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Abstract: Acute lower respiratory infection is a leading cause of death in developing countries.
Hence, progress has been made for early detection and treatment. There is still a need for improved
diagnostic and therapeutic strategies, particularly in resource-limited settings. Chest X-ray and com-
puted tomography (CT) have the potential to serve as effective screening tools for lower respiratory
infections, but the use of artificial intelligence (AI) in these areas is limited. To address this gap,
we present a computer-aided diagnostic system for chest X-ray and CT images of several common
pulmonary diseases, including COVID-19, viral pneumonia, bacterial pneumonia, tuberculosis, lung
opacity, and various types of carcinoma. The proposed system depends on super-resolution (SR) tech-
niques to enhance image details. Deep learning (DL) techniques are used for both SR reconstruction
and classification, with the InceptionResNetv2 model used as a feature extractor in conjunction with
a multi-class support vector machine (MCSVM) classifier. In this paper, we compare the proposed
model performance to those of other classification models, such as Resnet101 and Inceptionv3, and
evaluate the effectiveness of using both softmax and MCSVM classifiers. The proposed system was
tested on three publicly available datasets of CT and X-ray images and it achieved a classification
accuracy of 98.028% using a combination of SR and InceptionResNetv2. Overall, our system has the
potential to serve as a valuable screening tool for lower respiratory disorders and assist clinicians in
interpreting chest X-ray and CT images. In resource-limited settings, it can also provide a valuable
diagnostic support.

Keywords: Coronavirus; chest X-ray radiographs; convolutional neural network; image super-resolution;
multi-class SVM

1. Introduction

Lower respiratory diseases are a significant cause of mortality in developing countries,
with acute lower respiratory infections being the main cause of death. Despite the devel-
opment of various diagnostic and therapeutic strategies, the lack of access to high-quality
health care in resource-limited settings has resulted in delayed diagnosis and treatment of
diseases. This delay can result in the spread of infectious diseases, the development of com-
plications, and ultimately, increased morbidity and mortality. In addition, the COVID-19
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pandemic has further highlighted the need for rapid and accurate diagnostic tools for
respiratory diseases. The pandemic has overwhelmed healthcare systems globally, and the
lack of effective screening and diagnostic tools has made it difficult to control the spread of
the disease. Lung diseases are disorders of the lung airways and other structures [1]. Pneu-
monia, tuberculosis (TB), and corona-virus disease 2019 (COVID-19) are examples of lung
ailments. Lung diseases are the cause of mortality for millions of individuals, according to
the Forum of International Respiratory Societies (IRS) [2]. Every year, 1.4 million people
die from TB, and millions more die from pneumonia. Furthermore, COVID-19 affects the
whole world [3], where it has infected millions of individuals, overwhelming healthcare
systems in several nations [4].

The development of a computer-aided diagnostic system for common lower respira-
tory diseases, using chest X-ray and CT images, is therefore significant as it can provide
an accessible and affordable screening tool for resource-limited settings [5,6]. It can help
healthcare providers make faster and more accurate diagnoses, and ultimately improve
diagnosis outcomes. Furthermore, the use of DL techniques and SR reconstruction can
enhance the accuracy of the system and potentially reduce the need for additional diagnos-
tic tests. The CT is a medical imaging technique that uses computer analysis to generate
high-resolution sub-images of a person’s body from different angles. These sub-images
can be viewed individually or combined to create a three-dimensional representation of
the patient’s organs, tissues, bones, and any abnormalities. In comparison, X-ray scans are
less detailed than CT scans. The CT scans are utilized in various studies to identify lung
diseases, such as pneumonia, lung cancer, and COVID-19 [7–10].

Lung diseases have traditionally been diagnosed through skin tests, blood tests,
and sputum sample tests [11], as well as chest X-ray tests and CT scan tests [12]. Since
COVID-19 primarily affects the lungs, medical imaging techniques such as X-ray and CT
scans are frequently utilized to assess the severity of infection [13,14]. X-ray imaging is
extensively employed in the diagnosis of various lung disorders due to availability, low
processing time, and low cost. However, CT imaging is recommended, because it provides
more information about the affected areas [15].

Chest X-ray imaging is a popular modality for lung assessment [16]. It helps to identify
lung cancer, infections, and pneumothorax, a condition that occurs due to the accumu-
lation of air around the lungs causing them to collapse [17]. In addition, X-ray imaging
is a cost-effective and simple technology that emits lower radiation than CT scans [18].
Although X-ray imaging carries a risk of radiation exposure, it is highly beneficial for
diagnosis, when employed in the safest and most regulated settings. However, the images
produced are of average quality, and 3D information is not available. To enhance image
quality, pre-processing techniques should be implemented.

To minimize the spread of COVID-19 and ensure prompt treatment, early identification
of the virus is essential, and differentiation from other lung disorders is crucial. Currently,
the most effective measure to prevent COVID-19 transmission is to isolate and quarantine
suspected cases. A study in [19] demonstrated the feasibility of using computer techniques
and CT scans to differentiate COVID-19 from pulmonary edema. EDECOVID-net was
developed. It automatically distinguishes between COVID-19 infections and those induced
by edema in CT images. The findings revealed that EDECOVID-net achieves an accuracy
of 98% in distinguishing patients with COVID-19 from those with pulmonary edema.

Lung cancer is a highly-fatal cancer, but its early detection can significantly improve
treatment outcomes. However, the unpredictability of lung cancer nodules poses a chal-
lenge for computer-aided automated activities. Faruqui et al. proposed a hybrid deep
convolutional neural network-based model called LungNet. It was trained on both CT
scans and wearable sensor-based medical IoT (MIoT) data. LungNet is a 22-layer CNN that
combines latent properties of CT scan scans and MIoT data to increase diagnostic accuracy.
The network, which is managed by a centralized server, was trained on a balanced dataset
of 525,000 images, and it achieved an accuracy of 96.81% in classifying lung cancer into
five categories.
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Machine learning (ML) and DL have great potential in the diagnosis of various dis-
orders, including lung diseases, by analyzing medical imagery. Recent advances in ML
and DL, particularly in the classification of time series and medical images, have shown
promising results [20–23]. The DL approaches can extract features directly from raw data,
which aids in accurately detecting some ailments [24]. Deep convolutional neural networks
(DCNNs) are considered state-of-the-art classifiers to be used in medical applications.
Support vector machines (SVMs) are well-known for their effectiveness in classification
and regression [10,25,26]. Shuhua et al. [27] developed a technique for assessing the error
in kernel regularized regression using a non-convex loss function, which minimizes the
negative impact of outliers on its performance. Despite the experience of radiologists,
predicting infections using medical imaging is challenging due to the lack of detailed
disease knowledge. Combining medical images with DL algorithms is a viable option in
detecting lung diseases [28,29].

Deep learning (DL) is a popular approach used in various fields, including computer
vision, natural language processing, and speech recognition. In the context of X-ray and CT
image SR and classification for lung diseases, DL can provide significant benefits. For in-
stance, DL-based SR techniques can improve the resolution and details of X-ray and CT
images, enabling more accurate diagnosis and detection of lung diseases. Additionally, DL
models can automatically learn and extract relevant features from X-ray and CT images,
without the need for manual feature engineering. This can enhance the accuracy of lung
disease classification. Furthermore, DL models are capable of processing and analyzing
large and complex datasets, which are common in medical imaging. As a result, DL-based
classification models can analyze X-ray and CT images and provide accurate diagnosis
and classification of lung diseases in a fraction of the time compared to manual diagnosis
by radiologists. This can lead to earlier detection and treatment, which improves diagno-
sis outcomes and reduces healthcare costs. Finally, DL-based models can analyze large
amounts of patient data to develop personalized treatment plans. This paper presents a
computer-aided diagnostic system from chest X-ray and CT images for several common
pulmonary diseases, including COVID-19, viral pneumonia, bacterial pneumonia, TB, lung
opacity, and various types of carcinoma. The proposed system depends on SR techniques
to enhance image details and DL techniques for both SR reconstruction and classification.
The InceptionResNetv2 model was used as a feature extractor in conjunction with an
MCSVM classifier. The paper gives a comparison of the proposed model performance
with those of other classification models, such as Resnet101 and Inceptionv3, and gives an
evaluation of the effectiveness of using both softmax and MCSVM classifiers. The proposed
system was tested on three publicly-available datasets of CT and X-ray images.

The main contributions of this paper are summarized as follows:

• Presenting a DL framework for diagnosis of lung diseases from chest X-ray and
CT images.

• Studying the impact of image SR on lung disease diagnosis.
• Presentation of InceptionResNetv2 as a feature extractor and comparing its results

with those of Resnet101 and Inceptionv3 models.
• Investigation of the proposed framework in five-class and six-class scenarios using

softmax and MCSVM classifiers.

The structure of this paper consists of several sections. Section 2 provides an overview
of the related work, highlighting the current state-of-the-art techniques in the field of
computer-aided diagnosis of lung diseases. Section 3 introduces the proposed classification
framework, outlining the SR and DL techniques utilized for classification. In Section 4,
experimental results are presented, providing an evaluation of the proposed system per-
formance on three publicly available datasets of CT and X-ray images. Section 5 offers a
discussion and comparison of the proposed framework with other classification models.
Finally, Section 6 presents the final remarks, summarizing the key findings, contributions,
and potential applications of the proposed system.
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2. Related Work

The DL provides considerable promising solutions for detecting various disorders [30–34].
Xu et al. [35] presented a DL-based system for analyzing COVID-19 images. Using the
DL model, the possible infection sites are separated into logged trees. On CT scans of
COVID-19, viral pneumonia, and normal patients, a three-class classification problem was
established. Using the Bayesian algorithm, the infection type and overall confidence score
were obtained. This system achieved an accuracy of 86.7%. Using radiomic texture descrip-
tors, Chandra et al. [36] proposed an automated technique for COVID-19 identification.
Their technique was tested on X-ray images. The authors reported an accuracy of 91.329%.

Alqudah et al. [37] developed a hybrid AI system that can detect COVID-19 from
chest X-ray images by combining different AI techniques, including DL (CNN with soft-
max classifier) and ML (SVM, KNN, and RF) classifiers [38]. The results showed that
the presented methodology is efficient and useful in detecting COVID-19 in just a few
seconds. The obtained results proved that the performance of all classifiers is good and
most of them recorded accuracy, sensitivity, specificity, and precision of more than 98%.
Bhowmik et al. [39] presented a multi-modal approach for real-time COPD exacerbation
prediction. It includes a spatio-temporal AI architecture for cough detection using data from
sensor networks, and exacerbation prediction. In addition to demonstrating the viability of
implementing a passive, continuous, remote patient monitoring and telehealth solution for
chronic respiratory diseases, the researchers developed an early warning system based on
AI and multi-factor analysis to decrease hospitalizations and medical costs.

To increase the effectiveness and accuracy of diagnosis, the EfficientNetv2-M model was
designed and used to diagnose lung disorders on X-ray images using pre-trained weights
from ImageNet [40]. The dataset was first augmented. The augmentation results were
then automatically fed into a DL model to extract their important features for classifying
diseases. This model produced validation results of 82.15% for accuracy and predicted the
three classes of normal, pneumonia, and pneumothorax in the NIH dataset. Additionally,
the obtained results for the four classes of the SCH dataset, namely normal, pneumonia,
pneumothorax, and TB revealed a validation accuracy of 82.20%. To analyze CT scans
and X-ray images, the researchers in [41] used pre-implemented instances of a CNN
and Darknet. CNN and Darknet with image processing algorithms enable the analysis,
identification, and localization of anomalies in CT scans and X-ray images. They produced
a 98% accuracy with a loss value of just 0.04.

Rasheed et al. [42] studied how to use feature selection methods and transfer-learning
(TL) networks to increase the classification accuracy of ML classifiers. To produce significant
features from images, three different TL networks—AlexNet, ResNet101, and SqueezeNet—
were evaluated. By using feature-selection techniques such as iterative neighborhood
component analysis (iNCA), iterative chi-square (iChi2), and iterative maximum relevance-
minimum redundancy (iMRMR), the obtained relevant features were further refined.
The classification process was completed by employing SVM, CNN, and linear discriminant
analysis (LDA) classifiers. The combination of AlexNet, ResNet101, SqueezeNet, iChi2,
and SVM produced a classification accuracy of 99.2%, when used to classify X-ray images.
Similarly, a 99.0% accuracy was produced by AlexNet, ResNet101, SqueezeNet, iChi2,
and the presented CNN network. Hong et al. [43] suggested a CNN-based multi-class clas-
sification technique for lung diseases. A classification model of the multi-GAP format was
constructed based on the noisy student ImageNet pre-trained weights of the EfficientNet B7
model. On the dataset of Soonchunhyang University Hospital in Cheonan, an average ac-
curacy of 96% was achieved. To reduce the mean square error, Pradhan et al. [44] proposed
a lung cancer diagnostic model. Principal component analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) have been used for feature extraction. Additionally,
a self-adaptive sea lion optimization algorithm (SA-SLnO) that employs the most recent
meta-heuristic algorithms to optimize the weights has been presented as an improved
correlation-based weighted feature extraction algorithm. The presented SA-SLnO maxi-
mizes the number of hidden neurons in RNN. In addition, researchers in [45] developed a
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method for identifying lung cancer. Two widely-used methods, namely PCA and t-SNE,
have been applied to extract features. Furthermore, deep features have been obtained
from the CNN pooling layer. Additionally, the best fitness-based squirrel search algorithm
(BF-SSA) has been used to determine the most important features. This hybrid optimization
method is regarded as being superior in many fields for effectively exploring the search
space and improving the feature selection performance. High ranking deep ensemble
learning (HR-DEL) is used for five types of detection models in the final step. In addition,
the final anticipated output is produced based on the high ranking of all classifiers.

Souid et al. [46] proposed a modified model, namely MobileNetV2, to classify and
predict lung diseases in frontal thoracic X-ray images. A combination between TL and
metadata leveraging has been presented. The presented model was tested on the NIH
Chest-Xray-14 database, and it provided a 90% accuracy. The TL models were used to
develop a COVID-19 prediction model for chest CT scans in [47]. Three common DL models,
namely, VGG-16, ResNet50, and Xception were utilized. Then, a method for combining
the aforementioned pre-trained models was described in order to increase the system total
capacity for prediction. The presented model has a classification accuracy of 98.79%.

For detecting COVID-19 from chest X-ray images, an automated DL classification
approach was presented in [48]. Prior to applying CNN models on the dataset, his-
togram equalization, spectrum, greys, and cyan were used to improve the performance.
The COVID-19 symptoms were recently identified using the available dataset and eleven
pre-existing CNN models: VGG16, VGG19, MobileNetV2, InceptionV3, NFNet, ResNet50,
ResNet101, DenseNet, EfficientNetB7, AlexNet, and GoogLeNet. Among all deployed
CNN models. It was discovered that the modified MobileNetV2 model provides the highest
accuracy of 98% in classifying COVID-19 and healthy chest X-ray images.

Rahman et al. [49] developed a framework for detecting bacterial and viral pneumonia
in X-ray images. For the classification procedure, various pre-trained models, such as
AlexNet, ResNet18, DenseNet201, and SqueezeNet, were employed. This framework
yielded COVID-19-normal and COVID-19-pneumonia classification accuracy levels of 98%
and 95%, respectively. Furthermore, for three-class classification, an accuracy of 93.33%
was attained.

Ferreira et al. [50] developed a system for classifying pneumonia from chest X-ray
images. A binary mask was created using a pre-trained U-Net-based TL model. For the
classification, VGG-16 was employed. Rania et al. [51] demonstrated a DL model for
detecting COVID-19 in X-ray images. Their concept is built upon a single-shot detector
(SSD) and a residual network (ResNet101). Firstly, X-ray images were pre-processed
and augmented. After that, ResNet101 was used for classification, and it achieved an
accuracy of 94.95%.

Zhang et al. [52] used a combination of CT and X-ray scans to better diagnose
COVID-19. Using the convolutional block attention module, a deep convolutional attention
network (MIDCAN) with multiple inputs was created. The first input receives 3-D CT
images, while the second receives 2-D X-ray images. The sensitivity of their presented sys-
tem was 98.10%, the specificity was 97.95%, and the accuracy was 98.02%. Wang et al. [53]
introduced an AI method for COVID-19 classification from CT images. Pre-trained models
were used to learn features, and a transfer feature learning approach was utilized to extract
features. A pre-trained network selection strategy for fusion was presented in order to deter-
mine the best two models. Discriminant correlation analysis was used to aid in the feature
fusion of the two models’ features using deep CT fusion. COVID-19-pneumonia, COVID-
19-TB, COVID-19-normal, and pneumonia-normal classification states were implemented
with accuracy levels of 97.32%, 96.42%, 96.99%, and 97.38%, respectively.

Different CNN-based models have lately shown promising performance levels in the
challenge of single image super-resolution (SISR). On the other hand, several cutting-edge
SISR approaches employ tactics that are effective in other vision tasks. He et al. [54] em-
ployed a 22-layer multi-receptive-field network (MRFN) to completely learn the LR-to-HR
mapping function. The multi-receptive-field module serves as a foundation for learning
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of object mappings. It takes different properties from small, middle, and large receptive
fields and combines them into a module. Furthermore, instead of using the L1 and L2 loss
functions, the weighted Huber loss, a two-parameter training loss, is utilized to adaptively
adjust the value of the back-propagated derivative according to the residual value.

Mehrrotraa et al. [55] presented a DL-based method to identify TB. This presented
method involves ensemble efficient deep convolutional networks and ML algorithms,
which do not require heavy computational costs. The model achieved accuracy levels
of 87.90% and 99.10% with an AUC values of 0.94 and 1, respectively, in identifying
TB-infected images from normal and COVID-infected images. The authors of [56] proposed
a completely automated framework with a DL model for the recognition and classifica-
tion of chronic pulmonary disorders and COVID-pneumonia using chest X-ray images.
This framework consists of a three-step process that extracts the region of interest, detects
infected lungs, and classifies the images into COVID-pneumonia, pneumonia, and other
chronic pulmonary disorders. This framework achieved an accuracy of 96.8% in classifying
lung images.

Masad et al. [57] presented a hybrid DL system comprising a CNN model with
additional classifiers (SVM, k-nearest neighbor (KNN), and random forest (RF)) for au-
tomated pneumonia detection. Although the hybrid systems demonstrate comparable
performance to that of the traditional CNN model with softmax layer in terms of accuracy,
precision, and specificity, the RF hybrid system performed less efficiently than the others.
Although the KNN hybrid system showed the best consumption time, sensitivity was
sacrificed to achieve this target. However, this new hybrid methodology achieved high
efficiency and a short classification time for detecting pneumonia from small-size chest
X-ray images. Limitations of this study include the use of only small-size chest X-ray
images and potential challenges in scaling the approach to larger image datasets.

Al-Issa et al. [58], discussed the difficulties of accurately diagnosing various pulmonary
diseases, which have similar radiographic characteristics. To address this target, the authors
explored the performance of four popular pre-trained models (VGG16, DenseNet201,
DarkNet19, and XceptionNet) in distinguishing between normal, pneumonia, COVID-19,
and lung opacity cases from chest-X-ray images. The XceptionNet model outperformed all
other ones, achieving a 94.775% accuracy and an AUC of 99.84%. DarkNet19 provided a
good compromise between accuracy, fast convergence, and resource utilization. Ensemble
features allowed to achieve the highest accuracy of 97.79% among all surveyed methods,
but it took the largest time to predict an image (5.68 s). The authors suggested that an
efficient and effective decision support system could be developed using these approaches
to assist radiologists in accurately assessing pulmonary diseases in various healthcare
sectors. The study also focused solely on chest radiographs and did not cover the potential
benefits of using other imaging modalities, such as CT scans. Finally, the study is limited
in that it is only concerned with performance evaluation of the models on a specific set of
pulmonary diseases. The models were not applied on other diseases or conditions.

3. Materials and Methods

Various datasets are used to assess the proposed DL framework. The description of
these datasets is presented in Table 1. The dataset #1 is a collection of COVID-19, normal,
pneumonia-viral, pneumonia-bacterial, and TB chest X-ray images gathered from open-
source Kaggle datasets. The dataset #1 [59] has 259 X-ray images of COVID-19 patients
and 1000 X-ray images of healthy people. The dataset #2 [59] has 900 X-ray images of
pneumonia patients with bacterial pneumonia and 800 X-ray images of pneumonia patients
with viral pneumonia. The dataset #3 [60] has 800 X-ray images of TB patients. The DL
models often require a huge amount of data to be trained. The more data the network
encounters during training, the better it can learn to distinguish different disease represen-
tations. Hence, image augmentation strategies are exploited to obtain a large amount of
data for the training process. For the COVID-19 dataset, different augmentation strategies
are used. The dataset is increased to 1000 X-ray images for each class after augmentation.
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Table 1. Datasets description.

Dataset Lung Disease

Dataset #1
X-ray images

COVID-19 TB Pneumonia-bacterial Pneumonia-viral Normal

259 800 900 800 1000

Dataset #2
X-ray images

COVID-19 Lung opacity TB Pneumonia-viral Normal

3616 6012 8624 3080 10,192

Dataset #3
CT images

COVID-19 Adenocarcinoma Large cell carcinoma Squamous cell carcinoma CAP Normal

7942 4290 2508 3410 2618 7290

In addition to the dataset #1, We selected data from six different available datasets [61–66]
to create a big lung X-ray and CT scan dataset for lung disease detection. These datasets
have been utilized publicly for lung disease diagnosis and have demonstrated appropri-
ateness for DL applications. As a result, by learning from all of these resources together,
the combined dataset is expected to improve the generalization ability of the proposed DL
model. The X-ray scan dataset #2 consists of 35,399 images belonging to 5 different classes
that have been used to evaluate the proposed framework. The dataset contains 3616 X-ray
scans for COVID-19 cases, 6012 X-ray scans for lung opacity, 10,192 X-ray scans for normal
cases, 8624 X-ray scans for TB cases, and 3080 X-ray scans for viral pneumonia cases. In ad-
dition, the CT scan dataset #3 consists of 28,058 images belonging to the 6 different classes
that have been used to evaluate the proposed framework. The dataset contains 7942 CT
scans for COVID-19 cases, 7290 CT scans for non-COVID-19 cases, and three different chest
cancer types (4290 CT scans for adenocarcinoma, 2508 CT scans for large cell carcinoma,
and 3410 CT scans for squamous cell carcinoma) and 2618 images for community-acquired
pneumonia (CAP) cases.

3.1. The Proposed Framework

The proposed framework aims to make it possible for those suffering from lung
disorders to live, securely. Furthermore, it offers efficient supporting settings managed
by caregivers, such as friends, family, and medical staff. This may be accomplished by
leveraging contemporary technologies such as cloud computing, and AI to monitor people
infected with lung diseases in real time in streets or workplaces. As a result, this system
delivers dependable and timely healthcare services for patient monitoring. The main
objective of the suggested framework is to keep track of lung conditions. Patients’ data are
acquired via wearable and portable devices. Then, data records are produced on the cloud,
and finally, authorized healthcare workers get access to this data at any time and from any
location. This architecture may aid in the provision of remote lung disease monitoring.
The proposed framework is divided into three stages that work together to achieve the
system target. Every stage performs a certain function that works in tandem with the others.
Figure 1 shows the proposed framework with three stages. Data acquisition, cloud-based
analysis using the proposed model, monitoring and decision-making are the stages of the
proposed framework.
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Figure 1. Main architecture of the proposed framework.

3.2. Data Acquisition

In this phase, data acquisition devices work in real time. X-ray and CT images are
obtained from different online accessible resources. A wireless network of specialized
image acquisition systems can be utilized to gather images inside a smart hospital system.
Afterwards, the gathered images are forwarded to a gateway. This gateway is used between
the wireless network and the server hosted in the cloud for healthcare disease prediction in
a decision-making step. The controller sends the gathered images to the respective channel
periodically via a communication protocol such as MQTT.

3.3. Cloud-Based Analysis Using the Proposed Models

When patient lung disease data are received via the Internet and sorted, they are then
made available for review by professionals using a community of processing and storage
capabilities provided by the cloud. Image pre-processing and augmentation are important
steps in preparing X-ray and CT images for lung disease classification. We have resized the
X-ray and CT image dimensions to 299× 299× 3 in order to match the required size of input
to the three proposed models. For dataset #1 the COVID-19 images are augmented to obtain
1000 images from 256 images. The augmentation operations include position augmentation
and color augmentation. Figure 2 presents samples for augmented images. In position
augmentation, the pixel positions of an image are changed, while color augmentation deals
with the color properties of an image by changing its pixel values.

Figure 2. Samples of augmented images.
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3.3.1. Image Super-Resolution

Image SR is used mainly to produce an HR image from an LR one through a mapping
process. In this paper, the mapping is implemented by DCNN. The main aim is to recover
an F(Y) image from the LR image Y, where F(Y) and the ground-truth HR image X should
be as identical as possible. Figure 3 presents a lightweight CNN model for image SR.
The mapping F mainly consists of three processes:

• Patch extraction and representation: Patches from the LR image Y are extracted,
and then each patch is represented as a high-dimensional vector. This can be expressed as:

F1(Y) = max(0, W1 ×Y + B1) (1)

where W1 represents the weights for the first convolution layer, which has a size
of c × f1 × f1 × n1. c, f1, and n1 are the numbers of channels for the input image,
the spatial filter size, and the number of filers, respectively. A rectified linear unit
(ReLU) is applied on the output to add non-linearity.

• Non-linear mapping: An n1-dimensional feature vector is extracted for each patch
from the first layer. Then, these n1-dimensional feature vectors are mapped as n2-
dimensional vectors. This mapping can be represented as :

F2(Y) = max(0, W2 ×Y + B2) (2)

where W2 has a size of n1 × 1× 1× n2. Each of the output n2-dimensional vectors are
used for reconstruction.

• Reconstruction: A pre-defined filter that acts as an averaging filter for the reconstruc-
tion process is used. The last convolutional layer is exploited to obtain the final HR
image. The reconstruction process can be expressed as:

F(Y) = W3 × F2(Y) + B3 (3)

Mean squared error (MSE) is used as the loss function L(Θ).

L(Θ) =
1
k

k

∑
i=1
‖F(Yi; Θ)− Xi‖2 (4)

where k represents the number of training samples.

In this paper, the filter sizes are chosen to be f1 = 9 and f2 = 3 with numbers of filters
n1 = 32 and n2 = 16. A Gaussian distribution with µ = 0 and σ = 0.001 is used to initiate
the weights randomly, with 0 bias and 10−5 learning rate as in [67].

Low-resolution 
input image

High-resolution 
output image

n1 feature maps of 
low-resolution 

image

n2 feature maps 
of high-resolution 

image

(f1x f1)

(f1 x f1)

Figure 3. Block diagram of the proposed DCNN image SR model.
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3.3.2. DL-Based Feature Extraction

DL-based feature extraction is a method of using deep neural networks to auto-
matically learn and extract useful features from images or other data. DL-based feature
extraction is widely used with medical images, such as X-ray and CT images. It is used in
lung disease classification, as it is able to learn features that are specific to lung patterns
and anomalies that represent certain diseases. In this paper, InceptionResNetv2 is used for
feature extraction. It is a convolutional neural network that uses Inception architectures
with residual connections. The residual connection replaces the filter concatenation stage.
It has a 164-layer depth, an 299× 299 input image size, and 1000 classes for the output [68].
However, in this paper, the fully connected layer is removed and the average pooling layer
is employed as the final layer. The architecture of the whole system of InceptionResNetv2
is shown in Figure 4.

Figure 4. Overall scheme of the InceptionResNetv2 network.

It is clear that the InceptionResNetv2 contains two sections, feature extraction, and a
fully-connected layer.

Stem module: It represents the first layer of the architecture. It mainly consists of
convolution (Conv) and max-pooling layers. The convolution filter in the Stem module is
3× 3 in size and the stride value is 2. Therefore, the parameter values will be decreased,
where the (299× 299× 3) input image size is converted into (35× 35× 384) [69].

Inception-resnet Modules: The combination of the inception layer and residual
connection is the advantage of the inception-resnet module. It contains three primary
modules, denoted by the letters A, B, and C in Figure 5. Inception-resnets of the same kind
are linked sequentially. A reduction module is required to link the inception-resnet with
different types.
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(a)
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(192)
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(224)
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(256)
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(c)

Figure 5. Overall architecture of the Inception-resnet modules. (a) Inception-resnet-A. (b) Inception-
resnet-B. (c) Inception-resnet-C.

Reduction Modules: The reduction module is used to reduce parameters between
inception and resnet modules. As illustrated in Figure 6, the inception-resnet design con-
tains two reduction modules, A and B. By transforming a 35× 35 shape to a 17× 17 shape,
the Reduction-A module unites Inception-A and Inception-B modules. Furthermore, by re-
ducing a 17× 17 form to an 8× 8 shape, the Reduction-B module links Inception-resnet-B
and Inception-resnet-C modules. Finally, the average pooling layer converts the output of
the Inception-resnet-C module into a 1-D vector of 1792 features. The InceptionResNetv2
is utilized as a feature extractor in this study, with an MCSVM classifier replacing the
fully-connected layer.

3x3 Conv
(384 stride 2)

Filter concat

1x1 Conv
(256)

3x3 Max Pool
(stride 2)

1x1 Conv
(256)

3x3 Conv
(384 stride 2)

Filter concat

(a)

1x1 Conv
(256)

Previous layer

1x1 Conv
(256)

3x3 Max Pool
(stride 2)

1x1 Conv
(288)

3x3 Conv
(320 stride 2)

Filter concat

1x1 Conv
(256)

3x3 Conv
(288 stride 2)

3x3 Conv
(384 stride 2)

(b)

Figure 6. Reduction-A and Reduction-B modules (a,b).
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3.3.3. Proposed Classification Frameworks

1. Softmax is the final layer at the network end. It generates the actual probability scores
for each class label. In this paper, five-class and six-class classification problems
are introduced. The softmax layer has n nodes marked as pi, where i = 1 : n. pi
represents the discrete probability distributions. The input to the softmax layer can be
represented as follows:

ai = ∑
k

hkWki (5)

Then, pi can be calculated as:

pi =
exp(ai)

∑5
j exp(aj)

(6)

Then, the predicted class î can be obtained as follows:

î = arg max pi (7)

where h and W represent the activation and the weight of the layer nodes that precede
the softmax layer, respectively.

2. Multi-class Support Vector Machine Classifier: The SVM is a commonly used classifier
for binary classification problems. It constructs decision hyperplanes that best divide
the dataset into classes. For multi-class classification problems, the number of classes
M is greater than two. The SVM uses several strategies to solve multi-class classi-
fication problems such as binary tree (BT), one-against-one (OAO), directed acyclic
graph (DAG), and one-against-all (OAA) classifiers [70]. In this work, the OAASVM
classifier with polynomial kernels is used as in [71]. M SVM models have been con-
structed, one for each class. The mth classifier is trained with all samples for class m
and marked with positive labels, whereas the M1 remaining classes are marked with
negative labels. This gives advantages in terms of the short training time. The training
of a single sub-classifier becomes much simpler.
For n training data (x1; y1); :::; (xn; yn), where xi ∈ Rn; i = 1; :::; n and yi ∈ 1; :::; M is
the class of xi. The class m SVM solves the following [72]:

minωm ,bm ,ζm
1
2
(ωm)Tωm + C

n

∑
1

ζm
i (8)

(ωm)Tφ(xi) + bm ≥ 1− ζm
i i f yi = m

(ωm)Tφ(xi) + bm ≥ −1 + ζm
i , i f yi 6= m

ζm
i ≥ 0, i = 1, .....,n

where φ(x) is the mapping function. For nonlinear separation, a penalty term C ∑n
1 ζm

i
is added for error reduction, where C represents the penalty parameter. In order
to minimize the term 1

2 (ω
m)Tωm, the margin between two groups of data 2/‖ωm‖

should be maximized. After solving Equation (8), there are M decision functions
(ω1)Tφ(x) + b1, ............ , (ωM)Tφ(x) + bM.

f (x) = argmaxm=1,..,M((ωm)Tφ(x) + bm) (9)

where f (x) is the decision boundary function. We can say that x belongs to a specific
class that has the largest decision function value. The parameters of the SVM are
presented in Table 2
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Table 2. SVM parameters.

Parameter Value

Penalty parameter C 1.0

Kernel Polynomial

Degree 3.0

Gamma Scale

Tolerance 0.001

Decision function shape One versus rest

Number of iteration n_classes× (n_classes− 1)/2

4. Experimental Results

In order to concentrate on the improvements obtained by image SR, this paper is
concerned with the influence of image SR on three DCNN models used as feature extractors
with an MCSVM classifier. We try to obtain a better performance model for the lung disease
classification problem.

4.1. Evaluation Metrics

The confusion matrix is a table used to characterize the classifier performance. For
multi-class classification, the one-against-all approach can be used to evaluate the classifier
performance. In this paper, five classes are considered, COVID-19 (A), pneumonia-viral
(B), pneumonia-bacterial (C), TB (D), and normal (E). In a 2× 2, once class A is elected
as positive, the other is automatically negative. In the case of the five-class classification,
there are five different metrics depending on which of the five classes is elected as positive.
The metrics can be calculated as in the 2× 2 case, such as class A against not-Class A, then
class B against not-class B, and so on. The overall performance is evaluated based on the
sensitivity (Sen), specificity (Spec), accuracy (Acc), precision (Preci), Matthews correlation
coefficient (Mcc), false positive rate (Fpr), and F1 score [73]. The Tp of A is all A cases that
are classified as A, Tn of A is all non-A cases that are not classified as A, Fp of A is all non-A
cases that are classified as A and Fn of A is all A cases that are not classified as A. In order
to find these four outcomes of B, C, D, and E classes, A is replaced with B, C, D, or E [74].

Sensitivity is given by:

Sen =
Tp

Tp + Fn
× 100 (10)

Specificity is given by:

Spec =
Tn

Tn + Fp
× 100 (11)

Accuracy is given by:

Acc =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (12)

Precision is given as:

Preci =
Tp

Tp + Fp
(13)

Matthews correlation coefficient (Mcc) is defined as:

Mcc =
Tp × Tn − Fp × Fn√(

Tp + Fp
)
×
(
Tp + Fn

)
×
(
Tn + Fp

)
× (Tn + Fn)

× 100 (14)
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False positive rate is given by:

Fpr =
Fp

Tn + Fp
(15)

F1 score is given by:

F1score =
Tp

Tp +
1
2 (Fp + Fn)

× 100 (16)

4.2. Results

A system for autonomously diagnosing various lung diseases in X-ray and CT image
datasets is presented in this paper. Three experiments were investigated. Three pre-trained
models were utilized to differentiate between COVID-19, pneumonia-viral, pneumonia-
bacterial, TB, and normal X-ray images, namely, Resnet101, Inceptionv3, and InceptionRes-
Netv2. The experiment was then carried out in order to enhance the results by replacing
the fully-connected layer with an MCSVM classifier. Finally, the last experiment was
carried out to demonstrate the effect of applying image SR on the performance of the
proposed framework.

4.2.1. Results for Dataset #1

Table 3 shows the evaluation metrics for three different models (Resnet101, Incep-
tionv3, InceptionResNetv2) with and without augmentation. The metrics evaluated are
accuracy, sensitivity, specificity, precision, MCC, F1score, and Fpr. Comparing the models
without augmentation, it can be observed that InceptionResNetv2 achieves the highest per-
formance in all metrics. Resnet101 performs the worst in terms of Fpr, with a value of 0.197.
Inceptionv3 has the highest precision among the three models, but the lowest sensitivity.
When data augmentation is applied, the performance of all three models improved signifi-
cantly. InceptionResNetv2 continues to perform the best, achieving the highest scores in all
metrics except for Fpr, which is the lowest for Resnet101. It can be observed that the Fpr for
all models improves significantly with data augmentation. This is because augmentation
increases the amount of training data, which helps the models to better generalize to unseen
data. Overall, the results prove that data augmentation has a significant positive impact on
model performance. InceptionResNetv2 is the best-performing model in this case.

Table 3. Results for pre-trained models using dataset #1.

Models
Evaluation Metrics

Accuracy Sensitivity Specicity Precision MCC F1 Score Fpr

Without
Augmentation

Resnet101 77.24 74.53 80.77 72.19 65.85 75.16 0.197

Inceptionv3 78.52 75.12 80.97 73.43 67.37 77.98 0.158

InceptionResNetv2 80.86 78.23 84.67 75.72 69.57 78.12 0.148

With
Augmentation

Resnet101 78.25 75.43 82.37 73.29 67.15 76.86 0.094

Inceptionv3 80.12 77.67 86.05 75.72 70.21 78.08 0.088

InceptionResNetv2 81.86 79.58 86.57 78.78 70.56 78.84 0.084

The fully-connected layer is replaced with the MCSVM classifier to enhance the perfor-
mance of the proposed framework. Table 4 clearly shows that InceptionResNetv2 continues
to outperform the other pre-trained models. Furthermore, a performance improvement
equivalent to that of the previous experiment is realized. In terms of accuracy, the MCSVM
classifier improves the performance by 6%. The confusion matrix and ROC curve for
the InceptionResNetv2-MCSVM-based model are shown in Figures 7 and 8. COVID-19,
normal, pneumonia-viral, pneumonia-bacterial, and TB classes are denoted by 1, 2, 3, 4,



Diagnostics 2023, 13, 1319 15 of 28

and 5, respectively. Figure 9 presents the training progress curve for the InceptionResNetv2
model. It is clear that the model learns to minimize the error between the predicted and
actual labels. At the same time, the accuracy shows an upward trend as the model improves
its performance on the training data.

Table 4. Results for pre-trained-MCSVM based models using dataset #1.

Models
Evaluation Metrics

Acc Sen Spec Preci Mcc F1 Score Fpr

Resnet101 83.21 83.03 90.37 81.89 80.15 81.02 0.074

Inceptionv3 85.34 85.34 95.11 85.12 82.21 82.36 0.0489

InceptionResNetv2 86.80 87.47 96.78 87.01 83.98 86.86 0.0322

The previous two experiments demonstrate that the performance is insufficient.
The features of all classes are quite similar, particularly for COVID-19, pneumonia-viral,
and pneumonia-bacterial. To address this issue, an image SR pre-processing stage is pro-
posed. The results for the pre-trained models with image SR using dataset #1 are presented
in Table 5. The reported results show that InceptionResNetv2 outperforms ResNet101
and Inceptionv3 in terms of accuracy by roughly 5% and 3%, respectively. The results for
the pre-trained-MCSVM-based models with image SR are shown in Table 6. In terms of
accuracy, InceptionResNetv2 still outperforms Resnet101 and Inceptionv3 by 6% and 3%,
respectively.

Figure 7. Confusion matrix for InceptionResNetv2-MCSVM-based model with image SR using
dataset #1.
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Figure 8. ROC curve for InceptionResNetv2-MCSVM-based model with image SR using dataset #1.

Figure 9. Training progress curve for InceptionResNetv2-MCSVM-based model with image SR using
dataset #1.

Table 5. Results for pre-trained models with image SR using dataset #1.

Models
Evaluation Metrics

Acc Sen Spec Prec Mcc F1 Score Fpr

ResNet101 90.16 89.34 95.478 90.32 89.11 90.78 0.0314

Inceptionv3 92.85 91.44 96.56 92.76 90.17 92.31 0.0278

InceptionResnetv2 95.24 95.76 96.38 96.51 92.18 95.36 0.0157
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Table 6. Results for pre-trained-MCSVM based models with image SR using dataset #1.

Models
Evaluation Metrics

Acc Sen Spec Preci Mcc F1 Score Fpr

Resnet101 91.24 91.22 97.08 91.20 88.29 91.08 0.0292

Inceptionv3 93.15 93.14 97.72 93.14 90.85 93.11 0.0228

InceptionResnetv2 96.80 97.47 98.78 97.01 93.98 96.86 0.0122

4.2.2. Results for Dataset #2

For the goal of generality, an X-ray dataset is composed from several publicly-available
datasets for the diagnosis of lung disease. The collection contains 35,399 X-ray images
from six different lung disease datasets, [61–64]. The results for the pre-trained models
with image super-resolution using dataset #2 are presented in Table 7. Based on the data,
it is obvious that InceptionResNetv2 outperforms ResNet101 and Inceptionv3 in terms of
accuracy by roughly 1%. The confusion matrix and ROC curve for the InceptionResNetv2
model with image SR using dataset #2 are shown in Figures 10 and 11. Figure 12 illustrates
the progress of training for the InceptionResNetv2 model. The figure demonstrates that the
model gradually reduces the difference between predicted and actual labels, leading to a
decrease in error. Additionally, the accuracy of the model increases over time, indicating an
improvement in its performance on the training data.

Furthermore, the experiment is performed with the MCSVM classifier rather than
softmax. The results for the pre-trained-MCSVM-based models with image super-resolution
using dataset #2 are presented in Table 8. The obtained results show that InceptionResNetv2
outperforms ResNet101 and Inceptionv3 in terms of accuracy by around 2%.

Table 7. Results for pre-trained models with image SR using dataset #2.

Models
Evaluation Metrics

Acc Sen Spec Prec Mcc F1 Score Fpr

ResNet101 92.441 92.513 98.153 89.10 88.711 90.35 0.0601

Inceptionv3 93.85 92.64 96.86 92.20 90.02 92.56 0.0534

InceptionResnetv2 96.309 96.39 99.22 96.41 96.39 95.62 0.0369

Figure 10. Confusion matrix for InceptionResnetv2 model with image SR using dataset #2.
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Figure 11. ROC curve for InceptionResnetv2 model with image SR using dataset #2.

Figure 12. Training progress curve for InceptionResnetv2 model with image SR using dataset #2.

Table 8. Results for pre-trained-MCSVM-based models with image SR using dataset #2.

Models
Evaluation Metrics

Acc Sen Spec Prec Mcc F1 Score Fpr

ResNet101 91.78 92.80 97.13 90.10 89.821 91.455 0.0172

Inceptionv3 91.99 91.94 97.08 92.45 90.98 92.87 0.0132

InceptionResnetv2 93.45 92.76 98.58 92.51 92.78 90.56 0.0131

4.2.3. Results for Dataset #3

The experiment was repeated using the large CT dataset #3 to demonstrate the validity of
the proposed framework. It was constructed from six publicly available datasets [64–66], and
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it has 28,058 CT scans. The results for the pre-trained models and the pre-trained-MCSVM-
based models are presented in Tables 9 and 10, respectively. The obtained results clearly
indicate a decrease in the performance of the MCSVM-based models. Figures 13 and 14
show the confusion matrix and ROC curve for InceptionResNetv2-MCSVM-based models
using CT images. Figure 15 shows the accuracy and loss performance of the pre-trained
InceptionResNetv2 model. Validation and training accuracy, as well as validation and
training loss, have similar behaviour.

Figure 13. Confusion matrix for InceptionResNetv2 model with image SR using dataset #3.

Figure 14. ROC curve for InceptionResNetv2 model with image SR using dataset #3.
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Figure 15. Training progress for InceptionResNetv2 model for dataset #3.

Table 9. Results for pre-trained models with image SR using dataset #3.

Models
Evaluation Metrics

Acc Sen Spec Prec Mcc F1 Score Fpr

ResNet101 94.51 90.23 98.57 91.32 90.41 92.25 0.0132

Inceptionv3 94.54 90.62 98.69 93.21 92.13 92.34 0.0118

InceptionResnetv2 98.028 98.513 99.55 98.64 98.57 98.13 0.0044

Table 10. Results for pre-trained MCSVM-based models with image SR using dataset #3.

Models
Evaluation Metrics

Acc Sen Spec Prec Mcc F1 Score Fpr

ResNet101 91.51 92.23 97.57 90.32 89.41 91.25 0.0168

Inceptionv3 91.54 91.62 97.69 92.21 91.13 92.87 0.0131

InceptionResnetv2 92.56 92.16 98.52 92.31 92.67 90.78 0.0128

5. Discussion and Comparison with the-State-of-the-Art Methods

Deep features can be obtained from the output of any intermediate layer in a deep
neural network. Each layer in a neural network learns a hierarchy of increasingly complex
and abstract features from the input data. The deeper the layer, the higher the level of
abstraction and complexity of the learned features is. Typically, the output of the last
layer before the final fully-connected layer is used as the deep features for a given input
image. The final fully-connected layer is often task-specific and may not generalize well
to other tasks. The output of the last layer before the final fully-connected layer can
be considered a more general feature representation that can be used for a variety of
tasks, such as image classification, object detection, and image retrieval. In the case of
InceptionResNetV2, the output of the global average pooling layer, which is typically
the layer immediately preceding the final fully-connected layer, can be used as the deep
features for the input image. This feature vector contains the most important information
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about the input image learned by the network and can be used for a variety of downstream
tasks. In summary, the final fully-connected layer in InceptionResNetV2 takes the global
feature vector obtained from the previous global average pooling layer as input, applies a
linear transformation followed by an activation function, and produces the final output
predictions for the given classification task. The tSNE plots of the extracted features from
the fully-connected layer for dataset #1, dataset #2, and dataset #3 using InceptionResNetv2
are presented in Figures 16–18. The tSNE plots reveal the relationships between different
classes in the dataset. There is an overlapping cluster between different classes, and this
indicates that the fully-connected layer has learned features that are shared between those
classes. On the other hand, if the tSNE plot shows well-separated clusters between different
classes, this indicates that the fully-connected layer has learned the features that are specific
to each class.

It is clear from Table 11 that InceptionResNetv2 combined with softmax is a very
strong architecture that achieves a state-of-the-art performance level on a number of image
recognition tasks. This is due to its ability to capture complex patterns in the input images
through the use of deep residual networks and a combination of convolutional and pooling
layers. In addition, the SVM is another popular tool for image recognition tasks, particularly
for its ability to handle non-linear data by mapping it to a higher-dimensional space.
However, in some cases, SVM may not perform as well as deep neural networks such as
InceptionResNetv2, especially when working with very large datasets or complex image
recognition tasks.

Figure 16. t-SNE plot of the extracted features from the fully-connected layer for dataset#1.

Table 11. The best results for pre-trained models with image super-resolution using the three datasets.

Dataset Models
Evaluation Metrics

Accuracy Sensitivity Specicity Precision MCC F1 Score Fpr

#1

Resnet101 + MCSVM 91.24 91.22 97.08 91.20 88.29 91.08 0.0292

Inceptionv3 + MCSVM 93.15 93.14 97.72 93.14 90.85 93.11 0.0228

InceptionResNetv2 + MCSVM 96.80 97.47 98.78 97.01 93.98 96.86 0.0122

#2

Resnet101 + Softmax 92.441 92.513 98.153 89.10 88.711 90.35 0.0601

Inceptionv3 + Softmax 93.85 92.64 96.86 92.20 90.02 92.56 0.0534

InceptionResNetv2 + Softmax 96.309 96.39 99.22 96.41 96.39 95.62 0.0131

#3

Resnet101 + Softmax 94.51 90.23 98.57 91.32 90.41 92.25 0.0132

Inceptionv3 + Softmax 94.54 90.62 98.69 93.21 92.13 92.34 0.0118

InceptionResNetv2 + Softmax 98.028 98.513 99.55 98.64 98.57 98.13 0.0044
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Figure 17. t-SNE plot of the extracted features from the fully-connected layer for dataset#2.

Figure 18. t-SNE plot of the extracted features from the fully-connected layer for dataset#3.

Resnet101, Inceptionv3, and InceptionResNetv2 models were employed in simulation
studies for lung disease diagnosis using three distinct datasets. As shown in Figure 19,
a comparison of the obtained results with all models reveals that the InceptionResNetv2
model outperforms the Resnet101 and Inceptionv3 models. The DL-SR-based model is
applied on the original images to improve the results even more. This has led to higher
classification results. The use of L2-regularization yields better results than those of the
softmax layer using dataset #1. Softmax outperforms MCSVM as dataset size increases for
datasets #2 and #3. The InceptionResNetv2 model high performance is related to the use of
the inception block, which reduces the computational cost. The residual learning improves
the classification model accuracy. This leads to improved classification results.

The computation time is the final criterion for comparing the proposed framework
with other ones. It is obvious from Table 12 that deep feature extraction using Inceptionv3
takes the least time. To obtain the second-best run time, deep feature extraction with
the InceptionResNetv2 model is employed. However, the use of SR ideas in this study
increases the run time by around 95 s, while increasing accuracy by roughly 10%. Overall,
the utilization of DL model layers to extract features for feeding them to machine learning
algorithms can be an effective and efficient approach, but it requires careful selection and
fine-tuning of the pre-trained model to achieve the best results.
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Table 12. Computational time of the examined approaches using dataset #1.

Laptop Specifications

Core I7 10th Generation, 32 bit RAM,
Nvidia RTX 2070,

Gpu and Hard Tera SSD with Matlab
2020b Version

Method Computational Time (s)

ResNet101 Features + MCSVM 139.9

Inceptionv3 Features + MCSVM 130.9

InceptionResNetv2 Features + MCSVM 136.7

Resnet101 + Softmax 221.7

Inceptionv3 + Softmax 199.4

InceptionResNetv2 + Softmax 216.2

ResNet101 Features + MCSVM + SR 298.2

Inceptionv3 Features + MCSVM + SR 221.5

InceptionResNetv2 Features + MCSVM + SR 230.7

The proposed framework achieves an accuracy level of 96.80%, which is greater than
the levels of traditional approaches shown in Table 13. These results ensure the efficacy
of the DL-SR-based procedure in performing the required classification task using an
efficient classifier.
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Table 13. Comparison with the state-of-the-art methods.

Authors Task Technique Accuracy (%)

Xu et al. [35] Viral Pneumonia,
Normal, and COVID-19

3D DL model 86.7

Chandra et al. [36]
Normal and COVID-19 Automatic COVID screening

(ACoS)
98.06

COVID-19 and Pneumonia 91.23

Rahman et al. [49]

Normal and Pneumonia
CNN- AlexNet, ResNet18,

DenseNet201, and SqueezeNet
TL-based models

98

Normal, Bacterial pneumonia
and Viral pneumonia 93.3

Bacterial pneumonia
and Viral pneumonia 95

Ferreira et al. [50]
Normal and Pneumonia

Histogram equalization+ VGG16 CNN
+MLP classifier

97.4

Bacterial pneumonia
and Viral pneumonia 92.1

Jaiswal et al. [75] Normal and COVID-19 DenseNet201
TL-based model 96.23

Proposed
model

Normal, COVID-19, Viral pneumonia
Bacterial pneumonia and TB

SR + Inceptioesnetv2+Softmax 95.24

SR + Inceptioesnetv2+MCSVM 96.80

Normal, COVID-19, Viral pneumonia
Lung opacity, Pneumonia and TB

SR + Inceptioesnetv2+Softmax 96.309

SR + Inceptioesnetv2+MCSVM 93.45

COVID-19, Non-COVID-19, Large cell carcinoma,
Squamous cell carcinoma and CAP

SR + Inceptioesnetv2+Softmax 98.028

SR + Inceptioesnetv2+MCSVM 92.56

6. Conclusions

In this paper, we have investigated the problem of diagnosing lung diseases. Our
proposed framework depends on super-resolution techniques to enhance image details
before the classification process. We considered different classes of lung diseases in our
classification model. InceptionResNetv2 is used for feature extraction. It is combined
with a multi-class SVM for the final classification. We conducted an extensive comparison
study, which includes pre-trained models, deep learning for feature extraction combined
with multi-class SVM, and our super-resolution-based model for five-class and six-class
classification tasks. Our simulation results demonstrate that the combination of Incep-
tionResNetv2 with multi-class SVM, preceded by image super-resolution, achieves the
highest classification accuracy of 96.8% on X-ray images and 98.028% on the CT dataset.
However, this structure has the largest computational cost, but with the best quality. We
proved that fine-tuning of the SVM parameters could improve the accuracy levels further,
and there is still a scope for further enhancements to reduce the computational cost. Al-
though the proposed framework offered promising results in terms of accuracy, it is unclear
how much it would improve clinical outcomes for effective lung disease treatment. In
addition, the proposed framework may be limited in its ability to generalize to different
imaging modalities or disease categories that are not part of the training data. In addition,
the proposed framework heavily relies on the availability of large and high-quality lung
disease datasets. However, obtaining such data may not always be possible, especially for
rare diseases, and the lack of data can limit the accuracy and effectiveness of the proposed
framework. So, further research would be needed to determine the potential clinical impact
of the proposed framework. Consequently, future work could include comparing our
super-resolution model with other models and validating our framework for clinical use
by collecting the opinions of different specialists with mean opinion score (MOS) records
before commercial use. Future research directions may comprise incorporating more com-
plex deep learning models with more layers or other architectures to further improve the
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accuracy of the proposed framework, extending the proposed framework to other medical
imaging modalities, exploring the potential clinical impact of the proposed framework,
and investigating the ability to generalize the proposed framework to other diseases.
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