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Abstract: Gastric cancer represents one of the most common oncological causes of death worldwide.
In order to treat patients in the best possible way, the staging of gastric cancer should be accurate. In
this regard, endoscopy ultrasound (EUS) has been considered the reference standard for tumor (T)
and nodal (N) statuses in recent decades. However, thanks to technological improvements, computed
tomography (CT) has gained an important role, not only in the assessment of distant metastases (M
status) but also in T and N staging. In addition, magnetic resonance imaging (MRI) can contribute
to the detection and staging of primary gastric tumors thanks to its excellent soft tissue contrast
and multiple imaging sequences without radiation-related risks. In addition, MRI can help with the
detection of liver metastases, especially small lesions. Finally, positron emission tomography (PET)
is still considered a useful diagnostic tool for the staging of gastric cancer patients, with a focus on
nodal metastases and peritoneal carcinomatosis. In addition, it may play a role in the treatment of
gastric cancer in the coming years thanks to the introduction of new labeling peptides. This review
aims to summarize the most common advantages and pitfalls of EUS, CT, MRI and PET in the TNM
staging of gastric cancer patients.

Keywords: stomach neoplasms; positron emission tomography computed tomography; tomography;
X-ray computed; multiparametric magnetic resonance imaging; endoscopic ultrasound-guided fine
needle aspiration; endoscopic ultrasound

1. Introduction

In recent decades, diagnostic imaging, particularly cross-sectional techniques includ-
ing contrast-enhanced computed tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET), has assumed a central role in the diagnosis of various
pathologic entities. Although all of these techniques should be considered interchangeable,
each has advantages and pitfalls, while all have a more than predictable potential.

In current clinical practice, one of the most common goals is to stage cancer pa-
tients in order to best assess their treatment needs and guide them toward surgical or
medical interventions [1].

In this context, all of the above techniques can be considered efficient tools for the
staging of gastric cancer patients. However, not all of these imaging techniques can be
considered interchangeable, and the choice should be made carefully based on international
guidelines and the experience of one’s own center [1]. Due to continuous technical improve-
ments, radiology plays a key role in determining all staging parameters, especially the
tumor extent, nodal status, and the presence of distant metastases. Although cross-sectional
imaging was considered useful for determining the nodal status and the presence of distant
metastases in past decades, new technological improvements have greatly facilitated the
preoperative staging of the tumor extent.
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There are more treatment options available for GC patients, and therapeutic strategies
depend on the tumor stage. For very early, superficial tumors (T1a), endoscopic mucosal
resection/submucosal dissection is the preferred procedure, whereas for early-stage cancers
that are not amenable to endoscopic resection, surgical resection is the treatment of choice.
Total/distal gastrectomy, depending on the tumor location, in conjunction with neoadjuvant
chemotherapy, is the standard treatment for locally advanced GC (≥T3, any N or ≥T2, N+).
For advanced unresectable/metastatic GC (35–40% of cases at the time of initial diagnosis),
chemotherapy is still considered the standard treatment [2]. Therefore, it is crucial to
correctly determine the stage of disease in order to select the most effective therapeutic
pathway, and imaging plays a pivotal role in this regard.

On this basis, the present review aims to summarize and report the main advantages
and pitfalls of imaging techniques for the staging of gastric cancer patients, collect the main
data reported in the current literature, highlight the main shortcomings in research and
provide future perspectives.

2. Epidemiology, Risk Factors and Pathological Classification Systems

GC is the fifth most common type of cancer and the third leading cause of death
worldwide. As previously reported [2], it is important to emphasize that gastric cancer is
particularly common in East Asia, Eastern Europe and South America and is especially
prevalent in men.

Previously, chronic infection with Helicobacter pylori was considered one of the most
common pathological factors associated with gastric cancer. Nowadays, however, several
pathological factors are considered to contribute to the development of GC, including
age, cigarette smoking, alcohol consumption and pernicious anemia. In addition, the
consumption of salted foods has been shown to be a risk factor for H. pylori infection [3].
Finally, approximately 10% of all gastric cancer patients have a familial clustering due to
germline mutations [4].

Since 1971, early gastric carcinoma (EGC), defined as a tumor that does not invade
deeper than the submucosa and is independent of nodal metastasis (T1, any N), has been
pathologically classified into three different macroscopic manifestations, including the
protrusive (type I), superficial (type II) and excavated (type III) types. In addition, type II is
divided into raised, shallow and depressed types [5].

From a macroscopic perspective, gastric cancer staging is routinely performed using
the TNM staging system, 8th Edition of the AJCC [6].

The Japanese Gastric Cancer Association classification should be considered when
classifying local-regional nodules, which are divided into perigastric and extraperigastric
types. Nodal status is one of the most widely accepted prognostic factors related to overall
survival: reported five-year survival is directly proportional to the N stage (86.1% for N0
and 5.9% for N3) [7].

GC can spread via the lymphatic system to the perigastric ligaments, mesentery,
omentum and adjacent and distant organs [8] and via vascular structures and nerves.

The presence of distant metastases is a contraindication to surgical resection, and
detection is paramount to the guidance of treatment. Secondary liver involvement is the
most common site of spread, followed by the lungs, bones and adrenal glands. The in-
volvement of retro-pancreatic, mesenteric root, mid-colonic, para-aortic, peripancreatic,
infra-diaphragmatic, para-esophageal, lower thoracic and other distant nodes is considered
to represent metastatic (M1) disease. Sites of distant metastases include supraclavicu-
lar (Virchow node), periumbilicular (Sister Mary Joseph node) or the left axillary node
(Irish node).

3. Diagnostic Techniques

To date, the preferred imaging modalities for the staging of GC before surgery are CT
and endoscopic sonography (EUS). EUS has been used as the tool of choice for locoregional
staging because of its ability to differentiate between the layers of the gastric wall and its
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high accuracy in terms of distinguishing EGS from deeper lesions [9,10]. On the other
hand, several reports have pointed out one of the most important pitfalls, which is the
underestimation or overestimation of invasion, which is influenced by inflammation around
the lesion. The second most important pitfall concerns the evaluation of distant nodules,
which is difficult due to the limited depth of invasion, while distant organ metastases
cannot be evaluated [9,11].

Conversely, CT was initially used to detect distant metastases in recent decades [12],
and over time, it has also played an increasingly important role in evaluating the extent of
locoregional disease [13–15]. Even though it is characterized by a higher spatial resolution,
CT also has a low diagnostic value [16].

3.1. Endoscopic Ultrasonography (EUS)

EUS is a combined technique used for endoscopy and high-frequency ultrasound
(5–12 Hz) that provides high-resolution images with a limited penetration depth (between
1 and 6 cm). Dilatation of the lumen (200–400 mL) with water may contribute to a better
assessment of the gastric walls.

The normal gastric wall is presented as a 5- to 9-layered structure [17], according
to the high resolution of the probes: not all layers correspond to the histological ones,
since some of them can present echoes due to interfaces. The two inner layers (hyper and
hypo-echoic, respectively) represent the superficial mucosa and the muscularis mucosa.
The 3rd (hyperechoic) layer corresponds to the submucosa, the 4th (hypoechoic) to the
muscularis propria, and the 5th (hyperechoic) to the serosa, which is usually not easily
distinguishable from the surrounding hyperechoic adipose tissue.

Nowadays, there is no consensus on the normal thickness of the gastric wall, but
2–4 mm should be considered the normal range [18].

GC usually presents as inhomogeneous hypoechoic wall thickening that is focal or
diffuse, affects one or more layers, has possible growth outside the wall and eventually
infiltrates other structures [17].

T and N Staging

The overall accuracy of EUS for T staging ranges from 65 to 92.1%. In particular, the
sensitivity and specificity for serosa involvement range from 77.8 to 100% and from 67.9% to
100%, respectively [9]. By grouping GC according to the WHO classification, the sensitivity
for more invasive tumors increases and ranges from 88.1% for T1 to 99.2% for T4 [19].

Although EUS is considered the imaging modality of choice for locoregional staging
of GC, it has several limitations. First, it is an operator-dependent technique that is invasive
and is associated with sedation-related complications. In addition, not all gastric regions
can be easily assessed, and special attention is paid to the lesser curvature, subcardiac
region and gastroesophageal junction. The same problems occur with extensive ulceration
and with large lesions [20].

Nodal metastases are visualized on EUS as roundish, hyperechoic metastases located
in perigastric zones. The overall accuracy of EUS in N staging generally ranges from 66
to 90% [21,22] with low sensitivity values for stages N2 and N3 [21]. One of the most
important advantages of EUS in N staging is the possibility of fine needle aspiration (EUS-
FNA), which contributes to the improvement of the overall accuracy. In this regard, the
sensitivity, specificity and positive predictive value of EUS-FNA increase to 92%, 98% and
97%, respectively [23].

In addition, EUS has a limited depth of penetration and is therefore of limited
use in the evaluation of distant metastases, which are usually investigated by other
diagnostic methods [23].

Table 1 summarizes the most important studies regarding the usefulness of EUS in the
staging of GC patients.
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Table 1. Details of the most important papers regarding the usefulness of EUS in the staging of GC
patients.

Ref # Manuscript Type Main Findings

[19] Meta-analysis

- EUS results depend on the disease stage
- Pooled sensitivity levels for T1 and T2 were 88.1 and

82.3%, respectively, while they were 89.7 and 99.2%
for T3 and T4

- Pooled sensitivity levels for N1 and N2 were 58.2%
and 64.9%

[20] Original study

- The accuracy for detecting intramucosal cancer was
78%

- Accuracy was lower in lesions located in the upper
stomach

[21] Original study
- Overall accuracy of 74.7%
- Accuracy for T staging of 61.7%
- Accuracy for N staging of 66%

[22] Original study
- EUS and CT produce comparable results regarding T

and N staging
- EUS produces better staging of T2 and T3 lesions

3.2. Computed Tomography (CT)

Before performing CT, the patient must be fasting for at least 6 h, and pharmacological
hypotonization is achieved with 10–20 mg of butylscopolamine bromide administered
intramuscularly or intravenously 10 to 15 min before the examination [24].

To achieve optimal gastric distension, negative (air) or neutral (water or methylcellu-
lose) contrast agents are usually used to better visualize the enlargement of each layer of
the gastric wall [25].

The administration of intravenous contrast medium is mandatory for the examination
of the gastric walls. CT images should be acquired at least in the unenhanced phase and
approximately 70 s after injection, the optimal time for GC enhancement. To assess the
presence of vascular variants of the stomach, arterial phase imaging can be added [26].
Finally, postprocessed reconstructions (multiplanar reconstructions—MPR) in the coronal
and sagittal planes can provide a better assessment of the tumor location and depth.

Virtual gastroscopy (VG) is a CT-reconstructed three-dimensional (3D) endoluminal
image set that simulates an endoscopic view. For VG, air is the preferred oral contrast agent.
Limitations of this technique include the additional time (10 to 20 min) required to process
the images and the higher level of technical expertise needed.

Normal gastric walls show a multilayered pattern with an inner enhancing layer
that histologically corresponds to the gastric mucosa. The intervening hypoattenuating
layer represents the submucosa, and the outer, slightly hyperattenuating layer of variable
thickness corresponds to the muscularis propria and serosa layer [27].

Gastric cancer presents as focal or diffuse wall thickening characterized by inhomoge-
neous enlargement that destroys normal gastric wall structures [27]. Therefore, the size
of the gastric wall thickening and the degree of enhancement may affect the detection
rate and accuracy of T-staging. In particular, focal thickening of greater than 5 mm in a
well-expanded stomach is considered a neoplastic lesion [28].

3.2.1. T and N Staging

T1a tumors are usually not visible, whereas T1b tumors show mucosal thickening and
enhancement. The distinction between T1b and T2 can be made based on the appearance
of the thickening base: T1b shows a faint attenuated stripe indicating the submucosal
layer, whereas T2 shows a loss of this layer due to the involvement of the submucosa [24]
(Figure 1).
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plastic reaction, can be confused with serosal involvement (Figures 2 and 3).  

 
Figure 2. T3 gastric cancer in a 72-year-old male patient. (A) Axial 2D image in the portal venous 
phase and (B) Coronal 2D reconstruction showing wall thickening (white arrow) in the lesser cur-
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subserosa layer without invasion of the serosa and adjacent structures. 

Figure 1. T2 gastric cancer in a 67-year-old-female patient. (A) Axial 2D image in the portal venous
phase showing enhanced wall thickening in the lesser curvature side of the low body of the stomach
(white arrow). T2 gastric cancer in a 66-year-old-male patient. (B) Axial 2D image (C) Coronal 2D
image and (D) Sagittal 2D image showing enhanced wall thickening (white arrow) in the lesser
curvature side of the middle body of the stomach. In both the patients, the tumor invades the
muscularis propria layer.

T3 tumors have a subserosal invasion, and discrimination between a gastric mass
and the outer layer can be difficult: small linear strandings in the gastric fat, due to a
desmoplastic reaction, can be confused with serosal involvement (Figures 2 and 3).

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 19 
 

layer, whereas T2 shows a loss of this layer due to the involvement of the submucosa [24] 
(Figure 1). 

 
Figure 1. T2 gastric cancer in a 67-year-old-female patient. (A) Axial 2D image in the portal venous 
phase showing enhanced wall thickening in the lesser curvature side of the low body of the stomach 
(white arrow). T2 gastric cancer in a 66-year-old-male patient. (B) Axial 2D image (C) Coronal 2D 
image and (D) Sagittal 2D image showing enhanced wall thickening (white arrow) in the lesser 
curvature side of the middle body of the stomach. In both the patients, the tumor invades the mus-
cularis propria layer. 

T3 tumors have a subserosal invasion, and discrimination between a gastric mass and 
the outer layer can be difficult: small linear strandings in the gastric fat, due to a desmo-
plastic reaction, can be confused with serosal involvement (Figures 2 and 3).  

 
Figure 2. T3 gastric cancer in a 72-year-old male patient. (A) Axial 2D image in the portal venous 
phase and (B) Coronal 2D reconstruction showing wall thickening (white arrow) in the lesser cur-
vature of the low body of the stomach and inhomogeneous enhancement. The tumor invades the 
subserosa layer without invasion of the serosa and adjacent structures. 

Figure 2. T3 gastric cancer in a 72-year-old male patient. (A) Axial 2D image in the portal venous
phase and (B) Coronal 2D reconstruction showing wall thickening (white arrow) in the lesser cur-
vature of the low body of the stomach and inhomogeneous enhancement. The tumor invades the
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Figure 3. T3 gastric cancer in a 74-year-old female patient. (A) Coronal 2D reconstruction in the
portal venous phase and (B) Axial 2D image showing (thick arrows) enhanced wall thickening in the
lesser curvature side of the high body of the stomach. (B) also shows a cluster of pathologic round
lymph nodes adjacent to the gastric cancer (thin arrows). The tumor invades the subserosa layer
without invasion of the serosa and adjacent structures.

Finally, T4a also demonstrates serosal involvement, which makes the differential with
T3 very difficult. This is especially true because the gastric serosa is not well defined due to
the different amounts of subserosal adipose tissue. To solve the differential, T4a frequently
shows solid nodules or band-like stranding in the perivisceral adipose tissue (Figure 4).
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Figure 4. (A) Axial 2D image in the portal venous phase of a T4a gastric cancer in a 66-year-old
female patient. The tumor (thick arrow) is the enhanced wall thickening in the lesser curvature side of
the middle body of the stomach which penetrates the serosa with some solid deposits (white asterisk)
in the perivisceral fat tissue and some pathologic lymph nodes (thin arrow) with necrotic-colliquative
components inside. (B) Axial 2D image of a T4a gastric cancer in a 78-year-old female patient. The
tumor (thick arrow) is the enhanced wall thickening on the lesser curvature side of the low body of
the stomach which penetrates the serosa with some spiculatures in the perivisceral fat tissue and a
pathologic lymph node (black asterisk).

T4b shows extension into an adjacent structure and shows the loss of the fat plane
between the gastric mass and adjacent organs (Figure 5).
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Figure 5. T4b gastric cancer in a 74-year-old female patient. (A,B). Axial 2D images in the portal
venous phase and (C) Coronal multiplanar reconstruction showing (thick arrows) a bulky tumor of
the middle-low body of the stomach and of the gastric antrum with necrotic-colliquative components
inside, ulcerative alterations and some solid deposits (black asterisks) in the perivisceral fat tissue.
The tumor fistulizes and infiltrates the transverse colon (thin arrows).

Table 2 summarizes the most common CT features for each T category.

Table 2. CT criteria for T staging in gastric cancer patients. Adapted from [24].

Stage Pathological Features CT Features

T1 lesion invades the lamina propria,
muscularis mucosae and submucosa

- focal thickening in the inner and/or middle layer with strong
enhancement

- enhancement of the stomach walls without thickening
- focal thickening with intense enhancement of the inner layer

associated with a hypoattenuating peripheral layer

T2 lesion invades the muscularis propria
- thickening of the whole stomach walls with a regular outer

surface
- normal appearance of perigastric fat

T3 lesion invades the subserosa
- thickening of the whole stomach walls with a regular outer

surface
- normal appearance of perigastric fat

T4a lesion invades the serosa

- thickening of the whole stomach walls with homogeneous or
inhomogeneous enhancement

- irregular outer surface
- perigastric fat stranding
- irregular nodules in the perigastric fat

T4b lesion invades adjacent structures
- features of T4a stages
- absence of fat planes between the primary tumor and adjacent

organs or structures

Based on the abovementioned multilayered appearance of the gastric wall, several
studies have suggested CT as a useful tool for T staging [22,23,27–29]. An analysis of the
main studies published in the literature showed that the overall diagnostic accuracy for T
staging ranges from 77 to 89%. Considering its importance for management, the sensitivity
and specificity of serosal invasion have been evaluated in detail with values ranging from
82.8 to 100% and from 80 to 96.8%, respectively [23].

The added value of MPR combined with VG can increase the overall accuracy (from
73 to 89%) thanks to its ability to better assess invasion (Figure 6) [30].
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Figure 6. T4a gastric cancer in a 53-year-old female patient. (A) Axial 2D image in the portal
venous phase with distension of the gastric lumen with air shows a bulky circumferential tu-
mor (white arrows) of the low body of the stomach and of the gastric antrum with ulcerations;
(B) Virtual gastroscopy delineates a lesion protruding in the lumen of the stomach; (C) Computed
tomography gastrography shows a mucosal irregularity (white arrows) with a reduction of the lumen
of the stomach.

To confirm this hypothesis, other studies have reported that VG can enhance the recog-
nition of GC, especially EGC [31]. In support of these data, it has been demonstrated [32]
that VG can increase the overall performance compared to axial images alone in detect-
ing EGC with sensitivity and specificity levels of 91.9% and 74% and 62.9% and 82.9%,
respectively (Figure 7).

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 
Figure 6. T4a gastric cancer in a 53-year-old female patient. (A) Axial 2D image in the portal venous 
phase with distension of the gastric lumen with air shows a bulky circumferential tumor (white 
arrows) of the low body of the stomach and of the gastric antrum with ulcerations; (B) Virtual gas-
troscopy delineates a lesion protruding in the lumen of the stomach; (C) Computed tomography 
gastrography shows a mucosal irregularity (white arrows) with a reduction of the lumen of the 
stomach. 

To confirm this hypothesis, other studies have reported that VG can enhance the 
recognition of GC, especially EGC [31]. In support of these data, it has been demonstrated 
[32] that VG can increase the overall performance compared to axial images alone in de-
tecting EGC with sensitivity and specificity levels of 91.9% and 74% and 62.9% and 82.9%, 
respectively (Figure 7). 

 
Figure 7. T3 gastric cancer in a 68-year-old female patient. Contrast enhanced CT with gastric dis-
tension using air. (A) Axial 2D image and (B) Coronal 2D image in the portal venous phase with 
distension of the gastric lumen with air showing a semicircumferential tumor (white arrows) of the 
low body of the stomach with ulcerations. 

Similarly, in a study involving 106 patients, GC was found to be easier to detect with 
VG (87% vs. 98%). The authors demonstrated that the accuracy was significantly higher 
when using VG compared with axial images (84% and 77%, respectively). On the other 
hand, the authors reported no significant difference in N staging, with overall accuracy 
levels of 62% and 64% for axial images compared to VG, respectively [24]. 

The differential diagnosis between stages T2 and T3 or T3 and T4 by CT has long 
been controversial. In addition, using CT to determine gastric cancer at the T3 stage is 
more difficult when the imaging of the serosa of the intestine shows irregular, protruding 
bands. In this case, MRI could be a reliable diagnostic tool to help with radiology assess-
ments, especially for distinguishing T2 from T3 [33]. 

To distinguish normal from pathologic nodes, size is the most accepted parameter. 
However, there is no clear consensus on the threshold size for suspicious nodes. The 
threshold size depends on the location and ranges from 6 to 10 mm in the upper abdomen 
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distension of the gastric lumen with air showing a semicircumferential tumor (white arrows) of the
low body of the stomach with ulcerations.

Similarly, in a study involving 106 patients, GC was found to be easier to detect with
VG (87% vs. 98%). The authors demonstrated that the accuracy was significantly higher
when using VG compared with axial images (84% and 77%, respectively). On the other
hand, the authors reported no significant difference in N staging, with overall accuracy
levels of 62% and 64% for axial images compared to VG, respectively [24].

The differential diagnosis between stages T2 and T3 or T3 and T4 by CT has long been
controversial. In addition, using CT to determine gastric cancer at the T3 stage is more
difficult when the imaging of the serosa of the intestine shows irregular, protruding bands.
In this case, MRI could be a reliable diagnostic tool to help with radiology assessments,
especially for distinguishing T2 from T3 [33].

To distinguish normal from pathologic nodes, size is the most accepted parameter.
However, there is no clear consensus on the threshold size for suspicious nodes. The thresh-
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old size depends on the location and ranges from 6 to 10 mm in the upper abdomen [34].
Other characteristics of metastatic nodes include a round shape, a cluster of more than
three nodules, and the degree and heterogeneity of enhancement [35] (Figure 8).
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In addition, microscopic metastases can often be found in normal-sized nodes in
patients with EGC, which reduces the accuracy of N staging in EGC compared with
advanced cases [24].

According to a meta-analysis [10], the CT sensitivity and specificity of N staging
range from 62.5 to 91.9% and 50.0 to 87.9%, respectively. These diagnostic values are
associated with an acceptable accuracy level (86.3%), but the authors [36] highlighted an
important problem with N-staging based on the mediocre to good inter-reader reliability
(κ 0.449–0.662) in classifying the nodal status.

Nodal staging with MPR showed no significant improvement [23], with overall accu-
racy levels of 62% and 64% for axial images and MPR, respectively.

3.2.2. M Staging

CT is considered the most important imaging technique for the detection of distant
metastases and is still considered the preoperative reference standard, even in GC patients.
In this regard, an overall M staging accuracy of 96.6% was reported in a study involving
350 patients [31]. In addition, the authors reported good sensitivity and specificity levels
for the most common metastatic sites, including the peritoneum (90% and 97%), liver (80%
and 99%), and pelvis (100% and 99%).

In particular, peritoneal carcinomatosis is one of the pathological entities that need to
be evaluated for accurate M staging: One study reported sensitivity and specificity levels
for detecting peritoneal carcinomatosis of 50.9% and 96.2%, respectively [37]. In another
study [38], the authors noted that regional nodal metastases, advanced gastric cancer,
undifferentiated pathology and the presence of ascites may be considered independent
predictors of peritoneal carcinomatosis.

CT is still considered the tool of choice for peritoneal imaging and is included in the
ESMO guidelines for GC. However, it has limited soft tissue contrast, which limits its ability
to visualize small peritoneal metastases (PM), especially when adjacent to bowel structures
or the mesentery, limiting its sensitivity in detecting lesions and its accuracy in staging PM,
as it underestimates the results compared with the surgical Peritoneal Cancer Index (PCI).
For this reason, laparoscopy remains the reference for PC staging [39].

The sensitivity of CT for peritoneal carcinomatosis is low to moderate and varies
widely from 23 to 76%. Sensitivity is particularly low for small lesions (from 11% in <5 mm
lesions compared with 94% for >5 cm lesions) and at specific sites, such as the mesentery,
diaphragmatic borders, and bowel walls [40].
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Table 3 summarizes the most important studies regarding the usefulness of CT for the
staging of GC patients.

Table 3. Details of the most important papers regarding the usefulness of CT in the staging of
GC patients.

Ref # Manuscript Type Main Findings

[24] Original study

- Overall sensitivity of 87%
- Overall accuracy with axial images of 77%
- Overall accuracy with VG of 84%
- No differences between axial and 3DE images for N

staging

[29] Original study

- Detection rates with axial images, MPR, and in
combination were 91%, 95%, and 98%

- Assessment of tumor invasion was higher with MPR
images

- No differences were found regarding N staging

[31] Original study
- Accuracy was high, especially for T1 (94.3%) and N2

(87.3%)
- CT can be considered a preoperative predictor factor

[32] Original study

- Accuracy of axial, MPR, and VG was 85.8%, 87.9%, and
92.8%

- VG can help with GC detection, particularly in the case
of EGC

[36] Original study
- Accuracy for N staging was 86.3%
- Acceptable reliability analysis between CT and

pathological analysis

[37] Original study

- Sensitivity and specificity levels for detecting peritoneal
metastases were 28.3% and 98.9%

- Laparoscopy remains the gold standard for peritoneal
metastasis detection

[38] Original study - The amount of ascites identified on CT was an
independent predictor factor of peritoneal metastases

3.3. Magnetic Resonance Imaging (MRI)

In the past, MRI had a limited role in the evaluation of GC, especially because of the
presence of motion artifacts, the long examination time, and the high cost [41].

However, in recent decades, major advances have been made in MRI technology that
have improved the diagnostic performance in many areas of medicine, including oncology.
These improvements include rapid breath-hold imaging techniques, abdominal bandage
placement, the administration of anti-inflammatory drugs, and the use of phased array
coils. MRI has the great advantage of providing superior soft tissue contrast and multiple
imaging sequences without radiation-related risks. In addition, the high quality soft tissue
imaging achieved with MRI allows the visualization of the anatomic wall layers [42].

However, the guidelines for the treatment of GC do not specify MRI as a possible imag-
ing modality for staging. In addition, the most recent TNM guidelines do not recommend
the use of MRI for the imaging assessment of T, N or M parameters in GC [43].

Although recommendations are not yet available, the use of butylscopolamine bromide
for hypotension and the use of water as an oral contrast agent may be considered useful,
as for CT. The fat-suppressed T1-weighted gradient echo sequence, T2 weighted images
with single-shot fast spin echo or turbo spin echo, and true fast imaging with steady-state
precession (true-FISP) are common sequences for the detection of gastric cancer [42].

TNM Staging

As mentioned above, CT can be considered a useful tool for the staging of GC patients.
However, MRI should also be considered for these purposes. In fact, a meta-analysis [44]
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comparing the diagnostic value of the most common imaging modalities for the staging of
GC was published in 2012. This showed that the overall accuracy in the T-stage assessment
of MRI was statistically better than that of CT (82.9% ± 3.7% vs. 71.5% ± 2.7%). MRI also
appeared to be better than CT in terms of sensitivity in assessing the N parameter of GC
(85.3% and 77.2%, respectively).

Another meta-analysis [45] showed that the pooled sensitivity of MRI in diagnosing
GC stages T1, T2, T3 and T4 was 66%, 85%, 86% and 88%, respectively, and it was 86% for
correctly assessing the N parameter.

When analyzing the diagnostic values according to the T stage, some authors [46]
reported that CT and MRI had accuracy levels of 37.5% and 50% for the T1 stage and 81.2%
and 88.7% for the T2 stage, respectively; moreover, they showed no significant differences
in accuracy in the evaluation of T3 and T4 lesions, suggesting that MRI may be more
suitable for identifying EGC.

These aspects were confirmed in a similar study [47], which reported that MRI was
superior for detecting T1 lesions compared with CT (50% vs. 37.5% accuracy for MRI and
CT, respectively) [37], with overall accuracy levels of 60% and 48% for the T stage and 68%
and 72% for the N stage, respectively.

Finally, a 2017 systematic review [48] found that both the specificity and sensitivity of
MRI were greater than those of CT (86% vs. 83% and 88% vs. 86%, respectively), although
without statistical significance.

Advances in imaging techniques, such as the introduction of diffusion-weighted imag-
ing (DWI), may provide important data for the definitive diagnosis of various pathologic
entities. In this context, DWI can help to distinguish T4 from the lower stages of GC with
a high reliability [49]. The authors reported a sensitivity of 92.1%, specificity of 75%, and
accuracy of 89.1% for ≤T2 vs. ≥T3 lesions and a sensitivity of 75%, specificity of 88.5%,
and accuracy of 82.6% for ≤T3 vs. T4 lesions in 46 patients (Figure 9).
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Figure 9. MRI images of a T3 gastric cancer of the gastric antrum in a 79-year-old male patient.
(A) Coronal 2D image and (C) Axial 2D image of the Turbo Spin Echo (TSE) T2 sequence showing
a circumferential lesion (arrow) invading the subserosa layer with an intermediate signal intensity;
(B) Coronal 2D Balance Fast Field Echo (BFFE) sequence showing a circumferential lesion (arrow)
with a low signal intensity; (D) Axial Diffusion Weighted Image (DWI) showing an area of signal
restriction (arrow) corresponding to the tumor.

Another study reported that the diagnostic accuracy of DWI in T staging, lymph node
staging and distant metastasis is comparable to that of CT, with DWI performing better in
the detection of nodal metastasis [50]. In addition, some authors [51] have highlighted the
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use of DWI in the assessment of the T stage in patients with gastric cancer. By evaluating
51 patients who underwent MRI, the authors demonstrated that DWI can significantly
increase the overall detection accuracy for all lesions (88.2% vs. 76.5%, p = 0.031).

MRI is also an efficient tool for the diagnosis of distant metastases, such as those in the
liver and peritoneum. A recent review and meta-analysis compared the diagnostic accuracy
of MRI with hepatobiliary contrast with CT [52]: it was demonstrated that the sensitivity
of MRI was significantly higher (sensitivity and specificity per lesion of 86.9–100.0% and
80.2–98.0% versus 51.8–84.6% and 77.2–98.0% for MRI and CT respectively). In addition,
the authors demonstrated that the sensitivity of MRI increases for lesions smaller than
10 mm (RR = 2.21, 95% CI = 1.47–3.32, p < 0.001).

In addition, DWI should be considered a useful tool for the evaluation of peritoneal
dissemination. Indeed, a recently published meta-analysis highlights the good diagnostic
value for the detection of peritoneal carcinomatosis, with pooled sensitivity and specificity
values of 89% (95% confidence interval [CI]: 83–93%) and 86% (95% CI: 79–91%), respec-
tively. When included studies were grouped by primary tumor, a pooled sensitivity of 97%
(95% CI: 68–100%) was reported for gastrointestinal malignancies [53].

Table 4 summarizes the most important studies regarding the usefulness of MRI in the
staging of GC patients.

Table 4. Details of the most important papers regarding the usefulness of MRI in the staging of
GC patients.

Ref # Manuscript Type Main Findings

[44] Meta-analysis

- MRI performed better in preoperative
staging in comparison with CT

- Agreement between pre- and postoperative
TNM staging was not perfect

[45] Meta-analysis

- Good diagnostic accuracy for preoperative
T staging

- Fair diagnostic accuracy for preoperative N
staging

[46] Original study

- The overall sensitivity levels of CT and
MRI are comparable

- MRI accuracy was higher for T1 and T2
(50% vs. 37.5% and 81.2% vs. 68.7%)

[48] Meta-analysis

- MRI had a similar per-patient diagnostic
accuracy to PET

- MRI did not outperform CT in terms of
staging

[49] Original study

- DWI can increase the sensitivity of T and N
staging

- Preoperative ADC values correlated with
pT staging

- A significant difference in ADC between
≤T3 and T4 stages was found

[50] Original study

- The sensitivity of DWI in N staging was
75%, 79.3%, and 60% for N1, N2 and N3

- The specificity of DWI in N staging was
84.6%, 77.3%, and 97.6%, for N1, N2, and
N3

[51] Original study

- The accuracy of MRI increased by adding
DWI in comparison with using T2WI and
contrast-enhanced sequences alone (88.2%
vs. 76.5%)
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3.4. Comparison between Techniques

Recently, several studies have compared the two imaging modalities and demonstrated
that CT has higher accuracy for T staging than EUS [29,54,55]. In this regard, since 2005 [54],
it has been highlighted that the accuracy of CT in T-staging almost equals that of EUS and
that CT could replace EUS for preoperative staging.

Similarly, in a study involving 227 patients [56], CT and EUS were shown to have simi-
lar T-staging accuracy levels in tumors without ulcerative portions, whereas CT performed
significantly better for ulcerative tumors (p < 0.0001).

In agreement with the above studies, some authors [57] found that the accuracy of T
staging with EUS and CT was 87.5% and 83.3%, respectively, whereas the accuracy of N
staging was 79.1% and 75.0%.

Analogous results were reported [58] when comparing VG and EUS for the detection
of gastric cancer. The authors showed that the prediction of the T stage was similar
between the two techniques with accuracy levels of 82.2% and 83.7%, respectively. In
another study in which MRI, CT, and EUS were performed in the same population of
gastric cancer patients, the results showed the highest sensitivity for EUS (94%) compared
with MDCT (65%) and MRI (76%), underscoring the primary role of this technique in
detecting locally advanced tumors. Conversely, MRI and CT yielded significantly higher
specificity levels, demonstrating that both techniques are better able to detect tumors
without serous invasion [59].

In ulcerated EGC, the accuracy of EUS was shown to be lower compared to lesions
without ulceration (30.8% vs. 93.3%), while CT showed no significant differences between
them (61.5% vs. 86.7%) [60].

Finally, a diagnostic meta-analysis [61] was used to determine the accuracy of CT and
EUS in the staging of GC. The results indicated that EUS is superior to CT for T1 staging
(AUC 0.903 and 0.774, respectively), whereas no significant differences were found for
T2–T4 lesions (AUC 0.845 and 0.793, 0.814 and 0.804, and 0.846 and 0.930 for T2, T3 and T4,
respectively) or stage N1 (AUC 0.690 and 0.693, respectively). Subsequently, the sensitivity
of CT was significantly higher for N2 (0.562 vs. 0.301) and N3 (0.211 vs. 0.162).

3.5. Positron Emission Tomography (PET)

Even through PET-CT is considered a useful diagnostic tool for different cancer types,
there is no evidence or recommendations by the most important international guidelines
that it is a necessary examination step in the staging of GC [62]. By searching the inter-
national literature, it is possible to understand the lack of experience worldwide, which
may be due to the initial reports which stated that gastric tumors are frequently not fluo-
rodeoxyglucose (FDG)-avid [62]. On the other hand, FDG-PET is useful, particularly for the
detection of the node status and, consequently, to determine the best treatment option. In
this setting, a recently published paper [63] demonstrated that the majority of patients have
an FDG-avid tumor (80.6%) and that the T stage is strictly associated with the FDG-avidity
(T2–3 OR = 3.38 while T4 OR = 7.46). On the other hand, the authors demonstrated that
about 25% of nodes are FDG-avid. They finally concluded that the sensitivity and specificity
for metastatic disease are more than acceptable (49.3% and 97.1%, respectively).

FDG-PET can play a role in determining the management of GC patients. More
recently, some authors [64] conducted a systematic review of data from 11 studies repre-
senting more than 2000 patients from the last decade. The authors reported management
changes in 3 to 29% of cases, while no studies reported the risk of recurrence or survival
rates in patients staged with or without FDG-PET.

Even through FDG-PET has some limitations in the detection and T staging, different
studies have investigated its importance in the evaluation of nodes. CT is known to be a
reliable tool for identifying pathological nodes [35], even though it is not too robust, as
previously mentioned. On the other hand, FDG-PET can be considered a reliable imaging
examination method to identify small metabolically active nodes [65]. During the last year,
a systemic review [65] aimed to determine the added value of FDG-PET in the detection
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of node metastases. The authors underlined that the SUVmax is a metabolic parameter
that is commonly used to detect the node status. However, SUVmax is susceptible to
the blood glucose concentration, the timing of the uptake, respiratory motion, and the
interobserver variability. To endorse the usefulness of SUVmax, a published study that
enrolled 151 patients with confirmed node metastasis demonstrated that 18% of the patients
showed positive FDG uptake and, by using a cutoff value of 2.8, it was possible to predict
relapse-free survival (RFS) and (OS) [66]. By combining pathological data and imaging
features, they demonstrated that SUVmax can be considered an independent prognostic
factor for OS (HR = 2.80).

Not only metabolic activity but also number counts can be used. In 2016, by ret-
rospectively enrolling 50 patients, some authors [67] demonstrated that the number of
metabolically positive nodes correlated with histological results (r = 0.694, p = 0.001). In
the final model, the authors demonstrated that only surgical outcomes (R1 vs. R0) and the
number of metabolically positive nodes (≤2 vs. ≥3) were independent factors for poor OS.

To move forward and better depict primary tumors, in recent years, the use of labeling
peptides has been proposed with the introduction of 1,4,7,10-tetraazacyclodecane-1,4,7,10-
tetraacetic acid (DOTA), a universal chelator that is capable of forming stable complexes
with radiotracers of the metal Gallium (Ga). Moreover, different labeling peptides were
developed to be taken up by gastric cancer cells with a special focus on fibroblast-activated
protein (FAP) conjugated with DOTA. In this setting, different studies have reported that
Ga-FAPI is taken up more intensely by tumors than FDG, resulting in a higher sensitivity
for the detection of primary lesions and metastases [68]. In 2022, a study [69] enrolled 61
patients and compared FDG and Ga-FAPI. The authors demonstrated a higher positive
detection rate for Ga-FAPI in comparison with FDG in the evaluation of primary tumors. On
the other hand, they concluded that both modalities underestimated N staging compared
with pathological N staging. Similar results were found in two studies that enrolled 35 and
25 patients with gastric cancer, respectively [70]. Moreover, one of them [70], demonstrated
that Ga-FAPI exhibited a higher sensitivity level compared to FDG for the N status (97.4%
vs. 42%) and the detection of distant metastases (97.2% vs. 43.1%). Similar results were
reported regarding the node status, indicating that Ga-FAPI detected more positive nodes
than FDG (637 vs. 407), even if both modalities underestimated them in comparison with
pathological staging [70].

Finally, even though the application of PET is not yet recommended by international
guidelines, all reported studies demonstrated its potential for detecting not only the primary
tumor, reducing the false negative rate, but also nodal involvement and distant metastases.

4. New Frontiers
4.1. CT Volumetry

Recently, CT volumetric rendering techniques have been used to generate three-
dimensional (3D) volume-rendering images, aiding in the calculation of the exact volumes
of solid organs or tumors.

There are two CT volumetry methods. Two-dimensional volumetry is based on
manually segmented regions of interest (ROIs): the final gastric volume is obtained by mul-
tiplying the ROI areas with the slice thickness. On the other hand, 3D volumetry is a semi-
automatic segmentation process that requires dedicated post-processing softwares [71].

Based on these approaches, it has been demonstrated that CT volumetry results are
comparable to EUS in terms of their accuracy for T2 to T4 staging (83% to 95%), and the
tumor volume was proposed as adjunct information for the prediction of metastatic disease
and the risk of peritoneal spread [72].

In another study, it was reported that the tumor volume of the oesophagogastric
junction is an independent risk factor for node metastasis [73]. Based on these factors,
some authors have demonstrated that the tumor volume, using pathological data as the
reference standard, is correlated with survival, and it has been suggested as a significant
prognostic factor [74].
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4.2. Perfusion CT (pCT)

Perfusion Computed Tomography (pCT) is a minimally invasive technique that allows
quantitative and qualitative evaluation of tissue perfusion by injecting iodinated contrast
agents and performing consecutive acquisitions to estimate time enhancement curves.
Some studies have proposed that pCT could be used for GC patients, and computed
parameters can provide important information regarding tumor angiogenesis [75,76].

Indeed, it has been reported [75] that the blood volume of GC is significantly correlated
with the microvessel density, which may be considered valuable information for preopera-
tive assessment. Malignant tumors, including GC, might have leaky vessels produced by
neoangiogenesis, and leaky vessels within the tumor can increase the permeability surface,
an important data point that is deducible from pCT [76].

Moreover, tumor perfusion parameters can show a decrease in advanced GC cases,
suggesting that they play a role in the identification of more aggressive subtypes, as
previously reported [44]. The authors compared three groups with different degrees
of GC demonstrating significant differences in terms of blood flow (BF), blood volume
(BV) and the permeability surface (PS) when comparing well-, intermediate, and poorly
differentiated GC.

4.3. Radiomics and Artifical Intelligence (AI)

During previous decades, radiomics has been considered a widely applicable tech-
nique for different pathological conditions that may also play a role in the detection of GC.
Firstly, radiomics can aid in the differential diagnoses between GC subtypes: a study of
171 patients demonstrated that radiomic signature had AUC values of 0.755, 0.710 and
0.712 in training, internal and external validation cohorts, respectively [77].

Moreover, a recently published systematic review [78] enrolled 25 studies including a
total of more than 10000 patients. The most commonly used imaging technique was CT
(96% of the included studies). The authors reported that radiomics is particularly useful
for determining the treatment response. One of the most important published papers [79],
which enrolled 292 patients, demonstrated that a CT-based radiomics model could predict
the early detection of pathological downstaging following neoadjuvant chemotherapy in
advanced GC.

Promising results were found also in a study of 955 patients [80] which aimed to predict
peritoneal dissemination in GC: the authors demonstrated that the radiomic signature can
be considered an independent predictor in both test and validation cohorts.

Similarly, AI plays a potential role in the evaluation of GC patients. AI techniques can
be applied to the diagnosis of GC, especially by using EUS: different systems may play
roles in increasing the accuracy of early detection of the primary tumor [81]. Moreover,
deep learning can increase the accuracy of the detection of peritoneal dissemination. A
recent multicenter retrospective study, enrolling 1978 patients, reported that the model
achieved an AUC of 0.946, with good overall sensitivity and specificity levels (75.4% and
92.9%), higher than clinicopathological factors (AUC = 0.510–0.630) [82].

AI can be used to predict treatment outcomes, and more promising results were
published in 2021 [83]. The authors, by enrolling 2209 patients, demonstrated that the
deep-learning model had a high diagnostic accuracy in the assessment of tumor stroma
(AUC = 0.960): this factor can be considered an independent predictor of DFS and OS in
test and validation cohorts.

5. Future Directions

The application of different imaging techniques can help to stage gastric cancer pa-
tients, in particular, by using MRI, thanks to its high soft-tissue resolution and the usefulness
of DWI. In this regard, further studies should be focused on the application of MRI in
the detection and characterization of primary tumors and local nodes. Moreover, new
radionuclides, including DOTA, should be deeply evaluated to better determine their
applicability in clinical practice.
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6. Conclusions

Although CT remains the preferred diagnostic technique for GC staging, along with
EUS, which is the most accurate method for EGC, all of the diagnostic techniques described
are fundamental for the comprehensive evaluation of patients with GC and to better
determine methods for their appropriate management. Thus, the accuracy of CT and EUS
could be certainly improved through the use of VG, MRI, volumetric CT and pCT, especially
when distinguishing between nonadvanced and advanced GCs, for the evaluation of distant
metastasis and for the assessment of treatment response.
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