards the target) than on the left, despite being almost uniform from top to bottom.
The kerma of the air increases as the voltage in the tube increases. To demonstrate the
effect of distance, the air kerma is computed with the voltage held constant at 80 kV and
the detector placed at distances of 500 mm and 1000 mm, respectively, in Figure 5a,b. Air
kerma drops down dramatically with distance from the source, as predicted. This implies
if the radiation source travels away from the treated region, the quantity of radiation that
reaches that area goes lower.
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Figure 6 exhibits two error histograms and regression plots on the training and testing
data to visually emphasize the neural network’s performance. In the regression graph,
the green circle represents the neural network’s prediction and the yellow line represents
the optimal answer (the value of air kerma generated using the MCNP algorithm). These
coincide, proving the network’s high precision. Some input and output data of the GMDH
neural network are displayed in Table 1. In this table, some of the tube voltage values and
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the location that is considered inputs of the network can be seen, along with the amount
of air kerma calculated by the MCNP code. In this table, you can see the performance
of the neural network in finding the input–output relationship. It should be noted that
for the best possible performance of the neural network, first the inputs and outputs are
normalized, and then after predicting the output, the data are returned to their initial state.
The amount of air kerma predicted by the neural network is also provided. As it is clear,
the value predicted by the neural network has a slight difference from the calculated value,
which indicates the acceptable performance of the neural network.
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Table 1. Some input and output data of the GMDH neural network.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

0 0 250 40 0.3730 0.3699

2 0 250 40 0.3190 0.3272

4 0 250 40 0.3040 0.2977

6 0 250 40 0.2850 0.2757

8 0 250 40 0.2630 0.2593

10 0 250 40 0.2370 0.2414

12 0 250 40 0.2060 0.2111

14 0 250 40 0.1680 0.1650

16 0 250 40 0.1220 0.1148

18 0 250 40 0.0648 0.0718

0 15 500 40 0.0932 0.0934

2 15 500 40 0.0799 0.0788

4 15 500 40 0.0761 0.0749

6 15 500 40 0.0717 0.0698

8 15 500 40 0.0667 0.0640

10 15 500 40 0.0605 0.0598

12 15 500 40 0.0530 0.0540

14 15 500 40 0.0443 0.0426

16 15 500 40 0.0335 0.0289

18 15 500 40 0.0204 0.0194

20 15 500 40 0.0019 0.0031

0 30 750 40 0.0414 0.0408

2 30 750 40 0.0350 0.0361

4 30 750 40 0.0335 0.0370

6 30 750 40 0.0318 0.0344

8 30 750 40 0.0298 0.0289

10 30 750 40 0.0276 0.0253

12 30 750 40 0.0248 0.0249

14 30 750 40 0.0216 0.0244

16 30 750 40 0.0179 0.0214

18 30 750 40 0.0135 0.0165

20 30 750 40 0.0085 0.0066

0 45 1000 40 0.0233 0.0204

2 45 1000 40 0.0198 0.0181

4 45 1000 40 0.0191 0.0189

6 45 1000 40 0.0184 0.0198

8 45 1000 40 0.0175 0.0189

10 45 1000 40 0.0166 0.0171

12 45 1000 40 0.0154 0.0160

14 45 1000 40 0.0142 0.0160

16 45 1000 40 0.0128 0.0161
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Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

18 45 1000 40 0.0111 0.0150

20 45 1000 40 0.0026 0.0104

0 60 1250 40 0.0149 0.0135

2 60 1250 40 0.0139 0.0116

4 60 1250 40 0.0136 0.0111

6 60 1250 40 0.0132 0.0122

8 60 1250 40 0.0128 0.0129

10 60 1250 40 0.0124 0.0121

12 60 1250 40 0.0119 0.0105

14 60 1250 40 0.0114 0.0096

16 60 1250 40 0.0109 0.0096

18 60 1250 40 0.0102 0.0084

20 60 1250 40 0.0095 0.0028

0 0 250 60 0.3990 0.3975

2 0 250 60 0.3780 0.3801

4 0 250 60 0.3530 0.3544

6 0 250 60 0.3240 0.3247

8 0 250 60 0.2930 0.2961

10 0 250 60 0.2580 0.2651

12 0 250 60 0.2180 0.2218

14 0 250 60 0.1730 0.1636

16 0 250 60 0.1220 0.1034

18 0 250 60 0.0654 0.0562

0 15 500 60 0.0998 0.0974

2 15 500 60 0.0948 0.0920

4 15 500 60 0.0885 0.0889

6 15 500 60 0.0818 0.0821

8 15 500 60 0.0743 0.0742

10 15 500 60 0.0659 0.0673

12 15 500 60 0.0564 0.0577

14 15 500 60 0.0459 0.0415

16 15 500 60 0.0339 0.0239

18 15 500 60 0.0205 0.0141

20 15 500 60 0.0042 0.0030

0 30 750 60 0.0444 0.0457

2 30 750 60 0.0427 0.0408

4 30 750 60 0.0402 0.0399

6 30 750 60 0.0375 0.0375

8 30 750 60 0.0345 0.0338

10 30 750 60 0.0311 0.0312

12 30 750 60 0.0274 0.0293



Diagnostics 2023, 13, 1418 10 of 18

Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

14 30 750 60 0.0233 0.0250

16 30 750 60 0.0188 0.0182

18 30 750 60 0.0138 0.0122

20 30 750 60 0.0084 0.0047

0 45 1000 60 0.0250 0.0285

2 45 1000 60 0.0243 0.0247

4 45 1000 60 0.0231 0.0215

6 45 1000 60 0.0219 0.0205

8 45 1000 60 0.0206 0.0206

10 45 1000 60 0.0191 0.0208

12 45 1000 60 0.0176 0.0201

14 45 1000 60 0.0158 0.0182

16 45 1000 60 0.0139 0.0152

18 45 1000 60 0.0119 0.0121

20 45 1000 60 0.0040 0.0079

0 60 1250 60 0.0160 0.0154

2 60 1250 60 0.0158 0.0177

4 60 1250 60 0.0153 0.0163

6 60 1250 60 0.0147 0.0149

8 60 1250 60 0.0142 0.0143

10 60 1250 60 0.0135 0.0136

12 60 1250 60 0.0129 0.0124

14 60 1250 60 0.0121 0.0112

16 60 1250 60 0.0114 0.0106

18 60 1250 60 0.0105 0.0100

20 60 1250 60 0.0096 0.0077

0 0 250 80 0.4130 0.4087

2 0 250 80 0.4070 0.4051

4 0 250 80 0.3750 0.3739

6 0 250 80 0.3410 0.3326

8 0 250 80 0.3040 0.2938

10 0 250 80 0.2630 0.2587

12 0 250 80 0.2190 0.2180

14 0 250 80 0.1710 0.1641

16 0 250 80 0.1200 0.1029

18 0 250 80 0.0645 0.0490

0 15 500 80 0.1030 0.1027

2 15 500 80 0.1020 0.1040

4 15 500 80 0.0942 0.0983

6 15 500 80 0.0861 0.0862

8 15 500 80 0.0772 0.0732
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Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

10 15 500 80 0.0675 0.0633

12 15 500 80 0.0570 0.0546

14 15 500 80 0.0456 0.0423

16 15 500 80 0.0333 0.0278

18 15 500 80 0.0202 0.0183

20 15 500 80 0.0061 0.0082

0 30 750 80 0.0459 0.0453

2 30 750 80 0.0462 0.0443

4 30 750 80 0.0431 0.0445

6 30 750 80 0.0398 0.0423

8 30 750 80 0.0362 0.0372

10 30 750 80 0.0323 0.0315

12 30 750 80 0.0281 0.0266

14 30 750 80 0.0236 0.0217

16 30 750 80 0.0187 0.0170

18 30 750 80 0.0136 0.0144

20 30 750 80 0.0082 0.0094

0 45 1000 80 0.0258 0.0274

2 45 1000 80 0.0263 0.0254

4 45 1000 80 0.0249 0.0232

6 45 1000 80 0.0234 0.0229

8 45 1000 80 0.0218 0.0231

10 45 1000 80 0.0201 0.0219

12 45 1000 80 0.0183 0.0191

14 45 1000 80 0.0162 0.0155

16 45 1000 80 0.0141 0.0129

18 45 1000 80 0.0119 0.0119

20 45 1000 80 0.0054 0.0090

0 60 1250 80 0.0165 0.0154

2 60 1250 80 0.0167 0.0183

4 60 1250 80 0.0161 0.0173

6 60 1250 80 0.0154 0.0160

8 60 1250 80 0.0147 0.0151

10 60 1250 80 0.0140 0.0141

12 60 1250 80 0.0132 0.0124

14 60 1250 80 0.0123 0.0109

16 60 1250 80 0.0114 0.0106

18 60 1250 80 0.0105 0.0109

20 60 1250 80 0.0094 0.0094

0 0 250 100 0.4320 0.4285

2 0 250 100 0.4260 0.4248
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Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

4 0 250 100 0.3910 0.3876

6 0 250 100 0.3530 0.3424

8 0 250 100 0.3120 0.3028

10 0 250 100 0.2680 0.2694

12 0 250 100 0.2220 0.2328

14 0 250 100 0.1720 0.1816

16 0 250 100 0.1200 0.1156

18 0 250 100 0.0657 0.0503

0 15 500 100 0.1080 0.1099

2 15 500 100 0.1070 0.1105

4 15 500 100 0.0982 0.1016

6 15 500 100 0.0891 0.0888

8 15 500 100 0.0793 0.0762

10 15 500 100 0.0688 0.0668

12 15 500 100 0.0577 0.0593

14 15 500 100 0.0459 0.0487

16 15 500 100 0.0334 0.0332

18 15 500 100 0.0203 0.0186

20 15 500 100 0.0075 0.0073

0 30 750 100 0.0480 0.0437

2 30 750 100 0.0482 0.0445

4 30 750 100 0.0447 0.0450

6 30 750 100 0.0410 0.0437

8 30 750 100 0.0371 0.0388

10 30 750 100 0.0328 0.0320

12 30 750 100 0.0284 0.0258

14 30 750 100 0.0237 0.0209

16 30 750 100 0.0187 0.0173

18 30 750 100 0.0135 0.0153

20 30 750 100 0.0081 0.0100

0 45 1000 100 0.0270 0.0264

2 45 1000 100 0.0275 0.0262

4 45 1000 100 0.0259 0.0247

6 45 1000 100 0.0242 0.0243

8 45 1000 100 0.0224 0.0237

10 45 1000 100 0.0205 0.0214

12 45 1000 100 0.0185 0.0176

14 45 1000 100 0.0164 0.0140

16 45 1000 100 0.0142 0.0126

18 45 1000 100 0.0119 0.0129

20 45 1000 100 0.0069 0.0094
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Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

0 60 1250 100 0.0173 0.0179

2 60 1250 100 0.0175 0.0195

4 60 1250 100 0.0168 0.0192

6 60 1250 100 0.0160 0.0181

8 60 1250 100 0.0152 0.0166

10 60 1250 100 0.0144 0.0147

12 60 1250 100 0.0135 0.0127

14 60 1250 100 0.0125 0.0115

16 60 1250 100 0.0115 0.0116

18 60 1250 100 0.0105 0.0119

20 60 1250 100 0.0095 0.0083

0 0 250 120 0.4490 0.4500

2 0 250 120 0.4350 0.4375

4 0 250 120 0.3970 0.3968

6 0 250 120 0.3580 0.3535

8 0 250 120 0.3150 0.3137

10 0 250 120 0.2700 0.2756

12 0 250 120 0.2230 0.2338

14 0 250 120 0.1730 0.1809

16 0 250 120 0.1220 0.1145

18 0 250 120 0.0674 0.0488

0 15 500 120 0.1120 0.1165

2 15 500 120 0.1090 0.1112

4 15 500 120 0.1000 0.1001

6 15 500 120 0.0904 0.0903

8 15 500 120 0.0802 0.0805

10 15 500 120 0.0694 0.0700

12 15 500 120 0.0580 0.0589

14 15 500 120 0.0462 0.0453

16 15 500 120 0.0337 0.0277

18 15 500 120 0.0207 0.0108

20 15 500 120 0.0088 0.0034

0 30 750 120 0.0499 0.0468

2 30 750 120 0.0487 0.0462

4 30 750 120 0.0451 0.0447

6 30 750 120 0.0412 0.0440

8 30 750 120 0.0371 0.0414

10 30 750 120 0.0328 0.0360

12 30 750 120 0.0283 0.0295

14 30 750 120 0.0236 0.0231

16 30 750 120 0.0186 0.0175
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Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

18 30 750 120 0.0135 0.0133

20 30 750 120 0.0082 0.0080

0 45 1000 120 0.0280 0.0285

2 45 1000 120 0.0278 0.0285

4 45 1000 120 0.0261 0.0254

6 45 1000 120 0.0243 0.0234

8 45 1000 120 0.0224 0.0228

10 45 1000 120 0.0205 0.0222

12 45 1000 120 0.0185 0.0204

14 45 1000 120 0.0163 0.0174

16 45 1000 120 0.0141 0.0146

18 45 1000 120 0.0118 0.0126

20 45 1000 120 0.0085 0.0071

0 60 1250 120 0.0179 0.0190

2 60 1250 120 0.0180 0.0180

4 60 1250 120 0.0172 0.0178

6 60 1250 120 0.0163 0.0168

8 60 1250 120 0.0155 0.0153

10 60 1250 120 0.0146 0.0139

12 60 1250 120 0.0136 0.0130

14 60 1250 120 0.0127 0.0125

16 60 1250 120 0.0117 0.0122

18 60 1250 120 0.0106 0.0110

20 60 1250 120 0.0095 0.0057

0 0 250 140 0.4610 0.4537

2 0 250 140 0.4390 0.4354

4 0 250 140 0.4000 0.3975

6 0 250 140 0.3590 0.3586

8 0 250 140 0.3160 0.3161

10 0 250 140 0.2710 0.2689

12 0 250 140 0.2240 0.2218

14 0 250 140 0.1750 0.1763

16 0 250 140 0.1240 0.1262

18 0 250 140 0.0697 0.0725

0 15 500 140 0.1150 0.1178

2 15 500 140 0.1100 0.1099

4 15 500 140 0.1010 0.0996

6 15 500 140 0.0907 0.0931

8 15 500 140 0.0805 0.0840

10 15 500 140 0.0697 0.0697

12 15 500 140 0.0583 0.0548



Diagnostics 2023, 13, 1418 15 of 18

Table 1. Cont.

φ (deg) θ (deg) R (mm) V (kV) Simulated Air Kerma (1 × e−5) Predicted Air Kerma (1 × e−5)

14 15 500 140 0.0467 0.0430

16 15 500 140 0.0343 0.0321

18 15 500 140 0.0213 0.0201

20 15 500 140 0.0099 0.0121

0 30 750 140 0.0513 0.0496

2 30 750 140 0.0486 0.0492

4 30 750 140 0.0449 0.0455

6 30 750 140 0.0410 0.0439

8 30 750 140 0.0368 0.0420

10 30 750 140 0.0325 0.0376

12 30 750 140 0.0280 0.0312

14 30 750 140 0.0234 0.0249

16 30 750 140 0.0186 0.0197

18 30 750 140 0.0137 0.0165

20 30 750 140 0.0085 0.0130

0 45 1000 140 0.0288 0.0273

2 45 1000 140 0.0277 0.0282

4 45 1000 140 0.0260 0.0231

6 45 1000 140 0.0242 0.0191

8 45 1000 140 0.0222 0.0188

10 45 1000 140 0.0203 0.0208

12 45 1000 140 0.0183 0.0214

14 45 1000 140 0.0162 0.0184

16 45 1000 140 0.0140 0.0133

18 45 1000 140 0.0118 0.0098

20 45 1000 140 0.0100 0.0072

0 60 1250 140 0.0185 0.0190

2 60 1250 140 0.0183 0.0162

4 60 1250 140 0.0174 0.0165

6 60 1250 140 0.0166 0.0161

8 60 1250 140 0.0157 0.0151

10 60 1250 140 0.0147 0.0148

12 60 1250 140 0.0138 0.0147

14 60 1250 140 0.0128 0.0137

16 60 1250 140 0.0118 0.0120

18 60 1250 140 0.0107 0.0111

20 60 1250 140 0.0097 0.0109

5. Conclusions

Calculating air kerma using the MCNP code is very time-consuming and applies a
high volume of calculations to the system, which requires relatively powerful processors
to simulate the radiation field and calculate air kerma. For this purpose, in this research,
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an attempt has been made to provide a quick and low calculation method for predicting
this parameter by calculating air kerma at limited points. The MCNP algorithm and a
neural network were used in this research to find the air kerma in the radiation field of
the X-ray tube. This was accomplished by inspecting the X-ray tube at a voltage range of
40 to 140 kV. Data from 1375 points throughout the radiation field of the X-ray tube were
analyzed to determine the air kerma at each voltage. The generated data matrix contains
the 8250 columns (various samples) and four rows (three location attributes and X-ray
voltage) needed to construct the neural network. Given the location and voltage of the
X-ray tube, the supervised, fast-learning GMDH network was trained to forecast air kerma.
The suggested model exhibited an MRE of less than 0.25% for predicting air kerma. Due to
its excellent precision and speed, it is the most accurate approach for determining the air
kerma in the radiation field of an X-ray tube. While the approach employed in this work
was specifically focused on estimating air kerma for a particular X-ray tube design (fixed
target angle of 20◦), it may be utilized for a broad range of X-ray tube radiation fields. The
suggested approach may also be used to calculate other radiation characteristics, such as
absorbed dose.

Author Contributions: Methodology, L.Z., F.X., L.W., Y.C. and G.Z.; Investigation, E.N. and X.Z.;
Writing—original draft, G.Z.; Supervision, L.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the Research Foundation of Hangzhou Dianzi University
(KYS335622091; KYH333122029M).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cember, H.; Johnson, T.E. Introduction to Health Physics; McGraw-Hill Inc.: New York, NY, USA, 2009.
2. Calibration of Radiation Protection. Monitoring Instruments; IAEA Safety Report No. 16; IAEA: Vienna, Austria, 2000.
3. Miller, D.L.; Balter, S.; Schueler, B.A.; Wagner, L.K.; Strauss, K.J.; Vano, E. Clinical Radiation Management for Fluoroscopically

Guided Interventional Procedures. Radiology 2010, 257, 321–332. [CrossRef] [PubMed]
4. Katoh, Y.; Mita, S.; Fukushi, M.; Nyui, Y.; Abe, S.; Kimura, J. Calculation of air-kerma rate of diagnostic X-ray generators. Radiol.

Phys. Technol. 2011, 4, 1–6. [CrossRef] [PubMed]
5. Oliveira, L.S.R.; Conti, C.C.; Amorim, A.S.; Balthar, M.C.V. NaI (Tl) scintillator detectors stripping procedure for air kerma

measurements of diagnostic X-ray beams. Nucl. Instrum. Methods Phys. Res. 2013, 705, 106–110. [CrossRef]
6. Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; et al.

Evaluation of entrance surface air kerma in pediatric chest radiography. Radiat. Phys. Chem. 2014, 104, 252–259. [CrossRef]
7. Alonso, T.C.; Mourão Filho, A.P.; Da Silva, T.A. Measurements of air kerma index in computed tomography: A comparison

among methodologies. Appl. Radiat. Isot. 2018, 138, 10–13. [CrossRef]
8. Haba, T.; Koyama, S.; Aoyama, T.; Kinomura, Y.; Ida, Y.; Kobayashi, M.; Kameyama, H.; Tsutsumi, Y. Pin-photodiode array for the

measurement of fan-beam energy and air kerma distributions of X-ray CT scanners. Phys. Medica 2016, 32, 905–913. [CrossRef]
9. Kwon, D.; Little, M.P.; Miller, D.L. Reference air kerma and kerma-area product as estimators of peak skin dose for fluoroscopically

guided interventions. Med. Phys. 2011, 38, 4196–4204. [CrossRef]
10. Bushberg, J.T.; Seibert, J.A.; Leidholdt, E.M., Jr.; Boone, J.M. The Essential Physics of Medical Imaging, 3rd ed.; Lippincott

Williams & Wilkins: Philadelphia, PA, USA, 2012.
11. Perera, H.; Williamson, J.F.; Li, Z.; Mishra, V.; Meigooni, A.S. Dosimetric Characteristics, Air-Kerma Strength Calibration and

Verification of Monte Carlo Simulation for a New Ytterbium-169 Brachytherapy Source. Int. J. Radiat. Oncol. Biol. Phys. 1994,
28, 953–970. [CrossRef]

12. Oliveira, C.; Salgado, J.; de Carvalho, A.F. Dose rate determinations in the Portuguese Gamma Irradiation Facility: Monte Carlo
simulations and measurements. Radiat. Phys. Chem. 2000, 58, 279–285. [CrossRef]

13. Liu, Y.; Wei, B.; Zhuoa, R.; Wena, D.; Ding, D.; Xu, Y.; Mao, B. Determination of the Conventional True Value of Gamma-Ray Air
Kerma in a Mini-type Reference Radiation. Appl. Radiat. Isot. 2016, 118, 238–245. [CrossRef]

https://doi.org/10.1148/radiol.10091269
https://www.ncbi.nlm.nih.gov/pubmed/20959547
https://doi.org/10.1007/s12194-010-0097-7
https://www.ncbi.nlm.nih.gov/pubmed/20820966
https://doi.org/10.1016/j.nima.2012.12.002
https://doi.org/10.1016/j.radphyschem.2014.02.014
https://doi.org/10.1016/j.apradiso.2017.10.008
https://doi.org/10.1016/j.ejmp.2016.06.010
https://doi.org/10.1118/1.3590358
https://doi.org/10.1016/0360-3016(94)90116-3
https://doi.org/10.1016/S0969-806X(99)00462-4
https://doi.org/10.1016/j.apradiso.2016.09.018


Diagnostics 2023, 13, 1418 17 of 18

14. Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M. Spatial distribution of air kerma rate and impact of accelerating voltage on
the quality of an ultra soft X-ray beam generated by a cold cathode tube in air. Radiat. Meas. 2015, 80, 23–28. [CrossRef]

15. Mettivier, G.; Sarno, A.; Lai, Y.; Golosio, B.; Fanti, V.; Italiano, M.E.; Jia, X.; Russo, P. Virtual Clinical Trials in 2D and 3D X-ray
Breast Imaging and Dosimetry: Comparison of CPU-Based and GPU-Based Monte Carlo Codes. Cancers 2022, 14, 1027. [CrossRef]

16. Nazemi, E.; Rokrok, B.; Movafeghi, A.; Dinca, M.; Kabir, M. Calculation of air kerma inside the radiation field of X-ray tube.
Radiat. Meas. 2019, 124, 79–84. [CrossRef]

17. Lu, Y.; Zheng, N.; Ye, M.; Zhu, Y.; Zhang, G.; Nazemi, E.; He, J. Proposing Intelligent Approach to Predicting Air Kerma within
Radiation Beams of Medical X-ray Imaging Systems. Diagnostics 2023, 13, 190. [CrossRef]

18. International Commission on Radiological Protection. Data for Use in Protection against External Radiation; ICRP Publication 51;
Pergamon Press: Oxford, UK, 1987.

19. Nazemi, E.; Movafeghi, A.; Rokrok, B.; Dastjerdi, M.H.C. A novel method for predicting pixel value distribution non-uniformity
due to heel effect of X-ray tube in industrial digital radiography using artificial neural network. J. Nondestruct. Eval. 2018, 38, 3.
[CrossRef]

20. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial
intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef]

21. Sattari, M.A.; Roshani, G.H.; Hanus, R. Improving the structure of two-phase flow meter using feature extraction and GMDH
neural network. Radiat. Phys. Chem. 2020, 171, 108725. [CrossRef]

22. Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H. Void fraction prediction in two-phase flows independent of the liquid phase density
changes. Radiat. Meas. 2014, 68, 49–54. [CrossRef]

23. Roshani, G.H.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V. Density and velocity determination for single-phase
flow based on radiotracer technique and neural networks. Flow Meas. Instrum. 2018, 61, 9–14. [CrossRef]

24. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase
flows based on gamma ray attenuation. Measurement 2015, 62, 25–32. [CrossRef]

25. Roshani, G.H.; Karami, A.; Nazemi, E. An intelligent integrated approach of Jaya optimization algorithm and neuro-fuzzy
network to model the stratified three-phase flow of gas–oil–water. Comput. Appl. Math. 2019, 38, 5. [CrossRef]

26. Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network
technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum.
2020, 75, 101804. [CrossRef]

27. Nazemi, E.; Roshani, G.H.; Feghhi, S.A.H.; Setayeshi, S.; Zadeh, E.E.; Fatehi, A. Optimization of a method for identifying the
flow regime and measuring void fraction in a broad beam gamma-ray attenuation technique. Int. J. Hydrogen Energy 2016,
41, 7438–7444. [CrossRef]

28. Roshani, G.H.; Feghhi, S.A.H.; Mahmoudi-Aznaveh, A.; Nazemi, E.; Adineh-Vand, A. Precise volume fraction prediction
in oil–water–gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector.
Measurement 2014, 51, 34–41. [CrossRef]

29. Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Peyvandi, R.G.; Setayeshi, S. Precise Void Fraction Measurement in Two-Phase Flows
Independent of the Flow Regime using gamma-ray attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [CrossRef]

30. Balubaid, M.; Sattari, M.A.; Taylan, O.; Bakhsh, A.A.; Nazemi, E. Applications of discrete wavelet transform for feature extraction
to increase the accuracy of monitoring systems of liquid petroleum products. Mathematics 2021, 9, 3215. [CrossRef]

31. Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approxima-tors.
Neural Comput. 1990, 2, 210–215. [CrossRef]

32. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. De-
sign of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021,
9, 129207–129217. [CrossRef]

33. Hookari, M.; Roshani, S.; Roshani, S. High-efficiency balanced power amplifier using miniaturized harmonics suppressed coupler.
Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22252. [CrossRef]

34. Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. Wilkinson power divider with band-pass filtering response and harmonics
suppression using open and short stubs. Frequenz 2020, 74, 169–176. [CrossRef]

35. Jamshidi, M.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped
resonators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef]

36. Khan, A.A.; Shaikh, Z.A.; Baitenova, L.; Mutaliyeva, L.; Moiseev, N.; Mikhaylov, A.; Laghari, A.A.; Idris, S.A.; Alshazly, H. QoS-
ledger: Smart contracts and metaheuristic for secure quality-of-service and cost-efficient scheduling of medical-data processing.
Electronics 2021, 10, 3083. [CrossRef]

37. Yumashev, A.; Mikhaylov, A. Development of polymer film coatings with high adhesion to steel alloys and high wear resistance.
Polym. Compos. 2020, 41, 2875–2880. [CrossRef]

38. Alwaely, S.A.; Yousif, N.B.A.; Mikhaylov, A. Emotional development in preschoolers and socialization. Early Child Dev. Care 2020,
191, 2484–2493. [CrossRef]

39. Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators
using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [CrossRef]

https://doi.org/10.1016/j.radmeas.2015.07.001
https://doi.org/10.3390/cancers14041027
https://doi.org/10.1016/j.radmeas.2019.03.011
https://doi.org/10.3390/diagnostics13020190
https://doi.org/10.1007/s10921-018-0542-9
https://doi.org/10.1016/j.measurement.2020.108474
https://doi.org/10.1016/j.radphyschem.2020.108725
https://doi.org/10.1016/j.radmeas.2014.07.005
https://doi.org/10.1016/j.flowmeasinst.2018.03.006
https://doi.org/10.1016/j.measurement.2014.11.006
https://doi.org/10.1007/s40314-019-0772-1
https://doi.org/10.1016/j.flowmeasinst.2020.101804
https://doi.org/10.1016/j.ijhydene.2015.12.098
https://doi.org/10.1016/j.measurement.2014.01.030
https://doi.org/10.1016/j.net.2015.09.005
https://doi.org/10.3390/math9243215
https://doi.org/10.1162/neco.1990.2.2.210
https://doi.org/10.1109/ACCESS.2021.3112237
https://doi.org/10.1002/mmce.22252
https://doi.org/10.1515/freq-2019-0200
https://doi.org/10.1080/02726343.2019.1658165
https://doi.org/10.3390/electronics10243083
https://doi.org/10.1002/pc.25583
https://doi.org/10.1080/03004430.2020.1717480
https://doi.org/10.1007/s11277-020-07960-5


Diagnostics 2023, 13, 1418 18 of 18

40. Roshani, S.; Azizian, J.; Roshani, S.; Jamshidi, M.B.; Parandin, F. Design of a miniaturized branch line microstrip coupler with a
simple structure using artificial neural network. Frequenz 2022, 76, 255–263. [CrossRef]

41. Khaleghi, M.; Salimi, J.; Farhangi, V.; Moradi, M.J.; Karakouzian, M. Application of Artificial Neural Network to Predict Load
Bearing Capacity and Stiffness of Perforated Masonry Walls. CivilEng 2021, 2, 48–67. [CrossRef]

42. Dabiri, H.; Farhangi, V.; Moradi, M.J.; Zadehmohamad, M.; Karakouzian, M. Applications of Decision Tree and Random Forest as
Tree-Based Machine Learning Techniques for Analyzing the Ultimate Strain of Spliced and Non-Spliced Reinforcement Bars.
Appl. Sci. 2022, 12, 4851. [CrossRef]

43. Hernandez, A.M.; Boone, J.M. Tungsten anode spectral model using interpolating cubic splines: Unfiltered X-ray spectra from
20 kV to 640 kV. Med. Phys. 2014, 41, 042101. [CrossRef]

44. Zhang, G.; Liu, R.; Ge, Y.; Mayet, A.M.; Chan, S.; Li, G.; Nazemi, E. Investigation on the Wilson Neuronal Model: Optimized
Approximation and Digital Multiplierless Implementation. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 1181–1190. [CrossRef]

45. Ivakhnenko, A.G. Polynomial Theory of Complex Systems. IEEE Trans. Syst. Man Cybern. 1971, SMC-1, 364e378. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1515/freq-2021-0172
https://doi.org/10.3390/civileng2010004
https://doi.org/10.3390/app12104851
https://doi.org/10.1118/1.4866216
https://doi.org/10.1109/TBCAS.2022.3213600
https://doi.org/10.1109/TSMC.1971.4308320

	Introduction 
	Methodology 
	Results 
	Discussion 
	Conclusions 
	References

