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Abstract: Accurate classification of pancreatic cystic lesions (PCLs) is important to facilitate proper
treatment and to improve patient outcomes. We utilized the convolutional neural network (CNN)
of VGG19 to develop a computer-aided diagnosis (CAD) system in the classification of subtypes
of PCLs in endoscopic ultrasound-guided needle-based confocal laser endomicroscopy (nCLE).
From a retrospectively collected 22,424 nCLE video frames (50 videos) as the training/validation
set and 11,047 nCLE video frames (18 videos) as the test set, we developed and compared the
diagnostic performance of three CNNs with distinct methods of designating the region of interest.
The diagnostic accuracy for subtypes of PCLs by CNNs with manual, maximal rectangular, and U-Net
algorithm-designated ROIs was 100%, 38.9%, and 66.7% on a per-video basis and 88.99%, 73.94%,
and 76.12% on a per-frame basis, respectively. Our per-frame analysis suggested differential levels
of diagnostic accuracy among the five subtypes of PCLs, where non-mucinous PCLs (serous cystic
neoplasm: 93.11%, cystic neuroendocrine tumor: 84.31%, and pseudocyst: 98%) had higher diagnostic
accuracy than mucinous PCLs (intraductal papillary mucinous neoplasm: 84.43% and mucinous
cystic neoplasm: 86.1%). Our CNN demonstrated superior specificity compared to the state-of-the-art
for the classification of mucinous PCLs (IPMN and MCN), with high specificity (94.3% and 92.8%,
respectively) but low sensitivity (46% and 45.2%, respectively). This suggests the complimentary role
of CNN-enabled CAD systems, especially for clinically suspected mucinous PCLs.

Keywords: deep learning; pancreatic cystic lesions; VGG19; U-Net; confocal laser endomicroscopy;
computer-aided diagnosis; endoscopic ultrasound

1. Introduction

Pancreatic cystic lesions (PCLs) have a prevalence rate of 2.4% to 24.3% in the asymp-
tomatic adult population [1,2]. Common PCLs consist of five main subtypes, and each
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presents different disease courses and aggressiveness: (1) intraductal papillary mucinous
neoplasm (IPMN), (2) mucinous cystic neoplasm (MCN), (3) serous cystic neoplasm (SCN),
(4) cystic neuroendocrine tumor (NET), and (5) pseudocysts [3]. Differentiation among
subtypes of PCLs is critical, as mucinous PLCs have higher cancer risk. Advanced neoplasia
was reported in 100% of the main ductal-type of IPMN, in 39% of resected MCN, in 30%
of branch-type IPMN, and in 10% of resected NET [4]. Subtyping will impact the clinical
decision on the surgical management and non-surgical surveillance, as SCN and pseudo-
cysts have a low cancer risk, for which costly surveillance could be avoided. Abdominal
ultrasound, computed tomography, magnetic resonance imaging, and endoscopic ultra-
sound (EUS) are utilized to evaluate PCLs [5]. However, accurate preoperative diagnosis of
subtypes of PCLs poses practical challenges to clinicians.

Confocal laser endomicroscopy (CLE), a novel endoscopy technology with real-time
1,000-fold magnification, enables in vivo optical pathology for various diseases in multi-
ple organ systems [6]. CLE enables the direct visualization of elastin fibers of bronchus
and structural changes of alveoli in bronchial asthma and interstitial lung disease, respec-
tively [7]. In addition, CLE could enable the direct visualization of lung cancer cells and the
potential of monitoring post-chemotherapy responses by direct observing the apoptosis of
cancer cells.

EUS-guided needle-based confocal laser endomicroscopy (nCLE) enables in vivo
optical pathology to examine PCLs [6]. In a systematic review and international Delphi
report with fifteen nCLE experts, twelve clinical studies were reviewed. Characteristic
nCLE features enabled differentiation of mucinous versus non-mucinous PCLs with an
accuracy of 71–93% and serous cystadenoma versus non-serous PCLs with an accuracy
of 87–99% [8].

In addition to differentiation of subtypes of PCLs, nCLE was also shown to provide risk
stratification for malignant potential of IPMNs. Krishna et al. investigated characteristic
findings of nCLE on 26 IPMNs (including 16 cases of high-grade dysplasia and cancers)
and found that the quantification of papillary epithelial width and darkness on nCLE had
high accuracy to identify cases of high-grade dysplasia and cancers [9].

Krishna et al. investigated 29 nCLE videos on PCLs with six expert endosonographers
and showed that the diagnostic accuracy and interobserver agreement (IOA) were 95%,
k = 0.81 for mucinous PCLs, and 98%, k = 0.83 for SCN, respectively [10]. Machicado
et al. utilized 76 nCLE videos from three prospective studies and invited 13 expert en-
dosonographers to test the diagnostic accuracy and IOA [11]. The diagnostic accuracy for
IPMN, MCN, SCN, cystic-NET, and pseudocyst revealed 86%, 84%, 98%, 96%, and 96%,
and IOA k = 0.72, 0.47, 0.85, 0.73, and 0.57, respectively. Nevertheless, for non-experts,
real-time interpretation of nCLE can be time-consuming and requires specialized operator
training [12].

Traditional machine learning methods encompass linear discriminants, Bayesian
networks, random forest, and support vector machine, while modern machine learning
methods consist of artificial neural networks and convoluted neural network (CNN) [13].
Applications of deep learning CNN technologies in endoscopy have created an exciting
new era of computer-aided diagnosis (CAD) in endoscopy [14]. For example, Rashid et al.
combined radiomics of feature extraction and CNN of featureless methods to improve the
detection accuracy of breast lesions [15], and appropriate optimization methods have been
shown to further enhance the results of CNN [16].

Two recent studies utilizing CNN-enabled CAD systems tried to address issues related
to nCLE, such as long learning curve, low kappa value in readings, and time consumed by
endoscopists [17,18].

For CAD systems on nCLE videos, designation of ROIs in each frame of the video
constitutes a practical problem to solve in the first place, especially when the 0.85 mm
miniproble examines inside the PCLs.
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We compared three different region of interest (ROI) designations and used VGG19 as
the classifier: (1) CNN1: manually designated ROIs, (2) CNN2: maximal rectangular ROIs,
and (3) CNN3: U-Net algorithm-designated ROIs.

In this study, we aimed to develop CAD classification system to differentiate subtypes
of PCLs on nCLE and to investigate three different ways of designating ROI. Our work will
contribute to solving the daily dilemma for endoscopists in classifying subtypes of PCLs on
nCLE, which is the very first step in detecting mucinous PCLs of high malignant potential.

2. Materials and Methods
2.1. Patients

We retrospectively collected 68 de-identified nCLE videos (IPMN: 31, MCN: 10, SCN:
18, NET: 8, and pseudocyst: 12) on PCLs with histologically and/or clinically confirmed
diagnosis from King Chulalongkorn Memorial Hospital, Bangkok, Thailand. All the
nCLE procedures were performed by an experienced endoscopist (P.K.) with an AQ-Flex
nCLE mini-probe (Cellvizio, Mauna Kea Technologies, Paris, France) after intravenous
fluorescein. We also collected IPMN, MCN, and pseudocyst videos from publicly available
sources [10,19]. The research protocol was approved by the Institutional Review Board of
the Faculty of Medicine, Chulalongkorn University (960/64, Dec 2021; 0127/66, Feb 2023),
and the study was conducted in accordance with the Declaration of Helsinki.

For training and validation set images, we randomly selected nCLE videos within
each subtype for a total of 50 videos for training and validation sets. Among the total of
21,937 images, we used a 70–30% ratio to randomly divide into training sets and validation
sets per subtype of PCLs. The training set consisted of the following: IPMN (26 videos,
3122 images), MCN (5 videos, 1249 images), SCN (9 videos, 3239 images), NET (4 videos,
4220 images), and pseudocyst (6 videos, 3526 images), respectively. The validation set
consisted of 6581 images.

The remaining 18 nCLE videos were used for the test set, including five IPMN videos
(collectively 2537 images), three MCN videos (1557 images), four SCN videos (3693 images),
four NET videos (2482 images), and two pseudocyst videos (778 images).

2.2. CAD System Overview

The proposed method was divided into the training and test stages shown in
Figures 1 and 2, respectively. In the training stage (Figure 1), we firstly performed image
preprocessing (Gaussian pyramid application and local ternary pattern feature extrac-
tion) [20] (Supplementary Materials) and data augmentation. For regions of interest (ROI),
we attempted three methods: (1) manual designation of ROIs, (2) maximal-sized rectangu-
lar ROIs, and (3) automatic designation of ROIs by another deep learning algorithm, U-Net.
Finally, we utilized the deep learning algorithm, VGG19, as our classifier of subtypes.

In the test stage (Figure 2), we applied the contrast-limited adaptive histogram equal-
ization (CLAHE) preprocessing on the test video frames to enhance image contrast [21].
The trained VGG19 algorithm was used to classify the PCL subtype frame by frame of the
test set videos. The final classification of PCL subtype for the whole test video was then
determined by the most frequent subtype.

2.3. CNN Architecture of VGG19

In this study, we utilized the VGG19 deep learning network of 19 layers to classify
PCLs. VGG19 was proposed by the Visual Geometry Group (VGG) at Oxford Univer-
sity [22]. The VGG19 network architecture consists of 19 convolution weight layers with
3 × 3 kernel sizes, 5 Maxpool layers with 2 × 2 pool sizes, and a final output layer with
the Softmax activation function. The reason for using Softmax is its ability to execute
multiclass-class classification. In the training stage, we used the Adam optimizer with
100 epochs, and input images were fixed at sizes of 224 × 224 pixels. The sensitivity analysis
of para-meters in the algorithms was described in the Supplementary Materials.
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2.4. Designation of ROIs: (1) Manually Designated ROI, (2) Maximal Rectangular ROI, and (3)
U-Net Algorithm-Designated ROI

Manual designation of ROIs in CNN1 was performed by selection of the most promi-
nent image features in each frame (as shown in Table 1), while the maximal size of rectangle
in each frame was designated as the ROI in CNN2 (as shown in Figure 3).

Table 1. Exemplary views of manually designated ROIs (blue) in test videos.

Subtype ROI Position Subtype ROI Position

IPMN
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Figure 4. U-Net training system overview.

Figure 5 illustrates the ROI designation process for a given test image. First, the output
of the trained U-Net was an irregular boundary. Then, the minimally-sized square (shown
in blue) covering the entire region automatically formed the boundaries of the ROI. Thus,
the ROI could be automatically designated.

2.5. Data Augmentation

We performed data augmentation to expand the numbers of images for training
(Figure 6). Because the original nCLE video images were circular, we rotated the original
images every 30 degrees to obtain 12 different angles of images.



Diagnostics 2023, 13, 1289 8 of 16

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

training images and their PCLs labels. Figure 4 illustrates the U-Net model training pro-
cess. The learning rate was 0.001, and the learning rate optimizer was adaptive moment 
estimation (Adam). For the loss function, we used binary cross-entropy. The training 
batch size was set at 8 and the epoch 100. 

 
Figure 4. U-Net training system overview. 

Figure 5 illustrates the ROI designation process for a given test image. First, the out-
put of the trained U-Net was an irregular boundary. Then, the minimally-sized square 
(shown in blue) covering the entire region automatically formed the boundaries of the 
ROI. Thus, the ROI could be automatically designated. 

 
Figure 5. U-Net ROI designation process. 

2.5. Data Augmentation 
We performed data augmentation to expand the numbers of images for training (Fig-

ure 6). Because the original nCLE video images were circular, we rotated the original im-
ages every 30 degrees to obtain 12 different angles of images. 

 

Figure 5. U-Net ROI designation process.

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

training images and their PCLs labels. Figure 4 illustrates the U-Net model training pro-
cess. The learning rate was 0.001, and the learning rate optimizer was adaptive moment 
estimation (Adam). For the loss function, we used binary cross-entropy. The training 
batch size was set at 8 and the epoch 100. 

 
Figure 4. U-Net training system overview. 

Figure 5 illustrates the ROI designation process for a given test image. First, the out-
put of the trained U-Net was an irregular boundary. Then, the minimally-sized square 
(shown in blue) covering the entire region automatically formed the boundaries of the 
ROI. Thus, the ROI could be automatically designated. 

 
Figure 5. U-Net ROI designation process. 

2.5. Data Augmentation 
We performed data augmentation to expand the numbers of images for training (Fig-

ure 6). Because the original nCLE video images were circular, we rotated the original im-
ages every 30 degrees to obtain 12 different angles of images. 

 

Figure 6. Data augmentation by rotation every 30 degrees to generate 12 different angles of images.
(a) Original frame; (b) rotated circular image every 30 degrees; (c) square ROI from rotated images.

2.6. Hardware and Software Specifications

The system was operating in a PC with Windows 10 Professional Edition (64-bit),
with an Intel CPU Core i7-9700 at 3.2 GHz, 64 GB-DDR4 memory, and NVIDIA GeForce
RTX2080Ti graphics card. The software platform was Visual Studio 2017 with OpenCV
library, and the programming language was Python 3.6.

2.7. Statistics

Descriptive data are reported as proportions for categorical variables and means +/−
SD for continuous variables. For statistical analysis, the chi-square test was performed
for categorical variables and t-test for continuous variables. Statistical significance was
defined as p < 0.05. The classification performances of deep learning algorithms with
three different ROI selections were determined against the ground truth (histologically
and/or clinically confirmed diagnosis). For frame-by-frame basis, the sensitivity, specificity,
positive predictive value, negative predictive value, and accuracy were calculated per
frame and are shown as percentages with 95% confidence interval (CI). All analyses were
performed using SAS software version 9.4 (Cary, NC, USA).

3. Results

After preprocessing with Gaussian pyramid, LTP extraction, and CLAHE, we utilized
the CNN VGG19 as the classifier for five subtypes of PCLs in the 18 test nCLE videos.

In the training stage, we spent six hours training all of images using the VGG19
network: about 216 s per epoch. We also calculated the computation time in processing
test nCLE videos. The average time for processing one frame is 0.05 s/frame, as shown in
Table 3.



Diagnostics 2023, 13, 1289 9 of 16

Table 3. Test nCLE videos and average processing time by CNN VGG19.

Test Video Actual Time Video Average Algorithm Processing Time

IPMN_1 18 s (553 frames) 0.04 s/frame
IPMN_2 31 s (933 frames) 0.04 s/frame
IPMN_3 8 s (210 frames) 0.07 s/frame
IPMN_4 8 s (210 frames) 0.07 s/frame
IPMN_5 26 s (631 frames) 0.05 s/frame
MCN_1 6 s (151 frames) 0.05 s/frame
MCN_2 8 s (210 frames) 0.07 s/frame
MCN_3 49 s (1196 frames) 0.05 s/frame
SCN_1 9 s (285 frames) 0.06 s/frame
SCN_2 123 s (2970 frames) 0.06 s/frame
SCN_3 7 s (182 frames) 0.05 s/frame
SCN_4 10 s (256 frames) 0.05 s/frame
NET_1 8 s (197 frames) 0.07 s/frame
NET_2 8 s (210 frames) 0.07 s/frame
NET_3 28 s (683 frames) 0.04 s/frame
NET_4 58 s (1392 frames) 0.05 s/frame

Pseudocyst_1 18 s (568 frames) 0.03 s/frame
Pseudocyst_2 8 s (210 frames) 0.07 s/frame

We evaluated the performance of our three CAD systems of CNN1 (manually desig-
nated ROIs), CNN2 (maximal rectangular ROIs), and CNN3 (U-Net algorithm-designated
ROIs) on the per-video and per-frame bases.

3.1. Performance of Three CNNs on the Per-Video Basis

Tables 1 and 2, Figure 3, show the exemplary views of designated ROIs in CNN1,
CNN2, and CNN3, respectively. Tables 4–6 reveal the results of subtypes on a per-video
basis in CNN1, CNN2, and CNN3, respectively. Manually designated ROIs in CNN1
achieved the highest accuracy rate of 100% (18/18 videos), followed by U-Net algorithm-
designated ROIs in CNN3 of 66.7% (12/18 videos). In contrast, maximal rectangular ROIs
in CNN2 had the lowest accuracy rate of 38.9% (7/18 videos).

Table 4. Percentage of subtypes classified by CNN1 with manually selected ROIs in 18 test
nCLE videos.

No. of
Test Video

Subtype by
Ground Truth

Subtype by
CNN1 (Largest

Percentage)

Correct
Subtyping
by CNN1

Percentage of Subtypes Classified by CNN1 in Test Videos

IPMN MCN SCN NET Pseudocyst

1 IPMN IPMN Yes 32% 30% 5% 31% 2%
2 IPMN IPMN Yes 53% 6% 18% 21% 2%
3 IPMN IPMN Yes 85% 2% 3% 10% 0%
4 IPMN IPMN Yes 48% 26% 0% 0% 26%
5 IPMN IPMN Yes 38% 18% 6% 37% 1%
6 MCN MCN Yes 26% 31% 25% 1% 17%
7 MCN MCN Yes 0% 85% 0% 0% 15%
8 MCN MCN Yes 8% 40% 22% 28% 2%
9 SCN SCN Yes 0% 0% 95% 15% 0%

10 SCN SCN Yes 0% 1% 96% 3% 0%
11 SCN SCN Yes 0% 0% 99% 1% 0%
12 SCN SCN Yes 0% 0% 99% 1% 0%
13 NET NET Yes 2% 0% 0% 98% 0%
14 NET NET Yes 22% 7% 10% 59% 2%
15 NET NET Yes 8% 3% 3% 86% 0%
16 NET NET Yes 18% 16% 1% 66% 0%
17 Pseudocyst Pseudocyst Yes 1% 0% 5% 0% 94%
18 Pseudocyst Pseudocyst Yes 1% 0% 0% 4% 95%

Accuracy rate of CNN1 per video 100%
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Table 5. Percentage of subtypes classified by CNN2 with maximal rectangular ROIs in 18 test
nCLE videos.

No. of
Test Video

Subtype by
Ground Truth

Subtype by
CNN2 (Largest

Percentage)

Correct
Subtyping
by CNN2

Percentage of Subtypes Classified by CNN2 in Test Videos

IPMN MCN SCN NET Pseudocyst

1 IPMN NET No 22% 1% 29% 45% 3%
2 IPMN NET No 41% 1% 13% 44% 1%
3 IPMN IPMN Yes 79% 0% 10% 11% 0%
4 IPMN SCN No 9% 6% 40% 35% 10%
5 IPMN SCN No 4% 0% 60% 4% 36%
6 MCN Pseudocyst No 0% 0% 22% 16% 62%
7 MCN SCN No 6% 0% 54% 40% 0%
8 MCN NET No 3% 10% 26% 60% 3%
9 SCN SCN Yes 0% 0% 93% 1% 6%

10 SCN SCN Yes 1% 1% 48% 20% 30%
11 SCN SCN Yes 0% 0% 100% 0% 0%
12 SCN SCN Yes 0% 0% 83% 1% 16%
13 NET NET Yes 5% 0% 21% 54% 20%
14 NET SCN No 30% 0% 63% 1% 6%
15 NET Pseudocyst No 1% 0% 18% 36% 45%
16 NET SCN No 5% 0% 63% 1% 31%
17 Pseudocyst Pseudocyst Yes 1% 0% 5% 0% 94%
18 Pseudocyst IPMN No 37% 0% 15% 34% 14%

Accuracy rate of CNN2 per video 38.9%

Table 6. Percentage of subtypes classified by CNN3 with U-Net algorithm-designated ROIs in 18 test
nCLE videos.

No. of
Test Video

Subtype by
Ground Truth

Subtype by
CNN3 (Largest

Percentage)

Correct
Subtyping
by CNN3

Percentage of Subtypes Classified by CNN3 in Test Videos

IPMN MCN SCN NET Pseudocyst

1 IPMN IPMN Yes 34% 27% 6% 33% 0%
2 IPMN NET No 23% 10% 17% 49% 1%
3 IPMN IPMN Yes 59% 0% 6% 32% 3%
4 IPMN NET No 10% 2% 9% 78% 1%
5 IPMN IPMN Yes 76% 1% 8% 5% 10%
6 MCN SCN No 0% 0% 36% 33% 31%
7 MCN NET No 11% 12% 7% 69% 1%
8 MCN NET No 10% 9% 21% 59% 1%
9 SCN SCN Yes 0% 0% 89% 4% 7%

10 SCN SCN Yes 1% 1% 47% 39% 12%
11 SCN SCN Yes 0% 0% 55% 26% 19%
12 SCN NET No 1% 0% 9% 67% 23%
13 NET NET Yes 16% 11% 20% 43% 10%
14 NET NET Yes 33% 7% 14% 44% 2%
15 NET NET Yes 34% 1% 2% 61% 2%
16 NET NET Yes 25% 4% 23% 34% 14%
17 Pseudocyst Pseudocyst Yes 33% 0% 1% 1% 65%
18 Pseudocyst Pseudocyst Yes 14% 0% 14% 32% 40%

Accuracy rate of CNN3 per video 66.7%

3.2. Performance of Three CNNs on the Per-Fame Basis

Table 7 summarizes the performance of three CNNs on the per-frame basis in relation
to five subtypes of PCLs. CNN1 achieved the highest average accuracy of 88.99%, followed
by CNN3 at 76.12% and CNN2 at 73.94%.
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Table 7. On a per-frame basis, the performance of three CNNs in relation to different subtypes
of PCLs.

Sensitivity 95% CI Specificity 95% CI PPV 95% CI NPV 95% CI Accuracy 95% CI

CNN1_IPMN 45.95% 44.99–48.91% 94.31% 93.80–94.80% 71.10% 69.09–73.03% 85.64% 85.18–86.09% 83.43% 82.73–84.12%
CNN1_MCN 45.22% 42.72–47.73% 92.81% 92.28–93.33% 50.79% 48.53–53.06% 91.17% 90.80–91.53% 86.10% 85.45–86.74%
CNN1_SCN 96.29% 95.63–96.88% 91.51% 90.85–92.14% 85.06% 84.09–86.00% 98.00% 97.66–98.30% 93.11% 92.62–93.58%
CNN1_NET 73.45% 71.66–75.18% 87.46% 86.74–88.15% 62.93% 61.50–64.33% 91.91% 91.41–92.39% 84.31% 83.62–84.99%

CNN1_Pseudocyst 94.22% 92.34–95.75% 98.29% 95.75–98.02% 80.64% 78.23–82.84% 99.56% 99.41–99.67% 98.00% 97.72–98.25%
Average 71.03% 92.88% 70.10% 93.26% 88.99%

CNN2_IPMN 28.14% 26.40–29.94% 96.35% 95.92–96.73% 69.68% 66.94–72.25% 81.81% 81.44–82.17% 80.68% 79.93–81.42%
CNN2_MCN 7.71% 6.43–9.15% 99.40% 99.22–99.54% 67.80% 60.68–74.18% 86.78% 86.61–86.94% 86.48% 85.82–87.11%
CNN2_SCN 56.46% 54.84–58.07% 66.60% 65.51–67.68% 45.91% 44.85–46.98% 75.28% 74.53–76.02% 63.21% 62.30–64.11%
CNN2_NET 14.83% 13.45–16.29% 73.68% 72.74–74.61% 14.04% 12.86–15.30% 74.91% 74.52–75.30% 60.46% 59.54–61.37%

CNN2_Pseudocyst 72.37% 69.08–75.48% 79.37% 78.58–80.15% 21.00% 20.06–21.97% 97.43% 97.13–97.70% 78.88% 78.11–79.64%
Average 35.90% 83.08% 43.69% 83.24% 73.94%

CNN3_IPMN 40.48% 38.56–42.42% 87.39% 86.67–88.09% 48.90% 47.08–50.73% 83.12% 82.65–83.58% 76.62% 75.82–77.40%
CNN3_MCN 8.54% 7.20–10.04% 95.97% 95.56–96.36% 25.83% 22.36–29.63% 86.48% 86.29–86.66% 83.65% 82.95–84.34%
CNN3_SCN 48.01% 46.39–49.64% 85.97% 85.15–86.75% 63.21% 61.67–64.72% 76.70% 76.12–77.28% 73.28% 72.44–74.10%
CNN3_NET 42.99% 41.03–44.96% 61.89% 60.85–62.92% 24.64% 23.67–25.63% 78.93% 78.29–79.56% 57.64% 56.72–58.57%

CNN3_Pseudocyst 58.23% 54.67–61.72% 91.78% 91.23–61.72% 34.93% 32.96–36.95% 96.67% 96.39–96.92% 89.42% 88.83–89.99%
Average 39.65% 84.60% 39.50% 84.38% 76.12%

Among the five subtypes, pseudocyst had the highest sensitivity (94.22%, 95% CI
92.34–95.75%), specificity (98.29%, 95% CI 95.75–98.02%), and accuracy (98%, 95% CI
97.72–98.25%) in CNN1.

MCN, among the five subtypes, had the lowest sensitivity (45.22% in CNN1, 7.11% in
CNN2, and 8.54% in CNN3) but consistently high specificity (92.81% in CNN1, 99.4% in
CNN2, and 95.97% in CNN3).

IPMN, as the main research focus of nCLE in published studies, exhibited consistently
high specificity (94.31%, 96.35%, and 87.39%) and good accuracy (83.43%, 80.68%, and
76.62%), but relatively low sensitivity (45.95%, 28.14%, and 40.48%) in CNN1-3, respectively.

Our results also demonstrated the volatile performance of classifying SCN and NET
across three different methods of ROI designations, which suggests the importance of ROI
designation in diagnosing SCN and NET by nCLE.

4. Discussion

To the best of our knowledge, our study is the first report utilizing deep learning
CAD systems to classify the subtypes of PCLs on EUS-guided nCLE video frames. Our
results demonstrate the feasibility of applying novel CNN technologies to classify common
subtypes of PCLs on a per-video and per-frame basis.

Our exploration of three different methods of designating ROIs on a rapidly changing
frame-by-frame nCLE video originated from practical clinical considerations. Although
manual selection of ROIs might achieve high accuracy owing to selection bias, our results
showed a promising automatic ROI designation by another deep learning algorithm,
namely U-Net. In our results, CNN3 delivered a 66.7% accuracy rate per video and
76.12% rate per frame. Such automatic ROI designation could further assist the subtype
classification of nCLE on PCLs, especially for non-expert endoscopists.

There have been attempts to adopt CNN in nCLE images for PCLs (Table 8). Kuwahara
et al. utilized a CNN algorithm of ResNet50 to analyze 3,970 still images of linear EUS
on pathology-confirmed IPMNs. The mean AI value (output value of the TensorFlow
algorithm) was shown to be higher in malignant IPMNs than that in non-malignant IPMNs
(0.808 vs 0.104, p < 0.001), which provided a tool for risk stratification of IPMNs [17].
Machicado et al. utilized 15,027 image frames from 35 IPMN nCLE videos and applied the
CNN algorithm of VGG16 [18]. They developed two CAD models: a guided (epithelial
thickness and darkness in papillary structures) segmentation-based model (SBM) targeting
papillary epithelial thickness and darkness and a holistic-based model (HBM), in which
the model automatically extracted nCLE features for IPMN malignant risk stratification.
The study showed promising results when compared with clinical diagnosis guidelines:
diagnostic accuracy SBM: 82.9%; HBM: 85.7%; and guidelines 68.6% and 74.3%, respectively.
Of special note, Machicado et. al addressed the issue of automatic ROI designation in
attempts using a mask region-based CNN in their segmentation-based model and another
VGG-16 network in their holistic-based model. In this regard, we tried an additional CNN,
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i.e., U-Net, to automatically segment the ROIs in CNN3, which performed less well than
CNN1 (manually designated ROIs).

Table 8. Comparison of published studies utilizing machine learning algorithms with PCLs.

Author, Year Neural Network Model Machine Learning Algorithms Main Tasks

Kuwahara, 2019 [17] ResNet50 Deep learning on EUS images
of IPMN Diagnosis of IPMN malignancy

Machicado, 2021 [18] VGG16 and mask R-CNN
CNN-CAD algorithms:

segmentation-based and
holistic-based models

Risk stratification of IPMN,
automatic ROI-designation

Kurita, 2019 [29] Basic deep learning neural network Deep learning of cyst fluid analysis Differentiate malignant from
benign PCLs

Liang, 2022 [30] Radiomics deep learning models Support vector machines (SVM) Classification on mucinous vs.
non-mucinous PCLs

Proposed method U-Net, VGG19
Deep learning and data preprocessing
using LTP feature extraction, Gaussian

pyramid, and CLAHE

Classification on five subtypes
of PCLs

Kurita et al. utilized basic deep learning neural network on the analysis of pancreatic
cystic fluid in the differential diagnosis of mucinous PCLs [29]. Meanwhile, Liang et al.
utilized support vector machine on the classification of mucinous versus non-mucinous
PCLs. Both studies only focused on the differentiation of mucinous PCLs [30].

Our study differed from the aforementioned studies in that we tried to solve the initial
step of subtyping of nCLE on PCLs for practicing EUS endoscopists, for whom training to
master skills has been a challenge [31]. CAD might shorten the learning curve and have
the potential for real-time assistance in the interpretation of nCLE on PCLs.

The other difference was the depth of weight layers of VGG. Machicado et al. utilized
VGG16, while we adopted VGG19, both of which had similar frameworks except the
numbers of weight layers in the architecture: 16 layers in the former and 19 in the latter.
Simonyan and Zisserman from the Visual Geometry Group (VGG) of University of Oxford
pioneered the VGG algorithm and demonstrated the improved performance of CNN by
increasing the weight layers up to 19 layers [22]. The VGG16 processed 134–138 million
parameters, and the VGG19 processed 144 million parameters. In their original report,
VGG19 had better performance in single test scale than VGG16, but both performed
similarly well in multi-test scales.

EUS-guided nCLE evaluation for PCLs provided the unique value of real-time optical
pathology and demonstrates clinical utility (sensitivity 87% and specificity 91% for muci-
nous PCls; 81% and 98% for malignant PCLs) in a recent systematic review investigating
40 studies and 3,641 patients [32]. With a pooled success rate of 88% and adverse event rate
of 3%, nCLE will have an increasingly important role in the armamentaria for endoscopists
caring for patients with PCLs. Such CAD systems in this study will hopefully provide
unique value in this regard.

Our per-frame analysis on the performance of three CNNs among the five subtypes
of PCLs revealed different profiles of sensitivity, specificity, and accuracy within the same
CNN and across three different methods of designation of ROIs (CNN1-3). Although
distinct nCLE features for five subtypes of PCLs have been characterized by experts [10,33],
our results suggested that classification performances, even by objective CNN algorithms,
were not uniform among five subtypes. In the same topic, Machicado et al. investi-
gated the diagnostic accuracy of 76 nCLE videos by 13 endosonographers (6 experts
having > 50 nCLE cases experience) [11]. Table 9 summarizes the comparison between
this study and the work by Machicado et al., which implied that non-mucinous PCLs
were associated with higher accuracy rates than mucinous PCLs. Our CNN demonstrated
superior specificity compared to the state-of-the-art for the classification of mucinous PCLs
(IPMN and MCN), with high specificity (94.3% and 92.8%, respectively) but low sensitivity
(46% and 45.2%, respectively), which suggests a complimentary role of CNN-enabled CAD
systems, especially for clinically suspected mucinous PCLs.
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Table 9. Comparison of diagnostic performance on five subtypes of PCLs by objective CNN1
(manually designated ROIs) (this study) and by expert endosonographers ([11]).

Sensitivity 95% CI Specificity 95% CI Accuracy 95% CI

CNN1_IPMN 46.0% * 45–48.9% 94.3% * 93.8–94.8% 83.4% * 82.7–84.1%
Machicado, 2022_IPMN 84.6% 81.1–87.6% 90.3% 87.5–92.6% 87.6% 85.4–89.5%

CNN1_MCN 45.2% * 42.7–47.7% 92.8% 92.3–93.3% 86.1% 85.5–86.7%
Machicado, 2022_MCN 64.3% 57.1–70.9% 90.9% 88.8–92.7% 86.0% 83.7–88.1%

CNN1_SCN 96.3% * 95.6–96.9% 91.5% * 90.9–92.1% 93.1% * 92.6–93.6%
Machicado, 2022_SCN 82.9% 75.1–88.7% 97.5% 96.2–98.3% 95.8% 94.3–96.8%

CNN1_NET 73.5% * 71.7–75.2% 87.5% * 86.7–88.2% 84.3% * 83.6–85%
Machicado, 2022_NET 86.4% 80.4–90.8% 98.3% 97.2–99% 96.3% 94.9–97.3%

CNN1_Pseudocyst 94.2% 92.3–95.8% 98.3% 95.8–98% 98.0% 97.7–98.3%
Machicado, 2022_Pseudocyst 92.3% 79.7–97.4% 97.2% 95.9–98% 97.0% 95.7–97.9%

* denotes non-overlapping of 95% CI between data from CNN1 and from Machicado et al.

There are several limitations to this study. Firstly, the diagnosis performance still has
large room for improvement. Due to the inherent heterogeneity of image contents frame by
frame in the fast-moving nCLE videos and the potential selection bias of locating ROIs, mis-
classification resulted in suboptimal performance of CNNs, especially in CNN2. Secondly,
in per-video analysis, we arbitrarily denoted the highest percentage of subtype as the final
subtype of the entire nCLE video. Yet, certain image features in some frames might be more
pathognomonic and deserve heavier weight than other frames. Moreover, in real-time
practice, we might need to develop an “accumulated frequency score” to denote the final
subtyping of the video. Thirdly, our nCLE videos were obtained retrospectively from a
single center with limited numbers. Fourthly, we did not include solid pseudopapillary
neoplasms, nor did we separate main-ductal type from side-branch type IPMNs. Fifthly,
our CNNs might not be applicable to diseases other than PCLs. Lastly and clinically most
relevant, the current CAD system was developed and processed off-line on retrospectively
collected nCLE video frames, and we have not yet tested prospectively in real-time nCLE
examinations. Real-time assistance is urgently needed to facilitate the clinical use of nCLE
on PCLs. The speedy computation time of CAD on each frame (0.03–0.07 s) in Table 3
suggests great potential in real-time applications. Future clinical studies incorporating
external validation of our CNN algorithms with adequate representation of all five subtypes
of PCLs and prospective comparison studies between the CAD system and novice and
expert endoscopists are warranted to confirm the performance and clinical utility.

5. Conclusions and Future Work

Incidentally detected PCLs are increasing in the asymptomatic general population.
The accurate detection of PCLs with malignant potential is a clinical dilemma. We utilized
deep learning neural network VGG19 for CAD classification of subtypes of PCLs on EUS-
guided nCLE video frames. Our work uniquely compared three different methods of
designating ROIs by manual designation, maximal rectangular ROI, and U-Net algorithm
designation and validated the use of automatic ROI designation in future CAD systems in
nCLE. Our per-frame analysis suggested differential levels of diagnostic accuracy among
the five subtypes of PCLs, where non-mucinous PCLs (SCN: 93.11%, NET: 84.31%, and
pseudocyst: 98%) had higher diagnostic accuracy than mucinous PCLs (IPMN: 84.43% and
MCN: 86.1%). Our CNN demonstrated superior specificity compared to the state-of-the-art
for the classification of mucinous PCLs (IPMN and MCN), with high specificity (94.3%,
and 92.8%, respectively) but low sensitivity (46% and 45.2%, respectively). Our results
will contribute to improve the daily practice of differential diagnosis of PCLs with nCLE.
Furthermore, our data revealed a high specificity of nCLE on mucinous PCLs, which carry
high clinical importance because mucinous PCLs have higher malignant potential, and
early treatment of mucinous PCLs will improve clinical outcomes.
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In the future work, we believe machine learning methodologies could solve more
complicated problems, such as dissecting the cellular and tissue structures to improve
the initial differential diagnosis, monitoring of cellular morphological alterations during
surveillance, and exploration of molecular target-labeled fluorescent CLE as molecular
imaging of PCLs. In the near future, an “integrative computational model” [13] combining
relevant clinical information, nCLE images, radiomics, and next-generation sequencing of
pancreatic cystic fluids may collectively provide clinicians with sophisticated diagnosis
of PCLs.
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