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Abstract: Due to the primary affection of the respiratory system, COVID-19 leaves traces that are
visible in plain chest X-ray images. This is why this imaging technique is typically used in the clinic
for an initial evaluation of the patient’s degree of affection. However, individually studying every
patient’s radiograph is time-consuming and requires highly skilled personnel. This is why automatic
decision support systems capable of identifying those lesions due to COVID-19 are of practical
interest, not only for alleviating the workload in the clinic environment but also for potentially
detecting non-evident lung lesions. This article proposes an alternative approach to identify lung
lesions associated with COVID-19 from plain chest X-ray images using deep learning techniques.
The novelty of the method is based on an alternative pre-processing of the images that focuses
attention on a certain region of interest by cropping the original image to the area of the lungs. The
process simplifies training by removing irrelevant information, improving model precision, and
making the decision more understandable. Using the FISABIO-RSNA COVID-19 Detection open
data set, results report that the opacities due to COVID-19 can be detected with a Mean Average
Precision with an IoU > 0.5 (mAP@50) of 0.59 following a semi-supervised training procedure and
an ensemble of two architectures: RetinaNet and Cascade R-CNN. The results also suggest that
cropping to the rectangular area occupied by the lungs improves the detection of existing lesions.
A main methodological conclusion is also presented, suggesting the need to resize the available
bounding boxes used to delineate the opacities. This process removes inaccuracies during the labelling
procedure, leading to more accurate results. This procedure can be easily performed automatically
after the cropping stage.

Keywords: COVID-19; decision support system; chest X-ray; lesions detection; deep learning

1. Introduction

COVID-19 is caused by the SARS-CoV-2 virus, and since its first appearance in Wuhan
in December 2019, it has spread rapidly around the world with a reproduction number (R0)
estimated between 1.4 and 2.4 in Europe [1], and between 2.24 and 3.58 in China [2].

Since its appearance, current estimates report that SARS-CoV-2 has infected more than
677 people, which is the current number of active cases at the time of writing approximately
20 M [3]. During this time, the virus has mutated several times, changing many aspects
that had a small to huge impact on the properties of the virus, such as its spreading factor,
its mortality, or the performance of vaccines.

SARS-CoV-2 belongs to the same family of viruses as SARS-CoV, which causes Severe
Acute Respiratory Syndrome (SARS), and MERS-CoV, responsible for the Middle East Res-
piratory Syndrome (MERS). These types of viruses are known as coronaviruses, and their
main characteristic is that they contain a single-stranded RNA enclosed in a capsid (the
protein shell of a virus) with spikes, therefore, resembling the corona-like appearance of
the virus. These coronaviruses share many similarities, such as their manifestations of
increased viral pneumonia or their survival decay.
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COVID-19 is a type of respiratory disease that is transmitted mainly through the air
through respiratory droplets and aerosols from mucous membranes of about 25 µm in size.
The incubation period of the virus is approximately 4 to 7 days from the initial exposure
of the individual to the virus [4]. COVID-19 has been shown to be much more infectious,
but has a lower mortality rate than SARS.

Symptoms related to COVID-19 disease are cough, fever, fatigue, headache, and mus-
cle pain. The loss of sense of smell (anosmia) and the loss of taste (dysgeusia) have also
been frequently reported among patients. Around 30% of infected people also experience
shortness of breath (dyspnea), and 10% also report gastrointestinal problems. Addition-
ally, 30% of patients usually suffer from cardiovascular complications, which can include
a variety of cardiomyopathies [5]. However, the most serious complication of patients with
COVID-19 is acute respiratory distress syndrome, which often leads to high hospitalisation
and mortality rates experienced during the pandemic. Due to the primary affection of the
respiratory system, COVID-19 leaves fibrosis traces that are visible on chest radiological
images in the form of ground glass opacities [6,7].

1.1. Motivation

Plain chest radiography (CXR) and computer tomography (CT) are two radiological
techniques that have been shown to have great clinical value in the diagnosis and evaluation
of patients with COVID-19. These techniques are valuable in diagnosis, medical triage,
and/or therapy. In [8], it was shown that these imaging techniques were shown to be useful
in clinical scenarios during the pandemic. For patients with mild symptoms of COVID-19,
radiological images also provide a baseline for evaluating the patient’s condition. In the
case of patients with moderate to severe symptoms, it also helps to identify lung and heart
abnormalities and allows a more informed medical decision. CXR is also a great aid for
fast triage. Finally, chest radiological tests are also recommended if the patient worsens
so that he can be treated accordingly. In any case, radiological findings are not used as
the primary screening tool to detect COVID-19, but rather to determine its severity and
potential complications [9].

Many investigations report a variety of appearances in CXR of COVID-19 patients
such as: [8,10–13]. The most typical reported appearances are multifocal bilateral and
peripheral lung opacities, usually round-shaped and predominant in the lower part of
the lungs [14], although there might be other appearances, such as central or upper lung
opacities, and also pneumothoraxes, pleural effusions, pulmonary oedemas, lobar consoli-
dations, lung nodules, and cavities [14]. In the same study, a classification of the type of
appearance is made into four categories: typical appearance, atypical appearance, indeter-
minate appearance, and negative for pneumonia, depending on the type and location of the
appearance. Figure 1 presents two examples of CXR images showing typical appearances
in the form of lung opacities.

CXR images have been shown to be less sensitive to COVID-19 manifestations than
those obtained with CT. In fact, one of the main limitations of using CXR as a diagnostic
tool is the absence of appearances in the lungs in the early stages of the disease and,
in certain cases, throughout the course of the disease. In addition to this, breast size, poor
positioning, and lack of patient inspiration can introduce artefacts in CXR, often leading to
false positives. In general, the sensitivity of CXR in combination with a human expert has
been estimated to be around 69%, while for CT is around 98% [15].

The individual study of the radiography of every patient is a difficult and time-
consuming task, as it requires specialised personnel. Therefore, the design and implementa-
tion of automatic decision support systems (DSS) that can identify lesions due to COVID-19
are of interest not only to alleviate the workload of sanitation personnel, but also to possibly
detect hard-to-find lung lesions that could be missed in a first rushed look at a CXR.
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Figure 1. Typical appearances of COVID-19 in the form of lung opacities. CXR images obtained from
the RICORD data set [10]. Arrows pointing to the opacities.

1.2. State of the Art

Since the pandemic began, much research has been carried out on using methods
based on artificial intelligence (AI) to develop DSS for screening and evaluating COVID-19
using CXR images. In this context, the area of research that has received more attention in
the literature is the design of automatic screening tools to identify the patient’s condition.
Work has also been done to identify and segment associated lung lesions, but in a smaller
number and mostly using CT as the main data source, leaving CXR in the second plane.
The following review of the state-of-the-art focuses on work using artificial intelligence
techniques to identify COVID-19 lesions from CXR images.

Most approaches developed previously to identify COVID-19-related lung lesions
from CXR images were proposed in the context of the SIIM-FISABIO-RSNA COVID-19
Detection Challenge [16]. The challenge’s goal was twofold, including lesion detection and
classification into four categories. Participants trained their models using the SIIM-FISABIO-
RSNA COVID-19 Detection data set [17], which contains 6334 CXR images. The data set
was manually annotated by experts with the corresponding bounding boxes for the lesions
observed in the images.

The winner of the challenge [18] used an ensemble of four models (YoloV5-x6, Efficient-
Det D7, Faster Region-Based Convolutional Neural Network Feature Pyramid Network
[Faster-R-CNN-FPN] with a ResNet-101 backbone, and a Faster-R-CNN-FPN with a ResNet-
200 backbone) fed with images of 768 × 768, 768 × 768, 1024 × 1024, and 768 × 768 pixels,
respectively. Models were initially trained to predict pneumonia bounding boxes using
an external data set. Then the pre-trained models were further trained with the data set
provided by the challenge. Strong data augmentation along with Test Time Augmentation
(TTA) were used. In this solution, the models were used to extract pseudo-labels that
predict the bounding boxes in the test set and in three additional COVID-19 data sets
(PadChest, Pneumothorax, and VinDr-CXR). Those boxes with a confidence greater than
0.7 were accepted as pseudo-labels. Finally, all labels were used for the final training of
the models. The obtained Mean Average Precision (mAP) with an Intersection over Union
(IoU) > 0.5 (mAP@50) for the four mentioned models was 0.580, 0.590, 0.592, and 0.596,
respectively. The mAP@50 of the ensemble was not reported. The solution that scored
second in the challenge [18] used a set of YoloV5, YoloX, and EfficientDet. The images
were resized to 384 × 384 and 512 × 512, respectively, and the mAP@50 of the ensemble
reached 0.59. The solution in the third place [18] used EfficientDet D7X, EfficientDet D6 and
SWIN RepPoints. The models were pre-trained on an external pneumonia data set using
five folds. To improve their results, the authors used the predictions of their classification
model to complement the training/validation data set. No results in terms of mAP were
provided for this solution. In fourth place, [18] used a variation of YoloV5 grounded on
a transformer backbone, although the authors did not give the implementation details. This
model was ensembled with YoloV5-x6 and YoloV3 models and trained using images of
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size 512 × 512. The models were initially pre-trained on an external pneumonia data set,
and to improve their results, the authors applied a post-processing technique based on the
geometric mean to re-rank their bounding boxes scores. The reported mAP@50 was 0.562.
In fifth place, ref. [18] proposes an ensemble of five models (EfficientDet D3, EfficientDet
D5, YoloV5-l, YoloV5-x, and RetinaNet-101), which was built and combined with the results
of an additional classification model trained for binary predictions between the classes
‘none’ and ‘COVID-19’. No mAP@50 was reported for this solution. In sixth place, ref. [18]
used a Faster-R-CNN-FPN with an EfficientNet B7 backbone, which was trained using
images of 800 × 800 pixels. The model was initially pre-trained with an external pneumo-
nia data set. The authors used several training techniques: stochastic weight averaging,
sharpness-aware minimisation, attentional-guided context FPN, and fixed feature attention
using the feature pyramid from their classification model into the detection model for at-
tention. Their solution achieved a validation mAP@50 of 0.585. The solution in the seventh
place [18] used an ensemble of 3 models (DetectoRS50, UniverseNet50, UniverseNet101)
trained using pseudo-labelled images with 800 × 800 pixels. The models were ensem-
bled using the non-Maximun Weighted (NMW) technique instead of the Weighted Box
Fusion (WBF) [19] used by all other solutions. The obtained mAP@50 was 0.553. In eighth
place [18], the solution used an ensemble of 3 YoloV5 models (YoloV5-x6 with input size of
640 × 640, YoloV5 with input size 1280 × 1280, and YoloV5x with input size 512 × 512),
along with a Cascade R-CNN model using inputs of 640 × 640. In this case, background
images were used to reduce the false positive rate. No performance metrics were reported.
In the ninth place solution [18], eight different models were grouped: four variations of
EfficientDet (EfficientDet D0, EfficientDet D0, EfficientDet D3, EfficientDet Q2) and four
variations of YoloV5 (YoloV5-s, YoloV5-m, YoloV5-x, 2-class YoloV5-s). The authors did not
report metrics. In the tenth place, ref. [18] used an ensemble of YoloV5 and EfficientDet.
To improve training, the authors used an alternative data set (the RICORD COVID-19 data
set [10]) to create pseudo-labels. No validation metrics were reported for this solution.

In addition to the approaches of the SIIM-FISABIO-RSNA COVID-19 Detection Chal-
lenge, in [20] authors developed an ensemble of YoloV5 and EfficientNet to locate ground
glass opacities from radiological images also obtained from the SIIM-FISABIO-RSNA
COVID-19 Detection data set. No image pre-processing was used, and mosaic data en-
hancement was used to train the YoloV5 model. The images were resized to 512 × 512, and
the results reported 0.6 as mAP@50, without cross-validation. In addition, in [21], a YoloV5
and a RetinaNet-101 model were trained with the same data set used in previous works,
and ensembled using a WBF algorithm, resizing all images to 1333 × 800. The obtained
mAP@50 was 0.552 after stratified cross-validation of K. The authors in [22] ensembled
a YoloV5 model with YoloV5m and YoloV5x backbones, a YoloX model with YoloX-m and
YoloX-d backbones, and an EfficientDet B5 net to detect lung opacities in CXR images
of 512 × 512 pixels. Histogram equalisation was used as a preprocessing technique, and
strong data augmentation was performed for the YoloV5 model using mosaic augmentation,
HSV (for hue, saturation, lightness) scaling, random shearing, and rotation; image mixup,
random scaling, shearing, and rotation for the YoloX; and brightness, contrast, shearing,
scaling and cropping for the Efficientdet B5. The ensemble of these three models reported
mAP@50 of 0.62 after a stratified cross-validation of K times. In [23] YoloV5 was used with
the YoloV5s, YoloV5m, YoloV5l and YoloV5x backbones. The images were converted to.jpeg
format, and no cross-validation was used. The best results reported 57% true positives and
48% false negative rate.

Table 1 presents a summary of the main characteristics of previous works reported in
the state-of-the-art for the automatic identification of COVID-19 lesions using deep learning
techniques along with their main characteristics. A common characteristic of all existing
works is the use of the SIIM-FISABIO-RSNA COVID-19 Detection data set. This is the
largest open data set currently available, and its use makes comparing results easier by
establishing a common framework. However, comparing the results using the architectures
that participated in the challenge with later proposals is not straightforward since, for the
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challenge, performance results were calculated using a test data set with labels that were not
made open by the organisers. This means that the available data do not allow for a direct
comparison of the results provided with the new architectural proposals. Furthermore,
most of the proposed solutions to the challenge do not provide detailed information about
their implementation, resulting in lack of reproducibility.

However, the remaining works reported in the state-of-the-art used all available
6334 images from the SIIM-FISABIO-RSNA COVID-19 detection data set. However, the data
set contains a large number of studies with several images per patient, and even some of
them are identical. It means that a fair comparison would require a common inclusion
criterion before properly comparing the results. Furthermore, two of these schemes were
tested without cross-validation, which could bias the results towards optimistic values.

Following the pre-processing methodology proposed in [24] for COID-19 detection,
this article explores the effect of cropping radiological images in the lungs area and the
semantic segmentation of the regions of interest (that is, the lungs area) on the identification
of the bounding boxes containing the associated lesions. The goal is to guide the attention
of the model by reducing the search space and also reducing the distracting artefacts
that could confuse the networks. For this purpose, the paper evaluates four different off-
the-shelf artificial neural networks (ANN) commonly used for object detection purposes.
Two two-stage detectors: Faster R-CNN, Cascade R-CNN; and two one-stage detectors:
RetinaNet, and YoloV5. In addition, different combinations of ensembles of these models
were also tested according to common strategies in the state-of-the-art. The selection of
these simple architectures aims to promote manageable designs that could be trained and
deployed easier in medical practice and whose generalisation capabilities are also easier
to evaluate, although similar pre-processing strategies can also be incorporated into more
complex architectures.

This article also analyses the effect of image cropping and semantic segmentation of the
lungs on estimating pseudo-labels to carry out a co-training-based [25,26] semi-supervised
strategy, also following similar methods to those used in the best works presented at the
FISABIO-RSNA COVID-19 Detection Challenge [16]. As noted above, the state-of-the-art
typically uses an arbitrary confidence score of 0.7 as a threshold to decide whether to accept
the estimated boxes as pseudo-labels or not [18]. However, the use of pseudo-labels have
several drawbacks. First, other works have pointed out that the scores provided by modern
ANNs are poorly calibrated [27]; therefore, the scores obtained are difficult to compare,
so applying the same threshold to two models with similar accuracies can perform quite
differently in detecting the bounding boxes. Second, the scores provided by object detectors
are related to the estimation of the category associated with the detected object, but many
previous works have shown that the classification scores are not strongly correlated with
the precision of box localisation (see [28] and references therein). To evaluate this potential
issue, this article presents two different experiments designed to evaluate the training
using pseudo-labels for lung lesion detection, considering possible underconfident and
overconfident models.

Given the aforementioned, it is worth noting that this work is neither focussed on
the development of new architectures nor on improving the accuracy of the state-of-the-
art methods, but on discussing more interpretable approaches, and on identifying best
methodological approaches and good practices.

The rest of the paper is organised as follows. Section 2 introduces the material and
methods used in this paper. Section 3 mainly describes the results and an analysis of the
different experiments. Section 4 ends with a discussion and conclusions.
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Table 1. Summary of the literature available in the field.

Reference Model Architecture Image Size Pretrained mAP@50 Corpus Remarks

[29] YoloV5, EfficientNet 512 × 512 No 0.600 SIIM-FISABIO-RSNA (only the training subset) No crossvalidation
[21] YoloV5, RetinaNet-101 1333 × 800 No 0.552 SIIM-FISABIO-RSNA (only the training subset) –

[22] YoloV5, YoloX,
EfficietNet-B5 384 × 384, 512 × 512 No 0.620 SIIM-FISABIO-RSNA (only the training subset) –

[23] CNN-N 256 × 256, 512 × 512 No – SIIM-FISABIO-RSNA (only the training subset)
False Positive = 0.49, False

Negative = 0.51,
No crossvalidation

[18] 1st YoloV5-x6, EfficientDet D7,
Faster R-CNN FPN 768 × 768, 1024 × 1024 Yes 0.596 SIIM-FISABIO-RSNA Pseudo labels

[18] 2nd YoloV5, YoloX,
EfficientDet D5 384 × 384, 512 × 512 Yes 0.590 SIIM-FISABIO-RSNA YoloV5 with 5

different backbones

[18] 3th
EfficientDet D7X,

EfficientDet D6, SWN-
RepPoints/EfficientNet

640 × 640 Yes Not provided SIIM-FISABIO-RSNA –

[18] 4th YoloV5-transformer,
YoloV5-x6, YoloV3 512 × 512 Yes 0.562 SIIM-FISABIO-RSNA Geometric mean

confidence postprocessing

[18] 5th
EfficientDet D3, EfficientDet

D5, YoloV5-l, YoloV5-x,
RetinaNet-101

512 × 512, 1333 × 800 Yes Not provided SIIM-FISABIO-RSNA –

[18] 6th Faster R-CNN,
EfficientNet B7 800 × 900 Yes 0.585 SIIM-FISABIO-RSNA –

[18] 7th
DetectoRS50,

UniverseNet50,
UniverseNet101

800 × 800 No 0.553 SIIM-FISABIO-RSNA Pseudo-labels, NMW

[18] 8th YoloV5-x6, YoloV5-x,
Cascade R-CNN 640 × 640, 1280 × 1280 No 0.540 SIIM-FISABIO-RSNA –

[18] 9th EfficientDet D0,D3,Q2,
YoloV5-s,m,x,2-classs 512 × 512, 640 × 640, 768 × 768 No Not provided SIIM-FISABIO-RSNA –

[18] 10th YoloV5, EfficientDet Not provided Not provided 0.620 SIIM-FISABIO-RSNA Pseudo labels
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2. Materials and Methods

This section presents the corpus used, the techniques developed for pre-processing
the images, and the methods used for object detection.

2.1. Materials

This section describes the two data sets used for the training and validation of the mod-
els. These data sets and their respective annotations are freely available to all researchers
for academic and non-commercial use.

2.1.1. FISABIO-RSNA COVID-19 Detection Data Set

The models developed in this work were trained using the SIIM-FISABIO-RSNA
COVID-19 Detection data set [17], which is also the main corpus used recurrently in the
state-of-the-art. The data set was compiled from two public sources: BIMCV [30] and
MIDRC-RICORD [10]. All medical imaging data and metadata were properly de-identified.

This corpus is built around the study levels and the image levels. The first term is
used to identify each patient in the data set in the form of a complete study, since one study
may contain one or more image levels (i.e., 1:N relationship), leading each level to different
CXR images. The total number of studies is 6054, and the number of CXR 6334. Only
4294 (68%) had boxes that identified lung lesions. The remaining radiographs (without
bounding boxes) are considered to belong to the control group ‘negative for pneumonia’.
The corpus mixes anterior-posterior (AP) and posterior-anterior (PA) views obtained from
both digital radiography (DX) and computed radiography (CR) devices. The number of
cases exhibiting each of these typologies was not annotated.

22 experts carried out the annotations: 13/22 were non-thoracic radiologists and
9/22 were thoracic sub-speciality radiologists. Every image was annotated only by a single
radiologist out of 22. The experts received specific training and evaluation to agree on the
criteria used to label the data set [17]. To assess the consistency of the evaluation, a 25 CXR
test case was performed, obtaining a median percentage agreement of 86% between experts.
Chest radiographs were annotated in four mutually exclusive categories, including ‘typical’,
‘indeterminate’, and ‘atypical appearance’ for COVID-19, or ‘negative for pneumonia’
(Figure 2). Bounding boxes were drawn over pulmonary opacities, and in those cases
where two or more opacities were close to each other, an encompassing bounding box
was drawn instead of several smaller boxes. No bounding boxes were placed on pleural
effusions, masses/nodules, or pneumothoraces. No bounding boxes were placed for the
‘negative for pneumonia’ category.

Figure 2. Study-level classes in the data set.
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The final subset used for training is composed of 6117 images out of the 6334. 5822 of
these samples were chosen from those studies with only one radiography, whether they
have bounding boxes or not. Of the 177 studies with more than one CRX and only one image
containing bounding boxes (i.e., ‘positive for COVID-19’), the one labelled was added to the
subset (discarding 217 samples). And of the 55 studies with several CRX, but all labelled
with no bounding boxes (i.e., ‘negative for pneumonia’), 118 images were added to the
subset. Finally, 8 images out of 6117 were removed due to errors during the automatic
lung segmentation process (1 out of 5822, and 1 out of 118). This process is schematically
represented in Figure 3.

6054 studies & 6334 images

5822 studies with a single image 243 studies with several images

177 studies “+” for COVID-19 55 studies “-” for pneumonia

118 images177 images5822 images (4112+1170)

6117 images (4299+1828)

6109 images (4294+1825)

Removal of errors introduced by the segmentation process

Figure 3. Schema representing the process followed to identify the samples used in the data set.
In red, the number of COVID-19 positive samples (labelled with their corresponding bounding boxes).
In green, the negative for pneumonia samples (without bounding boxes).

2.1.2. HM Hospitales COVID-19 Data Set

In addition to the data set described above, the HM Hospitales COVID-19 data set
was also used to apply a semi-supervised learning scheme based on a pseudo-labels
strategy. This data set was compiled by HM Hospitals [31]. It contains all available clinical
information on anonymous patients with the SARS-CoV-2 virus treated in different centres
belonging to this company since the beginning of the pandemic in Madrid, Spain.

The corpus contains anonymised records of 2310 patients and includes several radi-
ological studies for each patient corresponding to different stages of the disease. A total
of 5560 CRX images are available in the data set, with an average of 2.4 image studies per
subject, often taken in intervals of two or more days. Only patients with at least one positive
PCR test or positive immunological test for SARS-CoV-2 were included in the study.

2.2. Methods

This section presents the pre-processing and data augmentation methods applied,
the architectures used for modelling and their ensembling, and the semi-supervised ap-
proach followed for comparison purposes. Figure 4 presents a schematic view of the entire
procedure carried out throughout this work.
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6334 CXR 6109 CXR

Equalisation SegmentationCropping

5-fold split

FISABIO-RSNA COVID-
19 Detection

Cascade 
R-CNN

RetinaNet YoloV5
Faster
R-CNN

Ensembling

Evaluation

Model Pretraining

HM Hospitales COVID-19

5560 CXR

Pseudo-labels
generation

+

Figure 4. Schematic view of the procedure followed.

2.2.1. Pre-Processing

CXR images were converted to uncompressed greyscale ‘.png’ files, encoded with
8 bits, and pre-processed using DICOM WindowCenter and WindowWidth details (when
needed). All images were converted to a Monochrome 2 photometric interpretation.

Pre-processing also includes resizing the image to 512 × 512 pixels. From this step
on, three different pre-processing schemes, similar to those used in [24], were evaluated
(Figure 5):

1. Image equalisation.
2. Semantic segmentation of the lungs + image equalisation.
3. Zooming and cropping to the rectangular region of interest (RoI) containing the

lungs + image equalisation.

The first scheme processes the raw images, applying only an image equalisation
using histogram equalisation and Contrast Limited Adaptive Histogram Equalisation
(CLAHE) (Figure 5 Left). These two pre-processing tools are often used when working
with radiological images since histogram equalisation causes the images to have a more
uniform brightness distribution and CLAHE increases the contrast. The contrast obtained
by CLAHE can be controlled by setting its clip limit. Typical values in the literature for
this parameter for radiological images are 0.01 and 0.02. In this case, the clip limit was
set to 0.02 (assuming a maximum value of 1). An amplitude normalisation of the image
is also performed using typical values of the mean and standard deviation in the three
RGB channels.

For the second scheme (Figure 5 Centre), the entire process is as follows:

1. The lungs were segmented from the original image using a U-Net semantic segmen-
tation algorithm (Following the Keras implementation available at https://github.
com/imlab-uiip/lung-segmentation-2d). The algorithm used reports Intersection-
Over-Union (IoU) and Dice similarity coefficient scores of 0.971 and 0.985, respectively.

2. An external black mask is extracted to identify the external boundaries of the lungs.
3. The mask is dilated with a kernel of 5× 5 pixels and is superimposed on the image.
4. Equalisation is performed considering only those pixels that take values different

from zero.

The third scheme (Figure 5 Right) is characterised by the following steps:

1. The mask obtained from scheme two is used to create two sequences, adding the
grey levels of the rows and columns, respectively. These two sequences provide four
boundary points, which define two segments of different lengths in the horizontal
and vertical dimensions.

https://github.com/imlab-uiip/lung-segmentation-2d
https://github.com/imlab-uiip/lung-segmentation-2d
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2. Sequences of added grey levels in the vertical and horizontal dimensions of the mask
are used to identify the RoI associated with the lungs, taking advantage of the higher
added values outside the lungs.

3. A new mask is defined by identifying the rectangular template containing the RoI
and blacking out the rest of the image. This mask is superimposed on the image.

4. A new equalisation is performed considering only those pixels with values different
from zero.

The last two schemes are carried out to decrease the data’s variability, make the
network training process simpler, and force the network to focus its attention on the region
of the lungs, removing external characteristics that might influence the results obtained.
For all three described pre-processing schemes, the images’ size was kept unchanged to
guarantee the bounding boxes’ validity and the experiments’ comparability. However,
considering that the bounding boxes cover areas outside the lungs for a large number of
images in the data set, the size of the bounding boxes was resized by removing any part
outside the rectangular template containing RoI associated with the lungs.

Figure 5. Examples of the three pre-processing schemes used. (Left): Raw image with equalization
(taken from [17]). (Centre): Cropped image. (Right): Semantic segmentation of the lungs.

All models for each of the pre-processing schemes were trained using bounding
boxes that were resized to the RoI that contains the lungs. Nevertheless, for the sake of
comparison, the models were also evaluated using the size of the original bounding boxes.
Moreover, a correction factor was applied to the results obtained with the original bounding
boxes, to compensate for the IoU loss due to the resizing of the bounding boxes. These three
evaluation procedures are named in the results Section 3: original, corrected, and resized
bounding boxes. The correction factor was defined as the average IoU between the original
and the resized bounding boxes. The global correction factor was estimated as 0.94, even
though a particular correction factor was calculated and applied independently for each
fold, considering only the samples used for training in every fold.

2.3. Data Augmentation

Data augmentation is a well-known technique to improve the performance of Machine
Learning models [32]. It helps the model to generalise better by performing transformations
of the original data. The following transformations were applied:

• Rotation of the image with a limit of 10º and with a probability of 0.25;
• Horizontal flip of the image with a probability of 0.5;
• A random brightness and contrast change with a probability of 0.2;
• One of the following transformations per sample:

Motion blur with a probability of 0.2;
Median blur with a probability of 0.1 and limited blurriness;
Standard blur with a probability of 0.1 and limited blurriness.
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2.4. Modelling

Object detection is a very active area of research, and as such, new models are released
every year, bringing new architectures and techniques, often surpassing the previous
models in accuracy and/or speed.

Almost all object detectors developed throughout the years fall into two main cat-
egories: one-stage detectors and two-stage detectors, the latter being the first one to ap-
pear. The main difference between these two architectures is that in two-stage algorithms,
a region proposal system is used to first propose an RoI prior to the proper object detection
process. In general terms, this leads to better-quality predictions at the cost of processing
time. On the other hand, one-stage detectors skip this process by directly using the input
image ‘as is’, reducing processing time and leading to faster detectors, usually at the cost
of accuracy. Ever since their appearance, these two types of object detectors have evolved
differently over the years, taking advantage of the appearance of CNN in computer vision.
In addition to one- and two-stage object detectors, a third novel architecture has emerged
in the last few years based on the new transformer deep learning models.

In this work, several deep learning-based object detection models are tested and
later ensembled to improve predictions. The choice of the models is strongly motivated
by their performance in previous works and their hardware requirements for training.
The models developed are grounded on architectures based on Faster R-CNN, Cascade
R-CNN, RetinaNet, and YoloV5.

All models are fine-tuned from pre-trained weights obtained using ImageNet [33] and
COCO [34] data sets. Although these data sets contain images that are far different from
the CXR images, the experiments have shown that the accuracy obtained improves and the
training converges more easily than training the models from scratch. The criteria used to
choose the selected models are that their performance must have been widely tested before,
that their training requirements in terms of memory and graphics processing unit (GPU)
are reasonable, and finally that the inner workings of the model are well-documented
and well-understood.

A brief description of these architectures and the specific configuration is presented in
the following subsections.

2.4.1. Faster R-CNN

Faster R-CNN is one of the most well-known two-stage object detection algorithms.
In this architecture, a CNN backbone extracts features from the proposed regions of the
input image and the feature maps are fed into an RoI pooling layer. This layer performs
a pooling operation, creating a fixed-size feature map, which is later fed to several fully
connected layers (FC). Finally, the network contains two heads, one with a softmax activation
function that performs classification, and the other that calculates the regression of the
bounding box using the parameterisation of its coordinates. Faster R-CNN introduces
a Region Proposal Network (RPN), which is trained to extract the candidate regions for
the detection of objects. To do so, it employs a sliding window and a system of translation-
invariant anchors. The anchors are centred on the sliding window and have different scales
and shapes, so they can effectively detect objects of different sizes. Typically, nine different
anchors are used, and the regression head is trained to learn the transformations of these
anchors into the final bounding boxes. This network is trained using a multitask loss,
which addresses both the regression and the classification problems. There are two stages
in which the bounding boxes are predicted in an almost similar way: after the RPN and
after the detection head.

Two different backbones are tested for this model: ResNet50 and ResNeXt101. The first
stage of this backbone is frozen during the training phase, as it often does not provide
substantial increases in accuracy, but results in a longer and more unstable training.

The developed model uses channels of size {256, 512, 1024, 2048} for the FPN section;
anchors of ratio {0.5, 1, 2}; and strides of {4, 8, 16, 32, 64} pixels, which is the default setting
commonly used in the literature. This configuration has demonstrated the ability to detect
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objects of different sizes in the image. Bounding box distance vectors are normalised to have
zero mean and standard deviation {0.1, 0.1, 0.2, 0.2} and the images are normalised to have
a target mean {123.675, 116.28, 103.53} and a standard deviation {58.395, 57.12, 57.375}.

The second stage of the model is modified so that the number of predicted classes
is equal to 1, which corresponds to a lung opacity, plus an additional background class.
The model is trained using the Cross-Entropy Loss function for classification and the robust
L1 loss for bounding box regression.

2.4.2. Cascade R-CNN

Cascade R-CNN is mainly based on Faster R-CNN but it aims to solve one of its
key problems. In its release paper [35], the authors showed that in most cases, an object
detector could only be optimised for a single IoU threshold value (this is 0.5, 0.6, 0.7, etc.).
Therefore, a detector with a series of consecutive stages was proposed, where each stage is
optimised for a single IoU threshold. Loss functions are identical to the ones proposed for
Faster R-CNN and the key point in this architecture is that each bounding box regressor is
optimised for the distribution of the previous bounding box regressor rather than for the
original bounding box distribution.

A Cascade R-CNN model [35] with 3 stages is implemented with ResNeXt101 as
its backbone, freezing its first stage. Positive detection thresholds are set to an IoU {0.5,
0.6, 0.7}. A FPN is used with channels of size {256, 512, 1024, 2048}, anchors with ratio
{0.5, 1, 2}, and strides of {4, 8, 16, 32}. Images are normalised, as in the Faster R-CNN
case. Bounding box distance vectors are normalised to have zero mean and standard
deviation {0.1, 0.1, 0.2, 0.2} and are divided by the number of stages so that the standard
deviation decreases between stages. The number of classes is set to 1 plus an additional
background class. Cascade R-CNN is trained for using independent loss functions for
each stage (Cross-Entropy Loss is used for the classification task and L1 Loss is used for
bounding box regression).

2.4.3. RetinaNet

RetinaNet [36] is a one-stage detector designed to perform with a precision comparable
to that of two-stage detectors. The authors of RetinaNet noticed that one of the biggest
problems with one-stage detectors was the extreme class imbalance between background
class and foreground class due to the fact that one-stage detectors do not employ an
RPN. To tackle this problem, a new loss function was introduced: the Focal Loss. This
is a variant of the Cross-Entropy Loss where a weight factor is introduced to address
the class imbalance. This term reduces the loss for well-classified samples and increases
it for wrongly classified samples. In practise, this means that the network focuses on
classifying the harder samples rather than the easy ones. RetinaNet uses a CNN backbone
to extract the features of the image. The concept of anchors was ’borrowed’ from two-stage
detectors. In RetinaNet anchors with areas from 322 to 5122 and ratios 1:1, 1:2, and 2:1 are
used. Additionally, RetinaNet incorporates an FPN, being one of the first models to take
advantage of this design in the literature. The model has three identical output heads, and
each one is optimised for object scale detection across the image using the features of the
corresponding FPN level.

A RetinaNet [36] model with a ResNext101 as its backbone was used, followed by
an FPN with channels of sizes {256, 512, 1024, 2048}. The anchors used have a ratio
{0.5, 1, 2} and strides of {4, 8, 16, 32}. Bounding box distance vectors are normalised to
have zero mean and standard deviation {0.1, 0.1, 0.2, 0.2}. Bounding box distance vectors
are normalised to have zero mean and unit standard deviation. Focal Loss is used as
the classification loss with parameters γ = 2, α = 0.25 and L1 Loss as the bounding box
regression loss.
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2.4.4. YoloV5

YoloV5 is a one-stage object detection model that has been built upon all of its previous
versions. It is a model that is still in the development phase, and since its first appearance
in 2020, it has received multiple upgrades and architectural changes. There are three
distinctive parts in the YoloV5 structure: backbone, neck and detection head. The backbone
of YoloV5 is based on the Cross Stage Partial Networks technique [37] in which a copy of
the feature map of the dense layer is sent to the next stage of the network. The rationale
behind this processing is to increase feature propagation so that information is not lost after
the convolutions, and also to mitigate problems related to vanishing gradients.

For the neck of this object detection model, a PA-Net is used. It works in a similar way
to the FPN of the RetinaNet model, and it is used to generate a pyramid of features. As pre-
viously, object detection is performed on different scales. Finally, a detection head uses the
features obtained from the neck to predict the bounding boxes and their corresponding
scores. The YoloV5 uses 3 different output scales to predict different scale objects in a given
image. The largest convolutional output is responsible for detecting the largest scale object
and vice versa.

In YoloV5 models, anchor box priors are used to predict bounding boxes in every
image. The choice of these priors is made using a genetic algorithm to evolve the anchors
into an optimal size and scale using recall as the metric to optimise.

The version of YoloV5 used in this work is the 6.0 release. YoloV5-6 is chosen because
it is the largest YoloV5 model that fits into the memory of the GPU used. The backbone is
a variation of CSPDarknet CNN in which the depth (number of layers) and width (number
of convolutional filters) are controlled by two hyperparameters: depth-multiple, which is
set to 1.33, and width-multiple, which is set to 1.25 respectively. In the neck of the object
detector, a 2-level PA-Net is used. The model is trained with 3 warm-up epochs using the
Complete IoU (CIoU) Loss function.

2.4.5. Models Ensemble

A Weighted Box Fusion [19] technique is used to combine the information given by
the aforementioned architectures. This technique weights the predictions of the different
models Ci to produce new box coordinates and confidence scores as shown in Figure 6.

C4

C1

C3

C2

Ground Truth

Predictions

Figure 6. Schematic view of the Weighted Box Fusion algorithm. In this case C1 > C2 > C3 > C4.

2.4.6. Semi-Supervised Learning Using Pseudo-Labels

Aiming to improve the detector’s performance, a semi-supervised learning strategy
was carried out using pseudo-labels, which consists of a two-stage training process.

Initially, the models are trained and validated during the first stage using the FISABIO-
RSNA COVID-19 Detection data set described in Section 2.1.1, which contains labelled
samples. The trained models are used to label samples from the HM Hospitales COVID-
19 data set (described in Section 2.1.2), which is unlabelled. Those samples where the
model predicted the label with high confidence are added to the initial data set and used
for a second training round. This methodology was originally proposed in [25] to solve
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a conventional classification problem, and it was given the name of co-training, but currently,
it is popularized as pseudo-labels training, although there are also self-supervised strategies
based on clustering that use the same denomination [38].

The confidence score to select pseudo-labels was fixed to 0.7 for all architectures tested
according to thresholds set in previous works [18]. As commented before, this technique
can generate many incorrect pseudo-labels leading to noisy training due to calibration
issues of the different architectures, and to the fact that classification scores are not strongly
correlated with the precision of box localisation [28]. Moreover, the performance of different
detectors might differ for the same threshold, making them difficult to compare. Current
approaches to dealing with noisy labels rely on consistency regularisation-based methods,
which have achieved strong performance in semi-supervised settings. However, they
rely heavily on domain-specific data augmentations, which are not trivial to generate
for every context [39]. Since a tailored selection of confidence thresholds per model is
unfeasible, in this work pseudo-labels obtained by evaluating the best model (according to
the first training stage) were used to re-train all the models and their ensembles, so that
comparability among the different schemes is guaranteed.

3. Results

The training was conducted following a cross-validation procedure with 5 folds, so
data were split 8/2 for training/validation. Several experiments were conducted to deter-
mine the number of epochs for the model to converge nicely. The final number of epochs
was fixed at 80 and a Stochastic Gradient Descent (SGD) optimiser with a momentum
of 0.9 was chosen for all models. Cosine Annealing lr schedule was used with a linear
warm-up, a minimum lr of 10−7, and a maximum of 10−4 for all architectures, except for
YoloV5, which used 0.002 and 0.2.

The models developed are grounded on the architectures mentioned above, based on
Faster R-CNN, Cascade R-CNN, RetinaNet, and YoloV5. For each architecture, three exper-
iments were carried out according to the pre-processing schemes presented in Section 2.2.1,
namely: equalisation; equalisation + cropping; and equalisation + semantic lung seg-
mentation. Furthermore, results were calculated for different evaluation procedures of
the bounding boxes: original (Org) (Figure 7 Left), corrected (Corr), and resized (Resz)
(Figure 7 Centre and Right).

Figure 7. Bounding boxes before and after the cropping procedure of the images. (Left): Origi-
nal image with its original bounding boxes (green line). (Centre): Cropped image with resized
bounding boxes (red line). The left original bounding box falls partly outside the area cropped. As
a result, its size is resized. (Right): Comparison of the original (blue line) and resized (yellow line)
bounding boxes.

Table 2 presents the results in terms of their mean (µ) mAP@50 ± its standard devi-
ation (σ) for all combinations of architectures, pre-processing methods, and evaluation
procedures. These results were used as a baseline for a further comparison following
other approaches based on ensembles and/or using a semi-supervised training strategy.
The results show the best performance for Cascade R-CNN and RetinaNet, YoloV5 being
the worst.
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Table 3 shows the results of the paired ensembles of the different architectures used.
Ensembles of three or more architectures are not presented because the results did not
provide significant improvements. The combination of RetinaNet and Cascade R-CNN
provided the best results, improving the baseline presented in Table 2. This is consistent
with the results provided in Table 2, which report that these two architectures are those
with the best performance.

Table 2. Performance of the different model architectures for different image pre-processing strategies
and evaluation procedures. The BBox column indicates the evaluation procedure for the bounding
boxes used during validation: Originals (Org), Corrected (Corr), Resized (Resz).

Model Architecture

Processing BBox Faster Cascade RetinaNet YoloV5

Equalisation
Org 0.407± 0.013 * 0.465± 0.008 0.478± 0.013 0.379± 0.019
Corr 0.432± 0.015 0.493± 0.010 0.507± 0.014 0.402± 0.020
Resz 0.434± 0.006 0.525± 0.007 0.508± 0.010 0.435± 0.018

Equalisation
+ cropping

Org 0.386± 0.013 0.439± 0.006 0.428± 0.007 0.370± 0.014
Corr 0.410± 0.015 0.465± 0.005 0.454± 0.008 0.392± 0.016
Resz 0.482± 0.011 0.569± 0.007 0.555± 0.008 0.476± 0.020

Equalisation
+ lung

segmentation

Org 0.348± 0.015 0.430± 0.017 0.417± 0.012 0.317± 0.027
Corr 0.369± 0.015 0.456± 0.017 0.443± 0.013 0.336± 0.027
Resz 0.426± 0.015 0.533± 0.010 0.505± 0.014 0.409± 0.023

* µ mAP@50± σ.

Table 3. Performance of the different model ensembles for different image pre-processing strategies
and evaluation procedures. The BBox column has the same meaning as in Table 2.

Model Architecture

Processing BBox RetinaNet & RetinaNet & Cascade & Cascade &
Cascade Faster Faster YoloV5

Equalisation
Org 0.498± 0.011 * 0.476± 0.014 0.471± 0.009 0.472± 0.008
Corr 0.528± 0.011 0.506± 0.016 0.500± 0.010 0.501± 0.010
Resz 0.544± 0.006 0.503± 0.008 0.523± 0.008 0.527± 0.006

Equalisation +
cropping

Org 0.456± 0.006 0.432± 0.008 0.442± 0.008 0.446± 0.005
Corr 0.483± 0.007 0.458± 0.008 0.469± 0.009 0.473± 0.006
Resz 0.587± 0.009 0.548± 0.009 0.561± 0.008 0.571± 0.007

Equalisation
+ lung

segmentation

Org 0.447± 0.016 0.413± 0.016 0.432± 0.016 0.435± 0.012
Corr 0.474± 0.016 0.438± 0.016 0.459± 0.016 0.462± 0.012
Resz 0.547± 0.010 0.497± 0.014 0.527± 0.013 0.536± 0.010

* µ mAP@50± σ.

In addition, Table 4 shows, for the three architectures used and for the three pre-
processing schemes, the number of samples from the HM Hospitales Data Set that reported
a confidence score > 0.7 after training/validation of the models. These results were used
to identify the best scheme to be used for further semi-supervised training. As expected,
results significantly depend on the architecture, Faster CNN and Cascade R-CNN which
provide more candidate samples to be used as pseudo-labels. In view of these results,
Cascade R-CNN was preferred due to its best results reported in Table 2. It is worth
mentioning the strong differences among the models in terms of the number of bounding
boxes detected with scores > 0.7. A particularly striking fact is that, according to Table 2,
the performance of Cascade R-CNN and RetinaNet is quite comparable, but the number of
pseudo-labels obtained by each model is completely different for the same confidence level,
showing RetinaNet a clear under-confident behaviour and evidencing calibration issues of
these models.
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Table 4. Number of samples with detected bounding boxes (pseudo-labels) per fold on the HM
Hospitales data set.

Samples per Fold

Processing Model 1 2 3 4 5

Equalisation

Faster 4421 3929 4020 4125 4043
Cascade 4135 3807 4032 3862 3809

RetinaNet 124 178 122 114 100
YoloV5 0 0 0 0 0

Equalisation
+ cropping

Faster 4140 4170 4047 4061 4207
Cascade 4275 3967 3855 3949 4118

RetinaNet 249 272 250 257 235
YoloV5 0 8 0 33 19

Equalisation
+ lung

segmentation

Faster 3995 3891 3887 4137 4116
Cascade 4171 3734 3823 4133 3947

RetinaNet 34 34 22 46 35
YoloV5 0 1 0 0 0

On the other hand, Table 5 shows again, for all architectures, pre-processing methods
and evaluation procedures the results using the semi-supervised approach. Performance
increased significantly in all cases, with RetinaNet being the best architecture.

Table 5. Performance of the different model architectures for different image pre-processing strategies,
evaluation procedures, and a semi-supervised approach. The BBox column has the same meaning as
in Table 2.

Model Architecture

Processing BBox Faster Cascade RetinaNet YoloV5

Equalisation
Org 0.439± 0.013 * 0.445± 0.011 0.486± 0.009 0.339± 0.024
Corr 0.466± 0.014 0.472± 0.013 0.516± 0.011 0.360± 0.025
Resz 0.495± 0.009 0.518± 0.014 0.540± 0.004 0.428± 0.022

Equalisation
+ cropping

Org 0.407± 0.016 0.431± 0.006 0.432± 0.010 0.385± 0.023
Corr 0.431± 0.017 0.457± 0.007 0.458± 0.011 0.409± 0.024
Resz 0.523± 0.016 0.562± 0.010 0.577± 0.013 0.483± 0.013

Equalisation
+ lung

segmentation

Org 0.398± 0.019 0.409± 0.016 0.437± 0.019 0.316± 0.028
Corr 0.422± 0.019 0.434± 0.017 0.464± 0.020 0.335± 0.029
Resz 0.494± 0.016 0.515± 0.021 0.552± 0.010 0.412± 0.019

* µ mAP@50± σ.

Finally, Table 6 shows again, that the ensemble of RetinaNet and Cascade R-CNN
in combination with the semi-supervised method provides the best performance of all
experiments carried out, providing a significant improvement. This is consistent with
the results provided in Table 5, which report that these two architectures are the best at
detecting lung opacities associated with COVID-19.

The main results are summarised in Figure 8, which graphically shows the most
significant outcomes obtained for the ensembles of Cascade R-CNN and RetinaNet, also
comparing the results using supervised and semi-supervised approaches. In numerical
terms, the best scheme achieved a mAP@50 of 0.59.
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Table 6. Performance of the different model ensembles for different pre-processing strategies, eval-
uation procedures and a semi-supervised approach. The BBox column has the same meaning as
in Table 2.

Model Architecture

Processing BBox RetinaNet & RetinaNet & Cascade & Cascade &
Cascade Faster Faster YoloV5

Equalisation
Org 0.498± 0.010 * 0.490± 0.010 0.458± 0.013 0.459± 0.007
Corr 0.529± 0.011 0.520± 0.012 0.486± 0.015 0.487± 0.009
Resz 0.550± 0.007 0.542± 0.006 0.524± 0.011 0.534± 0.010

Equalisation
+ cropping

Org 0.455± 0.007 0.440± 0.010 0.438± 0.008 0.445± 0.003
Corr 0.483± 0.009 0.467± 0.011 0.464± 0.010 0.473± 0.004
Resz 0.590± 0.010 0.576± 0.012 0.565± 0.009 0.569± 0.010

Equalisation
+ lung

segmentation

Org 0.448± 0.012 0.442± 0.018 0.418± 0.013 0.426± 0.012
Corr 0.476± 0.014 0.469± 0.018 0.444± 0.014 0.452± 0.013
Resz 0.557± 0.010 0.550± 0.008 0.522± 0.015 0.530± 0.014

* µ mAP@50± σ.

A common result in all experiments carried out is that no matter the architecture
(Faster R-CNN, Cascade R-CNN, RetinaNet, YoloV5), the evaluation procedure (Original,
Corrected, Resized) the training method (supervised or semi-supervised), or the ensembles
used, the second pre-processing method (equalisation + cropping) always boosted the
performance of the system, suggesting that forcing the attention on the RoI of the lungs
makes the identification process easier, whereas results are very similar for the first and
third pre-processing schemes (equalisation, and equalisation + lung segmentation).
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Figure 8. Best results for the ensembles with RetinaNet and Cascade R-CNN.

4. Discussion and Conclusions

The present work addressed the task of automatically identifying lung opacities due
to COVID-19 from CXR using the FISABIO-RSNA COVID-19 Detection open data set [16].
In this respect, the system generates the coordinates of the bounding boxes where the
opacities are found, adjusting their areas to the regions where these opacities are present.
This is carried out using techniques inherited from the object detection field, which have
demonstrated good performance for other tasks. The results report that the opacities due
to COVID-19 can be detected with a mAP@50 of 0.59 following a semi-supervised training
procedure and an ensemble of two architectures: RetinaNet and Cascade R-CNN.

The paper contributes to the detection of lung lesions due to COVID-19 from CXR
images with additional results. Contributions are mainly in a comprehensive presentation
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of the results (and their systematic comparison), and in the effect of different pre-processing
strategies applied to the images. The goal of the pre-processing techniques used is to
guide the attention of the model by reducing the search space, and also reducing artefacts
that could confuse the networks (such as the burned-in meta information that usually
appears at the top/bottom of the images, including patient’s info, data about the recording
procedure, etc.). In this regard, this article explores the effect of cropping radiological
images on the rectangular region covered by the lungs, and their semantic segmentation.

For this purpose, the paper presents results using four different off-the-shelf ANNs
widely used in the field of object detection: Faster R-CNN, Cascade R-CNN; RetinaNet,
and YoloV5. In addition, different combinations of ensembles of these models were also
fused using a WBF approach, following both supervised and semi-supervised learning
schemes. Results are compared using the mAP@50 metric averaged after a five-fold cross-
validation. The selection of these simple architectures stands on their wide use, so they
represent a good framework for comparing the pre-processing methodologies proposed.
It is worth noting that the aim of this work is neither the development of new architec-
tures nor the improvement of the accuracy with respect to the state of the art, but also
comparing and discussing more interpretable approaches through the aforementioned
pre-processing strategies.

The results obtained are thoughtfully and systematically presented, so comparisons
among the different approaches are straight, contributing to a fair comparison of the
different schemes developed, and establishing a methodological framework which can also
be extrapolated to other architectures, ensembles and/or procedures for the same purpose.

In general terms, the best results were obtained using Cascade R-CNN and RetinaNet.
Furthermore, results showed that paired ensembles improve the performance, being the
pair formed by RetinaNet and Cascade R-CNN the best combination of those tested.
The gain by using three or more architectures was not relevant.

On the other hand, as expected, semi-supervised training using the pseudo-labels
provided by Cascade R-CNN also improves the performance, but lightly.

Cascade R-CNN and RetinaNet were consistent throughout the entire experimental
phase. However, their performance in labelling samples for the semi-supervised approach
was drastically different, showing RetinaNet an under-confident behaviour and casting
doubts about its generalisation capabilities out of the training data set. Regarding pseudo-
labels identification, RetinaNet found lung opacities with sufficient confidence in only
a few hundred out of more than five thousand samples and, in most cases, bounding boxes
were detected for only one of the lungs. Cascade R-CNN provided more consistent results
for this task, so it was preferred for this task.

In any case, it is worth noting that semi-supervised training was carried out using
those images that reported a confidence score over 0.7 for all models. This threshold leads
to significant differences in the architectures used, due to the poor calibration of the models,
which provide scores that cannot be compared, even when accuracies are similar and scores
could be interpreted as probabilities. On the other hand, the scores provided are related to
the estimation of the category associated with the object, but classification scores are not
necessarily correlated with the precision of box location [28].

To interpret the results, it is worth remembering that the experiments were evaluated
following three evaluation procedures (original, corrected, and resized). Of these three
procedures, the third is the one providing the most realistic evaluation scenario, since it
takes into account the resizing of the bounding boxes, having removed those regions of
them falling outside the rectangular RoI of the lungs (which are considered not relevant
for our purpose). This evaluation procedure is considered more accurate even in the first
pre-processing scenario, since it improves the quality of the bounding boxes, removing
noisy information from them.

A typical result in all experiments carried out is that no matter the architecture,
the training method, or the ensemble used, and according to the aforementioned resized
evaluation procedure, the cropping to the rectangular RoI occupied by the lungs always
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improved the performance of the system. This result suggests that forcing the attention
on such RoI makes the identification process easier, but also suggests the need of resizing
the available bounding boxes used to delineate the opacities according to the information
provided by the cropping procedure itself. This process, which is carried out automatically,
helps to remove noise and inaccuracies in the labelling procedure, also leading to results
that are considered more accurate.

On the other hand, semantic segmentation of the lungs has provided improvements
with respect to the baseline based on raw images, but not significant. This is mainly
attributed to errors in semantic segmentation, which sometimes remove significant areas,
especially in the most peripheral part of the lungs, where opacities are more common [13].
This is also attributed to oversized bounding boxes, which are correctly placed over the
opacities, but with a much larger area over the mask.

By visually assessing the model’s predictions it can be seen that the model predicts,
most of the time, a unique bounding box around the affected lung, which matches closely
with the ground truth annotation. This is mainly due to the way the boundaries were drawn
by the radiologists, who enclosed several individual lesions into a single larger bounding
box, which makes the bounding box areas overly estimated. This poses a limitation in the
effectiveness of the system, as it seems that often the models try to predict a bounding box
around the entire lung instead of focussing on the smaller areas of the lung with opacities.

Overall, the system built in this work achieves results (in terms of mAP@50) which are
comparable (or better) to those obtained in the state of the art, although a direct comparison
with them is not straightforward: even when the data set used for training is the same (SIIM-
FISABIO-RSNA COVID-19 Detection Challenge [16]), the validation data are different since
they were not made available by the challenge organisers.

The limited accuracy of the results (mAP@50 = 0.59) is mainly a consequence attributed
to the limited accuracy of the bounding boxes provided in the data set. However, there
are also limitations in the architectures used, which were specifically developed to detect
well-defined objects, not textures with undefined shapes (and/or boundaries) like those
corresponding to the opacities.

In any case, this research has several limitations, mainly related to the data set used
and to the inherent characteristics of the ANNs: (i) The first is grounded on the labels used
for training (i.e., the bounding boxes). The FISABIO-RSNA COVID-19 Detection Data Set
is widely used because it is freely available, but the bounding boxes provided (even when
they identify the opacities well) are not very specific, since they were delineated to pick
up several opacities inside (instead of using several bounding boxes, one for each opacity).
In addition, many bounding boxes have a certain area that falls outside the rectangular RoI
covered by the lungs, introducing noise in the training phase and reducing the performance
of the automatic system. In this regard, this paper provides a method to lightly mitigate
this effect. (ii) Another limitation is related to the calibration of the models, which affects
the behaviour of the semi-supervised approach. Recent strategies to calibrate networks and
evaluate score uncertainties are required to get more accurate pseudo-labels.

Author Contributions: Conceptualization, J.D.A.-L. and J.I.G.-L.; methodology, Á.M.-P., J.D.A.-L.
and J.I.G.-L.; software, Á.M.-P. and J.D.A.-L.; validation, J.D.A.-L.; formal analysis, J.D.A.-L. and
J.I.G.-L.; investigation, Á.M.-P., J.D.A.-L. and J.I.G.-L.; resources, Á.M.-P.; data curation, Á.M.-P.;
original draft preparation, Á.M.-P., J.D.A.-L. and J.I.G.-L.; review and editing, J.D.A.-L. and J.I.G.-L.;
visualization, J.D.A.-L.; supervision, J.D.A.-L. and J.I.G.-L.; project administration, J.I.G.-L.; funding
acquisition, J.I.G.-L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Comunidad de Madrid (Program: CM-RIS3), grant REACT-
CM MadridDataSpace4Pandemics-CM. Funded as a response of the EU to the COVID-19 Pandemics.

Institutional Review Board Statement: This was a retrospective study using non-institutional public
Health Insurance Portability and Accountability Act (HIPAA) compliant de-identified imaging data.
Ethical review and approval were waived for this reason.

Informed Consent Statement: Patient consent was waived due to the use of open data.



Diagnostics 2023, 13, 1381 20 of 22

Data Availability Statement: The models used in this work were trained using the SIIM-FISABIO-
RSNA COVID-19 Detection data set [17] and the HM Hospitales data set [31].

Acknowledgments: Funded by the agreement between Comunidad de Madrid (Consejería de Ed-
ucación, Universidades, Ciencia y Portavocía) and Universidad Politécncia de Madrid, to finance
research actions on SARS-CoV-2 and the COVID-19 disease with the REACT-UE resources of the
European Regional Development Funds.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AP Anterior-posterior
CIoU Complete Intersection over Union
CLAHE Contrast Limited Adaptive Histogram Equalisation
CXR Plain Chest X-ray
CT Computer Tomography
CR Computed Radiography
DSS Decision Support System
DX Digital Radiography
GPU Graphics Processing Unit
HSV Hue, Saturation, Lightness

Faster-R-CNN-FPN
Faster Region-Based Convolutional Neural Network Feature
Pyramid Network

FC Fully connected layers

FISABIO
Foundation for the Promotion of Health and Biomedical Research of
Valencia Region

FPN Feature Pyramid Network
HIPAA Health Insurance Portability and Accountability Act
IoU Intersection over Union
lr Learning rate
mAP@50 Mean Average Precision with an IoU of at least 0.5
MERS Middle East Respiratory Syndrome
NMW Non-Maximun Weighted
SARS Severe Acute Respiratory Syndrome
SGD Stochastic Gradient Descent
PA Posterior-anterior
R0 Reproduction number
R-CNN Region-based Convolution Neural Network
RICORD RSNA International COVID-19 Open Radiology Database
RoI Region of Interest
RNA Ribonucleic Acid
RPN Region Proposal Network
RSNA Radiological Society of North America
SGD Stochastic Gradient Descent
SIIM Society for Imaging Informatics in Medicine
TTA Test Time Augmentation
WBF Weighted Box Fusion
Yolo You Only Look Once
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