
Citation: Malik, S.; Akram, T.; Awais,

M.; Khan, M.A.; Hadjouni, M.;

Elmannai, H.; Alasiry, A.; Marzougui,

M.; Tariq, U. An Improved Skin

Lesion Boundary Estimation for

Enhanced-Intensity Images Using

Hybrid Metaheuristics. Diagnostics

2023, 13, 1285. https://doi.org/

10.3390/diagnostics13071285

Academic Editor: Sung Chul Lim

Received: 28 February 2023

Revised: 22 March 2023

Accepted: 27 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

An Improved Skin Lesion Boundary Estimation for
Enhanced-Intensity Images Using Hybrid Metaheuristics
Shairyar Malik 1 , Tallha Akram 1 , Muhammad Awais 1 , Muhammad Attique Khan 2,∗ ,
Myriam Hadjouni 3 , Hela Elmannai 4 , Areej Alasiry 5, Mehrez Marzougui 5 and Usman Tariq 6

1 Department of Electrical and Computer Engineering, Wah Campus, COMSATS University Islamabad,
Wah Cantt 47040, Pakistan

2 Department of CS, HITEC University, Taxila 47080, Pakistan
3 Department of Computer Sciences, College of Computer and Information Science, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
4 Department of Information Technology, College of Computer and Information Science, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
5 College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia
6 Management Information System Department, College of Business Administration, Prince Sattam Bin

Abdulaziz University, Al-Kharj 16278, Saudi Arabia
* Correspondence: attique.khan@ieee.org

Abstract: The demand for the accurate and timely identification of melanoma as a major skin cancer
type is increasing daily. Due to the advent of modern tools and computer vision techniques, it has
become easier to perform analysis. Skin cancer classification and segmentation techniques require
clear lesions segregated from the background for efficient results. Many studies resolve the matter
partly. However, there exists plenty of room for new research in this field. Recently, many algorithms
have been presented to preprocess skin lesions, aiding the segmentation algorithms to generate
efficient outcomes. Nature-inspired algorithms and metaheuristics help to estimate the optimal
parameter set in the search space. This research article proposes a hybrid metaheuristic preprocessor,
BA-ABC, to improve the quality of images by enhancing their contrast and preserving the brightness.
The statistical transformation function, which helps to improve the contrast, is based on a parameter
set estimated through the proposed hybrid metaheuristic model for every image in the dataset. For
experimentation purposes, we have utilised three publicly available datasets, ISIC-2016, 2017 and
2018. The efficacy of the presented model is validated through some state-of-the-art segmentation
algorithms. The visual outcomes of the boundary estimation algorithms and performance matrix
validate that the proposed model performs well. The proposed model improves the dice coefficient
to 94.6% in the results.

Keywords: deep learning; machine learning; bat algorithm; artificial bee colony; computer vision;
skin lesion segmentation

1. Background

The uneven development of human skin cells leads to tumours; there are three ma-
jor classifications of these cancers: squamous cell carcinoma, basal cell carcinoma and
melanoma [1]. The stats show that the expected occurrence of skin cancer is 33.33%.
The seriousness of this ailment is corroborated by the fact that, worldwide, approximately
20 million cancer cases were reported in 2020, half of which were deadly [2]. A severe
type of skin cancer with rapid growth is melanoma, which develops in melanocytes. These
cells are highly differentiated, and melanin production is the basic function of melanocytes.
With this differentiation operation, the cell’s proliferative potential drops significantly [3].

Classical methods of skin lesion examination comprise naked eye inspection of the
lesion’s formation, layout and size measurement. These procedures are less accurate
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and are time-consuming due to the physical involvement of experts and dermatologists.
The timely detection of skin cancer is of the utmost priority, which helps to control the
patient death rate. In contrast, artificial intelligent models are progressively resolving these
discrepancies [4,5]. New computer-vision-based deep and machine learning methods have
been introduced in the past few years. These modern techniques enable practitioners to
utilise the aid of a machine to detect and classify these diseases. Therefore, a computer-
aided prognosis is essential in achieving enhanced accuracy and effective results [6,7].

Automatic diagnosis is split into three steps: skin lesion preprocessing and bound-
ary estimation, feature extraction/selection and lesion classification based on these fea-
tures [8,9]. Researchers have used various preprocessing techniques in the past decade to
preprocess medical images. These preprocessing methods include artefact removal [7,10,11],
colour normalisation [12,13] and contrast stretching [14–16]. These preprocessing models
are effective but time-consuming and affect the overall algorithm times, including the
training and testing durations. As a preprocessing step, the boundary estimation operation
is conducted before the classifier to classify the skin lesion images better; this operation
segregates the boundaries of skin lesion images. The existence of the segmentation model
is essential as it extracts the RoI from nearby background lesions [15,17]. Additionally, this
process helps to better recognise skin lesions’ intrinsic clinical features [18]. The exactness
of segmentation algorithms is directly related to the effective prognosis of melanoma. Most
of the research models generally cornerstone the segmentation methods to enhance the
overall precision of the classifier. Researchers have suggested various methods for medical
image segmentation models in the literature, such as methods using clustering [19–21],
deep-learning-based segmentation algorithms [22–24], threshold-based methods [16,25]
and combined region and statistical methods [10,18]. After extracting the RoI, the portion
with the ailment is fed to the classification algorithm for effective outcomes.

Even after the proposal of complex segmentation models, there exists plenty of margin
for new research as the process is still an open challenge due to the various databases of
skin lesions with added complexity. Extracted features may contain asymmetries such
as varying colours, bubbles, hair artefacts, noise and low contrast. These asymmetric
features may lead to false classification and affect the accuracy, making the segmentation
models more challenging [7,13,14]. At the same time, the segmentation accuracy decreases
immensely with changing light, brightness, contrast and levels of distortion in the skin
lesion images. This is why a great requirement exists for more efficient methods to cope
with these practical issues.

We organise the research article as follows. First, we introduce the topic and its
background in Section 1. In Section 2, we mention the intention of the research and our
contributions. Then, in the later Section 3, we present related studies, shortcomings and
research gaps in the literature. Then, we present the detailed materials and methodology in
Section 4. After this, we present our detailed proposed framework in Section 4.2; we divide
this section into two parts. The first one contains details about the bat algorithm, and the latter
includes the artificial bee colony model. Then, in the later Section 5, we present comparative
studies and experimental results. Finally, we conclude the research article in Section 6.

2. Problem Statement and Contributions

This study proposes the effects of contrast enhancement on medical image boundary
estimation problems. We offer a hybrid metaheuristic method bat algorithm–artificial
bee colony, BA-ABC, as a contrast enhancement scheme. In the experimentation process,
we utilized three publicly available skin lesion databases: International Skin Imaging
Collaboration (ISIC)-2016 [26], 2017 [27] and 2018 [28]. We present some skin lesion samples
in Figure 1 from the chosen databases. The major achievements of our research model
are (1) the proposal of a hybrid metaheuristic algorithm to estimate image-specific vital
parameters for skin lesion contrast stretching, (2) the effective analysis of preprocessing
and contrast enhancement on the deep-learning-based boundary estimation models for
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medical images and (3) the performance evaluation of BA-ABC using comparative studies
on the state-of-the-art boundary estimation algorithms.

Figure 1. ISIC 2016, 2017 and 2018, four samples each.

3. Literature Review

The preprocessors are typically useful for attaining improved segmentation results but
with compromised processing times. Therefore, preprocessing is considered an essential
part of segmentation models. However, no gold-standard model is available for noise
removal and contrast stretching in the computer vision and image processing field. Never-
theless, researchers have contributed by proposing many algorithms to resolve this matter.
The reduced contrast of database images influences the segmentation results and may
reduce the classification accuracy. Researchers presented a model in [16,29] and generated
efficient segmentation and classification results to mitigate this issue further. Therefore,
they used contrast enhancement as a preprocessing stage to better segregate the RoI from
the background for improved segmentation. In addition, they utilised a single RGB image
channel to construct a saliency map. The binary image was achieved using the thresholding
function. Furthermore, they added a metaheuristic-based particle swarm optimisation
(PSO) technique to attain fine-tuned border estimation. Later, they implemented a feature
extraction step, followed by another metaheuristic method named genetic algorithm (GA)
for feature selection. The benefit of GA is the survival of the fittest chromosome to select
features such as outlines, shapes, surfaces and local/global features. Finally, they obtained
the classification outcomes by inputting the selected features into a support vector machine
(SVM). The variations in image acquisition methods have led to the raised complexity of
the segmentation tasks. Due to the absence of a single standard algorithm, researchers have
devised various solutions to the stated problem. For example, the authors in [17] intro-
duced a random forest border classifier based on the twelve best segmentation algorithms
from the pool of multiple lesion border selection methods. They used a morphological
operation for noise reduction, followed by the correction of RoI and background colour
features. Seven distinct preprocessing models were performed on input images based on
the geodesic active contour (GAC) model. Moreover, the remaining models were based on
histogram thresholding algorithms, which utilised entropy and fuzzy logic models.

Researchers on the border detection of skin lesions have offered multifarious models.
Additionally, in the last decade, convolutional neural networks (CNN) have attained great
popularity and enabled researchers to gain improved segmentation outcomes. However, in
practice, downsampled images are fed to these networks due to excessive iterations and
parameter calculations; this leads to the loss of features. The authors in article [7] proposed a
novel methodology for the efficient segmentation of medical images without a dependency
on lesion resolution. The algorithm that they present is a four-step model, which includes
hair removal and drawing a bounding box around the lesion; then, they achieve grab-cut
segmentation with the Yolov3 deep CNN model and artefact removal with the help of
morphological operations as the last step. The increasing number of diagnosed melanoma
cases led researchers to propose high-performing segmentation algorithms. However,
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the existence of artefacts, noise and deviating shapes and arrangements of lesions made this
operation more challenging. Therefore, the early diagnosis of this disease has the foremost
importance. The researchers in [14] presented a well-performing algorithm for lesion border
detection based on the contour model and gradients. Additionally, they used Gaussian
distribution patterns to address the varying objects with irregular statistical parameters.
The division into various classes is used to consider the probability functionality of mixed
intensities; for this, the authors presented methodological modelling for the computation of
gradients and attribute extraction. This research uses a publicly available database (PH2) for
experimentation; Pedro Hispano Hospital Portugal generated this dataset [30]. Automated
skin lesion border estimation is essential to initial diagnoses of skin cancer. At the same
time, the varying contrast, blurred borders and variously sized lesions make this task more
challenging. To cope with this issue, the researchers in [22] present a multi-scale deep
learning-based supervised neural network (DSM-Network) model. The research efficiently
handled varying-sized lesions using the multi-scaling connectivity block. Additionally,
accumulating deep and shallow side output network layers further helped to achieve the
task. Finally, they used a preprocessor model named conditional random field (CRF) to
purify the contour and enhance the border estimation further. The authors used the publicly
available ISBI 2017 [27] and PH2 [30] skin cancer databases for extensive experimentation.
In the end, they achieved improved results and validated them through performance
metrics such as the Jaccard index, dice coefficient, accuracy and sensitivity.

Another article with the same objectives presented fuzzy c-means (FCM) cluster-
ing [20]. In addition, the proposed method carried out automated cluster selection us-
ing entropy as a histogram attribute. The model catered to the distribution effects of
the lesion histogram to segregate lesions from the background. In addition, the Eu-
clidean distance and regional maxima were utilised to achieve the abovementioned task.
The normal distribution is detected by first employing the two evident maxima and compar-
ing their distance with some set threshold. To better employ the entropy-based histogram
distribution, hue, saturation and value (HSV) colour space conversion is incorporated as
an initial step. The authors exploited the value channel for FCM clustering. This model
analysed three distinct types of skin lesions: normal, benign and melanoma. This study
incorporated a non-dermoscopic image database, University Medical Centre Groningen
(UMCG) [31], composed of 170 images with 70 melanoma and 100 benign samples.

A timely skin cancer diagnosis significantly reduces the possible mortality rate. Like-
wise, effective lesion segmentation leads to improved outcomes of cancer identification.
To address this issue while monitoring the posed noise, artefacts and undesired features,
the researchers in [21] proposed a method to segment the RoI in medical lesions. The
algorithm consists of corrected gamma and keypoint clusters of descriptors. The gamma
correction method helped to attain the expected contrast attributes of the input medical
image. Furthermore, they extracted the critical attributes from the gamma-adjusted images;
clustering them resulted in the efficient segmentation of RoIs. Additionally, they imple-
mented an image smoothing function as a preprocessor to eliminate hair occlusion while
blurring the background. While experimenting, the authors utilised publicly available
datasets PH2 and performed validation on ISIC 2016 to 2019. The authors in [32] used
image segmentation using the multi-thresholding technique and enhanced swarm method-
ology; this incorporates multi-iteration maps and locally estimated escaping operators
to extract dermoscopic images’ RoIs. The authors further utilised the two-dimensional
entropy-based objective function and incorporated a two-dimensional histogram based
on global means to illustrate the sample details. Another study highlighted the im-
pacts of preprocessing on the saliency-based border estimation of medical images [33].
The authors merged colour histogram clustering (CHC) with the Otsu thresholding algo-
rithm to achieve the objective. Additionally, in the preprocessing phase, they contrast-
stretched the lesions with contrast-limited adaptive histogram equalisation (CLAHE) and
utilised the famous DullRazor for artefact removal. Finally, researchers investigated the
impacts of preprocessors on the outcomes of a saliency segmentation strategy based on the
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association of the CHC model with thresholding based on the Otsu algorithm for medical
images. The authors performed experimental analysis on publicly available databases PH2

and HAM10000. Another study employed the grasshopper optimisation algorithm (GOA)
adn a swarm intelligence (SI) model for lesion segmentation, followed by a feature extrac-
tion method named speeded-up robust features (SURF) [34]. The authors classified images
from the datasets PH2, ISIC-2017 and 2018 into two classes. There is great importance of
CNN in medical image-related tasks. At the same time, the poor quality of input images
poses a significant challenge in the networks’ training phase, especially in feature extraction
parts. Additionally, the background containing noise may become the point of priority for
the neural network model, leading to false predicted outcomes. The researchers in [35]
proposed a morphological preprocessor established on the geometric shapes of the input
images. The study presented a model of geometrical-profile-based h-dome transformation
followed by an image histogram correction, able to perform RoI enhancement selectively.
As a result, the input to the CNN became a clear RoI with less prominent features in the
background area. For experimentation purposes, the authors utilised various datasets, such
as X-ray images, breast cancer images, mammography images and skin lesions, to name
but a few. The authors in [36] utilised a textural analysis model and grey-channel-based
co-occurrence matrices to classify ailments in skin samples. The authors in [37] employed
preprocessing techniques such as the inpainting algorithm and top hat filtration. For
boundary estimation purposes, they used the grab-cut model. Further, they utilised the
inception model for feature extraction, succeeded by a fuzzy classifier. The authors propose
a novel preprocessor model in [38] to extract the RoIs of skin datasets. For comparison
purposes, they cross-compared the outcomes of SOTA with raw and RoI-extracted samples.
The samples with RoIs only resulted in improved responses regarding classification accu-
racy and execution times.

We have proposed a novel differential evolution–bat algorithm (DE-BA) using hybrid
metaheuristic for the preprocessing of skin lesion images [39], and another hybrid technique,
differential evolution–artificial bee colony (DE-ABC), is presented in [40]. The proposed
algorithms approximate the parameter set using our proposed novel methodologies. This
effective preprocessing further helps in achieving effective boundary estimation. Table 1
summarises the preprocessing methods used in some related research.

A thorough review of related studies revealed that medical dataset images might
contain hair occlusion, noise and increased similarity between the foreground and back-
ground. Additionally, this feature loss leads to over-segmentation and poor classification
outcomes. In this way, the role of preprocessing models is necessitated in these conditions.
However, plenty of research is proposed in this area; there is still ample space for new
work. Primarily, the stated task is performed using a normalisation operation on the last
channel of a poor-contrast lesion in the HSI colour space, increasing the RoI, diluting the
small amounts of details at the lesion borders and altering the brightness.

As a result, numerous techniques have resulted in enhanced outcomes on medical datasets
where these prerequisites were already fulfilled: (1) improved lesions with better segregation
from the background, (2) colour normalisation throughout the lesion, (3) noise reduction and
artefact removal and contrast enhancement. This led us to propose the preprocessing model.

Table 1. Summary of preprocessing used in some boundary estimation procedures.

Paper Modalities for Preprocessing

[33] Colour-based histogram adjustment with thresholding based on Otsu algorithm
[34] Morphological operator-based hair artefact removal and image quality correction using intensity
[35] Geometrical-profile-based h-dome transformation followed by image histogram correction
[36] Colour standardisation, normalisation, bottom-hat filtration with discrete Laplacian interpolation
[37] Top-hat filtration followed by inpainting technique
[38] Three techniques: Otsu thresholding, K-means clustering and MultiResUNet
[39] Contrast enhancement with metaheuristic DE-BA
[40] Contrast enhancement with metaheuristic algorithm DE-ABC



Diagnostics 2023, 13, 1285 6 of 15

4. Materials and Methodology
4.1. Datasets

We have accomplished our goal in this work by utilising three openly available skin
lesion databases. Details are as follows.

• ISIC 2016: This dataset [26] comprises two sets, with 900 samples and 379 samples in
the training and testing sets, respectively. This database provides ground truths for
all testing and training images. As the present-day classification methods demand
various classes, on the contrary, this database only comprises two classes, which fits
the requirements of our proposed model.

• ISIC 2017: The set [27] comprises 2600 images, with wo sets, one for training with
2000 lesion samples and the other for testing purposes with 600 image samples,
the same as the former dataset. Additionally, the dataset contains separate gold-
standard images for both sets. Originally, the challenge for this dataset comprised
feature identification for four classes, cancer classification for three classes and tasks
such as segmentation.

• ISIC 2018: Researchers produced a database in 2018 [28] comprising two sets with
around 1000 testing and 2594 training images in the first two tasks. In the third task,
they introduced Ham10,000 with a huge training set of 10,000 with 1512 test images.
We have used the train set produced in the first two tasks and divided the set into two
parts, the reason being the lack of gold-standard samples for the test set. The division
of the database is presented in Table 2.

Table 2. Datasets’ division into test and train sets.

Database Training Set Testing Set Total Images

ISIC-2016 900 379 1279
ISIC-2017 2000 600 2600
ISIC-2018 2076 518 2594

Several factors impact these skin lesion datasets, including differences in brightness,
contrast and shapes; artefacts such as skin types; complicated anatomical structures, and
hair occlusions. As a result, epidemiologists may need help in examining noisy images with
poor contrast. Advanced segmentation methods, such as artificial intelligence techniques,
have been suggested to overcome this challenge.

4.2. Proposed Framework

We have shown the model and its connectivity with border estimation algorithms
in Figure 2. In the diagram below, we have presented the basic flow of our brightness-
preserving contrast-stretching algorithm. The steps show how an input image is trans-
formed to aid the segmentation models. Additionally, we have validated the efficacy of the
offered benchmark via the cross-comparison of the border estimation outcomes of original
lesions with BA-ABC contrast-corrected samples.

This article proposes a brightness-preserving contrast-stretching technique based on a
novel hybrid metaheuristic algorithm named BA-ABC. The colour space of input medical
images is RGB; for enhancement purposes, we first converted it to HSI to further extract
the intensity channel Υ. As a result, this model yielded a new, enhanced-intensity channel
Υe. Figure 3 presents the detailed flow of the contrast-stretching technique.
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Figure 2. Flow of proposed algorithm.

Figure 3. BA-ABC contrast-stretching and transformation flow diagram.

Our contrast-stretching algorithm keeps the output image dimensions the same as the
input image, with R number of columns and P rows. A generalised formulation for the
transformation function of the presented model is detailed below:

gx,y = T{ fx,y}, ∀x ∈ P, ∀y ∈ R (1)

Optimisation algorithms demand the selection of proper bounds for the parameter set. We
have reutilised the fine-tuned bounds for our parameters as assessed in our previous work [40].
The lower bound vector ψl contains the lower possible values of our parameter set; in contrast,
vector ψu comprises the upper bounds. The metaheuristic algorithms require cross-comparison
and choosing the best parameter set greedily. At the same time, the automated functionality of
the model requires a well-performing cost function. Practically, there are a number of different
functions proposed by researchers such as [41,42]. The cost function that we use comprises three
specific implementation measures.

CF(Υe) =
log(log(Υs))× c_edgels(Υe)× entropy(Υe)

P× R
(2)

The research [43] reveals that an image sample with improved contrast comprises
sufficient edgles (neighbouring pixels of the edges), which led to using the sum of the
number of edgles and their intensities as a performance measure. Additionally, we used
entropy as a third measure. As a result, Equation (2) reveals the quality of an image based
on (a) high entropy of the input image, (b) the raised level of edgels and (c) improved
intensity [43]. Therefore, it is a three-step improvement function similar to histogram
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equalisation, with high entropy values [41]. Our proposed BA-ABC model estimates
parameter set values for every image, yielding raised cost values.

Υs = ∑
x∈P

∑
y∈R

√(
∂Υe

x,y

∂h

)2

+

(
∂Υe

x,y

∂v

)2

(3)

We have employed the Sobel edge detection filter; we present its horizontal and
vertical kernels along with their gradients in Table 3. In addition, the double log in the cost
function reduces the impact of edge intensities to overcome the over-contrast stretching
issue [39]. Finally, we present the Υs as a Sobel kernel gradient function in Equation (3).

Table 3. Sobel filter operation.

Sobel Kernel Gradients
∂Υe

x,y
∂h = Sh ⊗ Υe

x,y

∂Υe
x,y

∂v = Sv ⊗ Υe
x,y

∇Υe
x,y = mag

[
∂Υe

x,y
∂h ,

∂Υe
x,y

∂v

]

Gonzalez introduced statistical methods to enhance the image quality with improved
contrast [44]. In 2000, Munteanu [43] improved these methods and offered a single trans-
formation function based on image-specific parameters to achieve the task. The function
depended on local area features such as the mean and variance and global attributes such
as the number of edge pixels, their intensities and entropy, to name a few. We employed
this transformation function in our model and estimated the parameter set using a hybrid
of metaheuristic algorithms inspired by natural phenomena. There are two parts in this
transformation function; the former includes two parameters Pβ and Pδ, and their effects
merged with local mean Υµ

x,y and global mean µ. The advantage of local mean Υµ
x,y is that it

is dependent on the local neighbourhood. The latter part of the transformation function
helps to improve the smoothness and brightness preservation based on local mean Υµ

x,y
with parameter Pα in the exponent [39].

gx,y =

(
Pδ

µ

Υσ
x,y + Pβ

)
×
[

fx,y − Pγ × Υµ
x,y

]
+
[
Υµ

x,y

]Pα
(4)

Parameter set: → Pα Pβ Pγ Pδ

4.2.1. Bat Algorithm

Various parameter sets combine to form a population. Therefore, a randomly initialised
population is necessary to start the search operation. Afterwards, the BA starts estimating
the optimised value of the parameter set based on the cost function.

Xj = ψl + rand(0, 1)× (ψu − ψl) (5)

More than a decade ago, Yang analysed the behaviour of bats and their food-searching
techniques and further formulated these search techniques based on the essential bat charac-
teristics, such as velocity, position, pulse emission rate and wavelength [45]. Echolocation is
a term used for the discovery and prediction of prey. Averting the determined surroundings
using ultrasonic pulses via varying pulses is the main characteristic of bats. By utilising the
stated model, frequency is estimated as

f τ
j = fmin + φ( fmax − fmin) (6)
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We have used the same parameters as in our study [39]; here, φ is an arbitrary number
ranging within (0, 1). Additionally, we have formulated the velocity Vτ

j and position Xτ
j

values in the below equations.

Vτ
j = Vτ−1

j + f j

(
Xτ

j − X∗
)

(7)

Xτ
j = Xτ−1

j + Vτ
j (8)

Updated velocity values are based on the previous velocity, position, present frequency
and global best. The present position is then updated too. After these updates, the algorithm
selects the best parameter set from the population. Then, it initiates a random walk, similar
to bats, to estimate a personal best with the formula

Xnew = Xold + θLτ , θ ∈ [−1, 1] (9)

Bats move randomly in the vicinity of the previously identified optimal location
globally. This calculation is based on the global optimum X∗ and the average loudness
Lτ , multiplied by an arbitrary factor ε. The loudness and pulse rate owned by every bat
in the search space is estimated through random numbers [45]. As with the process of
temperature cooling in simulated annealing, as the bat approaches its target, its loud-
ness decreases, and its pulse rate ϕτ

j increases until it reaches ϕ0
j [45]. At the time τ + 1,

the equations for determining the updated pulse rate ϕj and loudness Li are as given below,
where ε and η are constants here.

Lτ+1
j = εLτ

j , ε ∈ [0, 1] (10)

ϕτ+1
j = ϕ0

j
(
1− e−ητ

)
, η > 0 (11)

Population fitness is estimated using the cost function, and both values are updated if a
better cost is obtained. The best parameter set estimated by the first metaheuristic algorithm
is then sent to the contrast modification function defined in Equation (4), which generates
improved contrast of the intensity channel. Intensity channel Υe with improved contrast is
merged with the remaining two modified channels to create the final contrast-enhanced
sample. The colour space is transformed back to RGB to obtain a final brightness-preserved
contrast-improved lesion. The outcomes showcase the system’s performance through
experiments, comparing it with previously successful boundary estimation algorithms.

4.2.2. Artificial Bee Colony

After several iterations, the parameter sets are subjected to the second nature-inspired
technique, artificial bee colony (ABC). This approach further optimises the parameters based on
distinctive properties. Dervis Karaboga [46] presented ABC in 2005, and in 2007, he published a
journal article in the Global Optimisation Journal. Due to its analogy with the social behaviour
of animal colonies, it is regarded as a swarm optimisation model. ABC demonstrates better out-
comes than other swarm-based strategies, such as fish schools, ant colonies, particle swarms and
bird flocks. Work distribution and self-organisation are key features of swarm-based algorithms.
The work distribution includes the simultaneous implementation of specific assignments.

Self-association works in light of nearby hunt information rather than the global data,
including changes in search reactions, feedback and communications with different worker
bees. Simultaneously, worker bee division alludes to the concurrent execution of specific
assignments. Unlike BA, in ABC, the objective function cost is not the result achieved
through a fitness formula; rather, Equation (12) is utilised to compute the fitness_cost.

f itness_cost =

{
1+ | C | if C < 0

1
1+C otherwise

(12)
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The objective function’s cost, C, is calculated based on Equation (2), which remains
unchanged from the previous BA algorithm. As ABC is a swarm-intelligent technique,
its parameter set comprises food sources. For worker division, all food sources must be
used, and new members are randomly assigned using a greedy choice process, which is
explained in detail. Food source exploitation with the bees is done in the onlooker, scout
and employed bee phases.

Xu
child = Xu + θ

(
Xu − Xu

part

)
, u ∈ [1, D] (13)

We have utilised Equation (13) for the mutation procedure when bees are in the
onlooker phase. In our scenario, we have a parameter set of size D, and θ is a random
mutating factor within the range of [−1, 1]. When bees are in the onlooker phase, the
mutation is done only on a randomly chosen single partner Xu

part from the target food
source Xu. The boundaries of the mutated values are adjusted as in the previous model.
A strict selection criterion is accommodated to select either parent or child with better
f itness_cost using Equation (14).

Pv,τ =

{
Cv,τ if f itness_costnew > f itness_costold

Pv,τ otherwise
(14)

If a better child is obtained, the trial vector value will be reset to zero. The trial vector
tracks the number of failures for each food source, and its value will be increased by one
every time a failure occurs. The bees are triggered in the scouting phase when an attempt
limit is reached. In the phase with employed bees, all sources have been exploited. The bees
in the onlooker phase act similarly to the previous phase, the main distinction being that
their likelihood estimate determines the traversal of food sources. This value is calculated
using Equation (15), based on each food source’s fitness and the population’s maximum
fitness. Arbitrary choice partners are chosen from the population and food sources to be
taken advantage of.

Probv,τ = 0.1 +
(

0.9× f itness_costv,τ

max( f itness_cost)

)
(15)

The last phase of the ABC algorithm replaces the parameter set that has undergone
the highest number of trials with the arbitrary set. The arbitrary set is generated in the
same manner as the new population was achieved using Equation (5), only when the trials
exceed the already mentioned threshold. The strict selection is not performed at this stage
as the member with trials reaching the threshold is discarded. The newly added member
f itnesscost is estimated using the same formulae and replaced in the array. At the same
time, its trial value is reset to zero. After a set number of iterations or if the termination
criterion is met, the global best solution is yielded as the output of our hybrid metaheuristic
algorithm. The image-transforming function defined in Equation (1) comes into play to
contrast-stretch the intensity channel. Further steps include fusing the remaining two
adjusted channels with the contrast-stretched one to achieve an HSI image. The final step
is converting the colour space from HSI to RGB to achieve brightness-preserving, contrast-
stretched lesions. After this, the enhanced images can be fed to the boundary estimation
algorithm to estimate lesion masks. The following section discusses the outcomes of our
algorithm and its validation through the segmentation models based on visual analysis
and performance matrix comparison.

5. Results
5.1. Parameter Setting

We have presented a contrast enhancement technique. The image-transforming func-
tion is already discussed in the previous section. The parameter set as the global best is
estimated through the hybrid metaheuristic technique to modify the intensity channel
contrast. The parameter boundaries are reused as in our previous work [39,40] and are
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upperbound = [1.6 0.5 0.8 1.5], lowerbound = [0 0 0 0.5]. For testing purposes, we have
utilised three publicly available skin cancer datasets. The details of the numbers of images
selected for training and testing purposes from the chosen datasets are presented in Table 1.
We have performed our experimentation on the 1660-GTX GeForce GPU of the NVIDIA
company. The presented BA-ABC model was executed in MATLAB 2022b, while the perfor-
mance of the preprocessor was tested using Python-based boundary estimation algorithms.
The first performance matrix used is Jaccard, a similarity index, and the ratio of intersection
over union (IoU); it ranges between 0% and 100% and is very sensitive to small changes
in the dataset and may behave erroneously when fed with a very small sample set. It is
formulated in Equation (16). The second matrix is the Dice coefficient (F1), the ratio of two
times the union over addition. It is formulated in Equation (17). Here, FN, FP, TN and TP
stand for false negative, false positive, true negative and true positive, respectively.

Jaccard Index =
TP

TP + FP + FN
(16)

Dice Coe f f icient =
2TP

2TP + FP + FN
(17)

5.2. Boundary Estimation Models

We have used our preprocessed images to validate our proposed model as an in-
put to the boundary estimation algorithms. These boundary estimation algorithms are
implemented in Python.

5.2.1. First Boundary Estimation Model—BAT

The proposed preprocessing technique was tested using the boundary-aware trans-
former (BAT) boundary estimation model [47]. The images were resized to 224 × 224, and
a minibatch size of 6 was used. Imagenet was used to pre-train this network’s encoder,
and we traversed the database for 300 epochs. After observing 10 consistent epochs, the
learning rate was divided by two if an insignificant validation loss arose. In Table 4, we
have presented a performance comparison based on the matrix defined above. The compar-
ison reveals that the segmentation model performed well when fed with contrast-enhanced
images through our proposed model. At the same time, the size of the database had
significant effects on the result of boundary estimation, as better results were achieved with
a large database.

Table 4. Performance matrix comparison with BAT model.

Algorithm Dataset IoU (%) F1 (%)

Without ISIC-2016 85.2 92.0

Preprocessing ISIC-2017 86.2 92.6
BAT ISIC-2018 86.3 92.4

Model Preprocessed ISIC-2016 86.9 93.1

BA-ABC ISIC-2017 87.0 93.0
ISIC-2018 87.2 93.2

The visual comparison of boundary estimation outcomes in Figure 4 reveals our
present model BA-ABC to be an efficient technique that improved the outcomes of the
segmented mask. The lesion mask generated through enhanced image Υe closely resembles
the gold standard, which is not the case with the original lesion Υ, as presented below.
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Figure 4. Results with BAT algorithm.

5.2.2. Second Boundary Estimation Model—CA-Net

We performed a second comparison on another model, the comprehensive attention
network (CA-Net) border estimation algorithm, presented in [48]. The results show that
the BA-ABC preprocessing technique improved the performance of the CA-Net model, as
indicated by the better Jaccard index and Dice coefficient. We used 12 minibatches in our
case, with 300 epochs. We utilised adaptive estimation (Adam) as a training algorithm and
used 0.0001 as the learning rate value lowered to half after 120 epochs. The parameters
remained the same as the original CA-Net paper suggested, and the performance improved
slightly in the case of large and diverse datasets, as with the former model (Table 5).

Table 5. Performance matrix comparison with CA-Net model.

Algorithm Dataset IoU (%) F1 (%)

Without ISIC-2016 85.8 92.4

Preprocessing ISIC-2017 89.2 94.3
CA-Net ISIC-2018 88.3 93.7

Model Preprocessed ISIC-2016 87.0 93.0

BA-ABC ISIC-2017 88.8 94.1
ISIC-2018 89.7 94.6

This visual comparison supports the conclusion that BA-ABC enhances the perfor-
mance of the boundary estimation algorithm, resulting in better-estimated masks than
the original images. The enhanced images have better contrast and brightness, leading
to a clearer RoI representation and improved segmentation outcomes. The outcomes also
reveal that our presented model has the potential to mitigate over-segmentation issues and
enhance the outcomes of the segmentation model (Figure 5).
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Figure 5. Results with CA-Net model.

6. Conclusions

We have presented BA-ABC as a brightness-preserving local-area contrast-stretching
algorithm. In this study, we improved the contrast of skin lesions based on statistical
measures such as the local area standard deviation and local mean. The statistical trans-
formation function depended on some vital parameters exclusively estimated through
our proposed hybrid metaheuristic algorithm. To validate the efficacy of our presented
model, we tested it with some state-of-the-art boundary estimation models. The outcomes
revealed that the presented model effectively served as a preprocessor. We utilized publicly
available skin lesion datasets ISIC-2016, 2017 and 2018 for experimentation. We plan to
extend the range of databases beyond the medical field, such as agriculture, to test our
algorithm’s efficacy in the future. We further plan to test the later steps such as feature
extraction/selection and then classification using these segmented images. Further, it is
planned to explore other metaheuristic methods, such as the Lion Optimisation Algorithm
(LOA) presented in [49], or the Red Deer Algorithm (RDA) given in [50].
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