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Supplementary Materials 
 
S1. Data preprocessing 

S1.1. Gaussian pyramid 

One of the best methods for obtaining multiresolution features in an image is to use 
an image pyramid. Image pyramids are usually divided into two types: Gaussian 
pyramids and Laplacian pyramids. A Gaussian pyramid is a down sampled multiscale 
image representation. To obtain the down-scaled image, the Gaussian pyramid is 
performed in two steps. First, we convolution the original image with the Gaussian 
kernel (k). The Gaussian kernel is illustrated in Equation (1). Second, to obtain the 
down-scaled image, the even-numbered rows and columns are removed. 

k =   ⎣⎢⎢⎢
⎡1 4 6   4    16 16 24 16 4641 24164 36 24 624 16 46   4    1⎦⎥⎥⎥

⎤
                (1) 

Figure S1 illustrates a Gaussian pyramid with four levels. The size decreases as the 
layer number increases. An X by Y image becomes an X/2 by Y/2 image, with the area 
gradually reduced to one-fourth of its original size. 

 

Figure S1. Gaussian pyramid illustration process 
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S1.2. Local ternary pattern (LTP) extraction  

The local ternary pattern (LTP) feature of the pancreatic cystic images was extracted 
and used as the training image patterns in the VGG19 model. LTP is well-known for 
content-based image retrieval and is robust to process the image noises [1]. LTP is a 3-
valued ternary code. Equation (2) is used to calculate the ternary code for each pixel in 
an image by comparing the value of the central pixel to the values of the neighboring 
pixels. 

LTP =  1 𝑉 ≥ 𝑖 + 𝑡0 |𝑉 − 𝑖| < 𝑡−1 𝑉 ≤ (𝑖 − 𝑡),                         (2) 

where V, i, and t represent the grayscale values of neighboring pixels, the center pixel, 
and the threshold value, respectively. Figure S2 illustrates an example of calculating 
the LTP ternary code with t = 5. It is also illustrating the original pixel values and the 
corresponding LTP ternary code. The LTP ternary code can also be divided into two 
distinct channels, LTP upper and LTP lower codes. Both the corresponding LTP upper 
and lower codes for each pixel are 8 bits long and can be reformed to two grayscale 
values of the pixel. In addition to the existing training image, two more grayscale 
images generated by both LTP codes can be obtained. In our method, we also include 
these two LTP images in our training dataset. 

 

Figure S2. LTP ternary code operation  

 We use LTP feature extraction only on IPMN. Figure S3 shows the implementation 
before (S3a) and after (S3b) the LTP feature extraction.   
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Figure S3. LTP implementation: (a) original image. (b) LTP feature extraction image. 

S1.3. CLAHE image processing  

Adaptive histogram equalization (AHE) is a common image preprocessing method 
to improve image contrast. It is different from general histogram equalization because 
it calculates a specified area and then uses the computed value to redistribute the 
image brightness so that the image contrast can be adopted. This method is suitable 
for improving the local contrast of the image and enhancing the edges in the image to 
obtain more details. However, AHE has a problem. While improving the local contrast 
and enhancing the edges in the image, it also enlarges the noise of the image. To 
overcome this issue, Yadav et al. proposed the Contrast Limited Adaptive Histogram 
Equalization (CLAHE) method [2]. Unlike AHE, CLAHE limits the contrast in each small 
area by limiting the contrast of AHE. CLAHE in medical images can nonlinearly modify 
the image pixel values to maximize the contrast of all pixels in the image. Figures S3a 
and S3b show an example of CLAHE being applied to a given test image with the clip 
limit set to 1.5. 

 

 (a)              (b) 

Figure S4. (a) Original image; (b) Processed image with clip limit 1.5 in CLAHE scheme. 
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S2 Sensitivity tests on parameters of our proposed algorithm 

S2.1. Training parameters for VGG19 architecture: 

We use the sparse categorial cross-entropy (SCCE) as our loss function for VGG19 
because we have 5 subtypes of PCLs as our outputs and we want to get the 
percentage of likelihood from each of the subtypes. 

For the epoch number, we observe the model accuracy and model loss during the 
VGG19 network training process. As we can see from Figs. S5 and S6, the accuracy 
and loss curves have obvious fluctuations and start to converge after the 55th 
iteration. We choose 100 epochs because the model accuracy and loss are stable 
without fluctuations.   

  
Figure S5：Graph accuracy of VGG19 model from whole image training 
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Figure S6：Graph loss of VGG19 model from whole image training 

For the batch size, we try several numbers of batch sizes of 32, 16, 8, and 4, 
respectively. From the experimental results, we observe the sensitivity of the batch 
size to the accuracy. Table S1 shows the numbers of correctly subtyped videos 
corresponding to the four batch sizes. As we can observe from the table, the best 
accuracy is obtained by using the batch size 8. 

Table S1. The effects of batch size on the accuracy in subtyping of PCLs among 18 
test videos during the training of VGG19 model. 

No. Batch size Correctly subtyped videos 

1. 32 6   

2. 16 9   

3. 8 12  

4. 4 8   

For the learning rate, we test four different values to find the best learning rate. 
Table S2 shows the correlation between the learning rate and the numbers of 
correctly classified videos. According to this table, the best learning rate for the 
VGG19 model is 0.0001. 
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Table S2. The effect of learning rate on the accuracy in subtyping of PCLs among 18 
test videos during the training of VGG19 model. 

No. Learning rate Correctly subtyped videos 

1. 0.00001 9  

2. 0.0001 12  

3. 0.001 11  

4. 0.01 11  

 

For the clip limit parameter used in CLAHE, three clip limit values are tested with the 
value of 1.0, 1.5, and 2.0, respectively. Table S3 shows that the best clip limit value is 
1.5. 
 
Table S3. The effect of clip limit’s value on the accuracy in subtyping of PCLs among 
18 test videos during the training of VGG19 model. 

No. Clip limit’s value Correctly subtyped videos 

1. 1.0 11  

2. 1.5 12  

3. 2.0 11  

 

S2.2. Parameters for U-Net: 

We use the binary cross-entropy as our loss function in U-Net network because we 
only have two classes (features and background) as our segmentation result. 

For epoch number, we observe the model accuracy and model loss during the U-Net 
network training process. As we can see from the Figs. S7 and S8, the accuracy and 
loss curves have obvious fluctuations and start to converge after the 70th iteration. 
Therefore, we choose 100 epochs because the model accuracy and loss are stable 
without fluctuations.   
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Figure S7：Graph accuracy of U-Net training 

 

 
Figure S8：Graph loss of U-Net model training 

 
For the batch size, we try several batch size’s numbers of 32, 16, 8, and 4, 
respectively. From the experimental results, we observe the sensitivity of the batch 
size to the accuracy. Table S4 shows the numbers of correctly subtyped videos 
corresponding to the four batch sizes. As we can observe from the table, the best 
accuracy is obtained by using the batch size 8. 
 
Table S4. The effect of batch size on the accuracy in subtyping of PCLs among 18 test 
videos during the training of U-Net model. 

No. Batch size Correctly subtyped video 

1. 32 12  
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2. 16 10  

3. 8 11  

4. 4 11  

 

For the learning rate, we test four different values to find the best learning rate. 
Table S5 shows the correlation between the learning rate and the numbers of 
correctly classified videos. According to this table, the best learning rate for the U-
Net model is 0.001. 

Table S5. The effect of learning rate on the accuracy in subtyping of PCLs among 18 
test videos during the training of U-Net model. 

No. Learning rate Correctly classified videos 

1. 0.00001 8  

2. 0.0001 10  

3. 0.001 12  

4. 0.01 8  
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