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Abstract: The novel coronavirus (COVID-19), also known as SARS-CoV-2, is a highly contagious 

respiratory disease that first emerged in Wuhan, China in 2019 and has since become a global pan-

demic. The virus is spread through respiratory droplets produced when an infected person coughs 

or sneezes, and it can lead to a range of symptoms, from mild to severe. Some people may not have 

any symptoms at all and can still spread the virus to others. The best way to prevent the spread of 

COVID-19 is to practice good hygiene. It is also important to follow the guidelines set by local health 

authorities, such as physical distancing and quarantine measures. The World Health Organization 

(WHO), on the other hand, has classified this virus as a pandemic, and as a result, all nations are 

attempting to exert control and secure all public spaces. The current study aimed to (I) compare the 

weekly COVID-19 cases between Israel and Greece, (II) compare the monthly COVID-19 mortality 

cases between Israel and Greece, (III) evaluate and report the influence of the vaccination rate on 

COVID-19 mortality cases in Israel, and (IV) predict the number of COVID-19 cases in Israel. The 

advantage of completing these tasks is the minimization of the spread of the virus by deploying 

different mitigations. To attain our objective, a correlation analysis was carried out, and two distinct 

artificial intelligence (AI)-based models—specifically, an artificial neural network (ANN) and a clas-

sical multiple linear regression (MLR)—were developed for the prediction of COVID-19 cases in 

Greece and Israel by utilizing related variables as the input variables for the models. For the evalu-

ation of the models, four evaluation metrics (determination coefficient (R2), mean square error 

(MSE), root mean square error (RMSE), and correlation coefficient (R)) were considered in order to 

determine the performance of the deployed models. From a variety of perspectives, the correspond-

ing determination coefficient (R2) demonstrated the statistical advantages of MLR over the ANN 

model by following a linear pattern. The MLR predictive model was both efficient and accurate, 

with 98% accuracy, while ANN showed 94% accuracy in the effective prediction of COVID-19 cases. 
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1. Introduction 

In December 2019, Wuhan, China reported the first cases of COVID-19, also known 

as the novel coronavirus or SARS-CoV-2. The virus is thought to have originated in bats 

and was transmitted to humans through an intermediate animal host, possibly pangolins. 

The first cases of COVID-19 were identified in Wuhan in December 2019 and were initially 
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linked to a seafood market in the city [1]. However, it was later determined that the virus 

was also present in other areas of the market, suggesting that it was being transmitted 

from person to person. As the number of cases in Wuhan increased, the Chinese govern-

ment implemented measures to try to control the spread of the virus, including quaran-

tining affected areas and suspending travel to and from Wuhan. However, the virus had 

already spread to other parts of China and other countries, and it quickly became a global 

pandemic. Since the outbreak began, there have been more than 100 million confirmed 

cases of COVID-19 and more than 2 million deaths worldwide. The pandemic has had a 

significant impact on global health, economies, and daily life, with many countries imple-

menting measures, such as lockdowns, travel restrictions, and mask mandates, in an effort 

to slow the spread of the virus [1,2]. The COVID-19 pandemic has affected countries all 

around the world, with some regions being more severely impacted than others. As of 

January 2021, the countries with the highest number of confirmed cases of COVID-19 in-

cluded the United States, India, and Brazil. These countries have also reported high num-

bers of deaths due to the virus. Other countries that have been significantly affected by 

the pandemic include Russia, Argentina, Mexico, and Colombia. It is important to note 

that the impact of the pandemic can vary within countries as well. Some regions or popu-

lations may be more severely affected due to a variety of factors, such as the availability 

of medical resources and the effectiveness of containment measures. It is also worth noting 

that the reported number of cases and deaths can be affected by a variety of factors, such 

as the availability of testing and the accuracy of reporting. As a result, it is possible that 

the true impact of the pandemic may be different from what has been reported [3]. 

SARS-CoV-2 is primarily spread through respiratory droplets produced when an in-

fected person talks, coughs, or sneezes. These droplets can be inhaled by people who are 

in close proximity to the infected person. This is why it is important to practice good hy-

giene. It is important to note that COVID-19 can be transmitted by people who do not 

have any symptoms, so it is important to follow guidelines set by health authorities [4]. 

The symptoms of COVID-19 can range from mild to severe. The most common symp-

toms of COVID-19 include fever, dry cough, and tiredness. The less common symptoms 

include aches/pains, sore throat, diarrhea, conjunctivitis, headache, loss of taste or smell, 

rash on the skin, and discoloration of the fingers or toes. Severe symptoms, which may 

require hospitalization, include difficulty breathing or shortness of breath, chest pain or 

pressure, and loss of speech or movement [4]. 

The mortality rate of COVID-19 can vary depending on a number of factors, includ-

ing the age and overall health of the individual, the severity of the illness, and the availa-

bility of medical treatment. Overall, the mortality rate for COVID-19 is thought to be 

around 2%, although this number can vary widely depending on the population being 

studied. For example, the mortality rate may be higher among older individuals and those 

with underlying health conditions, such as heart disease or diabetes. It is important to 

note that the mortality rate can also be affected by the availability of medical resources 

and the effectiveness of interventions, such as oxygen therapy and mechanical ventilation. 

In situations where these interventions are not available or are not used in a timely man-

ner, the mortality rate may be higher. It is also important to note that the true mortality 

rate of COVID-19 may be higher than reported due to underreporting and the fact that 

some people who have the virus may not have been tested or may not have had their cases 

reported [5]. 

There are a number of different tests that can be used to diagnose COVID-19. The 

type of test used can depend on a number of factors, including the availability of the test, 

the severity of the illness, and the stage of the infection. The most common types of tests 

for COVID-19 include molecular tests, which detect the genetic material of the virus in a 

sample from the respiratory tract (such as a swab from the nose or throat); antigen tests, 

which detect proteins from the virus in a sample from the respiratory tract; and antibody 

tests, which detect antibodies produced by the body in response to the virus in a blood 

sample. Molecular tests, also known as PCR (polymerase chain reaction) tests, are the 
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most accurate and are typically used to diagnose active infections. Antigen tests are gen-

erally less accurate but can provide results more quickly. Antibody tests can be used to 

detect past infections, but they are not as reliable for diagnosing active infections. It is 

important to note that the accuracy and availability of these tests can vary [6]. 

It is crucial to compare and contrast the rates of positive cases, the number of recov-

eries, the comparison of mortality cases, evaluate the effects of the vaccines, and examine 

other factors affecting the spread of this virus due to a lack of test kits, ventilators, oxygen 

tanks, hospital beds, and proper treatment or vaccine. In a similar vein, adequate prepa-

rations can be made to reduce casualties and improve situational awareness [7]. For in-

stance, the government can prepare for the expected number of cases up until a certain 

day by analyzing the data in this study and deciding, in advance, what kind of medical 

supplies are needed or what kind of precautions can be taken to reduce the number of 

casualties. 

Recently, machine learning techniques have increasingly been used in the healthcare 

sector, especially for the quick and precise prediction of COVID-19 infection. A study by 

[8] reported predicated cases of COVID-19 using the MLR model. Another study by [9] 

predicted the spread of COVID-19 using a machine-learning model called the support 

vector regression method. When they were evaluated using the evaluation parameters, 

the models showed efficiency and accuracy in predicting COVID-19 cases. Similarly, a 

study by [10] was able to identify factors that are associated with the transmission of 

COVID-19 using the machine learning approach. Another study by [11] used the least 

square support vector machine models to predict COVID-19 confirmed cases. DNA se-

quences based on machine learning were deployed to identify the biomarkers of COVID-

19 in one prior study [12]. A short-term prediction of COVID-19 cases in Brazil was re-

ported in another study [13]. A review by [14] reported the efficiency of artificial intelli-

gence models in forecasting and diagnosing COVID-19. Similarly, review studies [1,15,16] 

have reported the diagnosis, classification, and prediction of COVID-19 from chest CT 

images using artificial intelligence models. Further, according to a study analyzing the 

effect of environmental parameters on forecasting daily COVID-19 cases, the inclusion of 

temperature and relative humidity as additional inputs in a multivariate LSTM model 

resulted in an average of 64% improvement in performance compared to univariate mod-

els. The study used data from 9 cities across India, the USA, and Sweden with varying 

climatic zones and found that correlations with temperature were generally positive for 

cold regions and negative for warm regions, while relative humidity showed mixed cor-

relations. The results suggest that the inclusion of environmental parameters could aid in 

improving the management and preparedness of the healthcare system during the pan-

demic, although other confounding factors can affect the forecasting power [17]. Similarly, 

a novel multi-stage deep learning model has been presented to forecast the number of 

COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1–

4 weeks. The model relies on epidemiological, mobility, survey, climate, demographic, 

and SARS-CoV-2 variant frequencies data and has been shown to consistently outperform 

the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, 

especially for the longer-term forecast horizon. The study highlights the potential value 

of variant frequency data for use in short-term forecasting to identify forthcoming surges 

driven by new variants. The proposed forecasting framework improves upon the availa-

ble state-of-the-art forecasting tools currently used to support public health decision-mak-

ing with respect to COVID-19 risk [18]. Finally, a study by [19] aimed to predict the inci-

dence of COVID-19 in Iran using data obtained from the Google Trends website. Linear 

regression and LSTM models were used, and the most effective factors aside from the 

previous day's incidence were the search frequency of handwashing, hand sanitizer, and 

antiseptic topics. The results suggested that data mining algorithms can be employed to 

predict trends of outbreaks and support policymakers and healthcare managers in plan-

ning and allocating healthcare resources accordingly. 
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Based on what has been presented in our reviewed studies so far, it is clear that most 

studies employing data-driven models applied classical linear models, such as MLR and 

others like it, but they also made use of traditional non-linear models (e.g., SVM, LSTM, 

etc.). To the best of the authors’ knowledge, however, since the announcement of AI-based 

models in the field of health sciences, no article has been published depicting a black-box-

based Pearson correlation approach combining the applications of ANN and the tradi-

tional linear regression MLR for the prediction of COVID-19 cases with a focus in Israel 

and Greece. This would be a significant advance in the understanding of the COVID-19 

pandemic. However, this is the case despite the fact that ANN and MLR are two of the 

most popular statistical approaches. This study had four objectives. The first was to com-

pare and contrast the weekly COVID-19 cases in different countries, such as Israel and 

Greece. The second goal was to analyze the differences between Israel and Greece in terms 

of monthly COVID-19 mortality cases. Thirdly, we aimed to determine the correlation be-

tween Israel’s vaccination rate and the number of deaths caused by COVID-19 and to re-

port the findings. Lastly, we aimed to predict the incidence of COVID-19 cases in Israel. 

The benefit of completing these tasks is that various mitigations can be put into place, 

reducing the likelihood that the virus will spread. We used a correlation analysis and two 

different AI-based models, an ANN and a classical linear regression MLR, to predict cases 

of COVID-19 in Israel by using correlated variables as inputs. To learn how well each 

model performed in practice, we calculated its determination coefficient (R2), mean 

squared error (MSE), root mean squared error (RMSE), and correlation coefficient (R). The 

promising outcomes showed the superiority of the MLR predictive model, in terms of 

efficiency and accuracy, in the effective prediction of future COVID-19 cases. 

2. Material and Methods 

2.1. Data Collection 

The COVID-19 cases dataset was collected from kaggle.com and represents cases 

from all continents. There was a total of 231,871 COVID-19 case records in the database, 

along with 53 attributes pertaining to those cases in various parts of the world. The exper-

imental dataset was comprised of observations made from 2020 to 2022. In order to train 

the proposed model, a dataset with 52 input variables was used. 

2.2. Filtering and Pre-Processing the Data 

During this process, unnecessary columns were eliminated, and missing values were 

added [20,21]. The next step was to arrange the dataset according to the order that would 

enable evaluation. During the pre-processing phase [22], a table of records was converted 

into a more usable format through a series of steps: 

• Data from two countries (Greece and Israel) were collected from the overall dataset 

to enable us to carry out the evaluation. 

• Columns and rows containing no valid data were deleted. 

• For our prediction, only datasets from Israel were used to train the model. 

• Data normalization [21,22] was carried out prior to modeling using Equation (1). 

y = 0.05 + (0.95 × (
x − xmin

xmax − xmin

)) (1) 

where x  is the measured data and xmin and xmax are the minimum and maximum values, 

respectively. 
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2.3. Prediction Models 

2.3.1. Artificial Neural Network (ANN) 

Machine learning algorithms that mimic the human brain in structure and operation 

are known as artificial neural networks. They process and transmit data via layers of “neu-

rons” (cells) that are connected to one another. A neuron’s activation is the result of a 

simple computation that the algorithm performs based on the information it receives from 

other neurons. The results of this calculation are then communicated to the neurons of the 

following layer. With some tweaks to the weights and biases of the connections between 

neurons, an artificial neural network can learn to perform a wide variety of tasks. Image 

recognition, text translation, and stock market forecasting are just some of the many tasks 

that can be taught to a neural network [23]. 

Feedforward neural networks, convolutional neural networks, and recurrent neural 

networks are just a few examples of the many varieties of artificial neural networks. Each 

neural network is built to accomplish a specific task, and this determines its unique struc-

ture. To perform a given task, an artificial neural network’s formula will vary depending 

on the type of network used, although neural networks frequently employ a small set of 

standard mathematical operations. The dot product, which quantifies the degree to which 

two vectors are similar, is one of the most fundamental operations in neural networks. 

The formula for the dot product of two vectors, x and w, is as follows: 

dot (x, w) = ∑x[i] * w[i]  (2) 

where x[i] and w[i] are the i-th elements of the vectors x and w, respectively, and the sum 

is taken over all elements of the vectors. 

Another common operation used in neural networks is the activation function, which 

is applied to the output of the dot product to determine the output of a neuron. There are 

many different activation functions that can be used, such as the sigmoid function, the 

tanh function, and the ReLU function. The specific formula for an activation function will 

depend on the function being used. For example, the sigmoid function is defined as: 

f(x) = 1/(1 + e−x) (3) 

where e is the base of the natural logarithm. 

Finally, a loss function, which evaluates how far the neural network’s prediction de-

viates from the actual result, is typically used to compute the neural network’s output. 

Adjusting the neural network’s weights and biases to minimize the loss is how it is opti-

mized. The neural network’s loss function formula is unique to the task at hand. 

For many challenging problems in science and technology, ANNs trained with 

FFNN-BP have proven to be invaluable tools. 

Additionally, FFNN-BP calls for training the network with trained input data, which 

is then processed within the network and transmitted to the output layer. If mistakes are 

made, they are passed around the system until the desired result is achieved. The FFNN-

BP algorithm’s central idea is to minimize the network’s error so that it can fully under-

stand the training data and make more precise predictions of the true value [22]. During 

operation, the initial weights are multiplied by the inputs, and the resulting value is trans-

ferred to the second layer, where it remains until it reaches the output layer, as shown in 

the following equation: 

𝑧𝑖 =  ∑ 𝑤𝑖𝑗𝑥𝑖𝑗
𝑚
𝑗=1   (4) 

where xij is an illustration of the input, yi is the consequent sum of outputs from the ith 

node, and zi is the weight transferred from the jth input to the ith node. Error is calculated 

by subtracting the predicted values from the goal value, and this is what backpropagation 

is utilized for. In most cases, the output layer is used as a starting point, followed by the 

input layer. The error node, j, in layer l is represented by the symbol (l)j, which indicates 

the discrepancy. 
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The mathematical expression for the error term for a training set (xj, yj) can be found 

below in Equation form: 

𝑒𝑝 =  𝑦𝑑 − 𝑦𝑎            (5) 

if 𝑦𝑑  represents the output of neuron p and 𝑦𝑎 represents the actual output produced 

by the training model. 

However, the generalization ability and capacity of the neural network can be im-

pacted by the presence of a large number of neurons in the hidden layer. Because lower 

neurons are unable to generate the required level of prediction accuracy, this raises the 

computational burden. One way to think about learning is as an ongoing process in which 

the biases and connection weights are tweaked until the desired output is achieved. This 

process of fine-tuning will keep going on until the desired result is achieved. This process 

may be performed under close observation or independently. Reducing the dispersion 

between the computed value and the desired value is a common supervised learning ob-

jective. Figure 1, demonstrates the three-layer, feed-forward neural network architecture 

used in the current study. 

 

Figure 1. The three-layer feed-forward neural network architecture used in the current study. 

2.3.2. Multiple Linear Regression (MLR) 

Modeling the linear relationship between a dependent variable and a set of inde-

pendent variables is the goal of MLR, a statistical technique. A dependent variable’s value 

can be predicted given the values of the independent variables [24]. 

The dependent variable in an MLR model is modeled as a linear combination of the 

independent variables plus an error term that is assumed to be random. Model parame-

ters, or the coefficients of the independent variables, are estimated with the help of an 

optimization algorithm, such as least squares. 

The general form of an MLR model can be written as: 

y = b0 + b1x1 + b2x2 + ... + bn * xn + e  (6) 

where y is the dependent variable, x1, x2, ..., xn are the independent variables, b0, b1, ..., bn 

are the model parameters, and e is the random error term. 

MLR is widely used in many fields, including economics, finance, and engineering, 

to analyze and predict the relationships between variables. It is a simple and effective 

method for modeling linear relationships, but it may not be suitable for modeling nonlin-

ear relationships. 
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2.4. Model Validation 

The primary focus of data-driven models is to obtain reliable forecasts for undiscov-

ered datasets by fitting the model to the available data in accordance with the indicators 

being used [25]. In most cases, this is achieved by adjusting the model to better suit the 

data. Overfitting creates situations where training success does not necessarily translate 

to test success [26]. For this reason, overfitting is problematic. Holdout, leave-one-out, k-

fold cross-validation, and other validation methods are just some of the options available. 

Cross-validation, also known as k-fold cross-validation, is one such method. As an alter-

native to the complex k-fold method, the holdout strategy is often viewed as more user-

friendly [27]. At this point, the data are typically split randomly in half, with one half used 

for training and the other for testing [28]. One of the main advantages of the k-fold cross-

validation mechanism is that in each round, the validation set and the training sets are 

completely separate from one another. As a result, a performance goal is defined, which 

serves as a cornerstone for subsequent model optimization. Considering the 4-fold cross-

validation, we divide the collected data into two samples, with 70% going toward the 

training phase and 30% to the testing phase. It’s worth noting that there are different ap-

proaches that can be taken to validate and divide the data [29,30]. 

2.5. Model Performance Criteria 

In order to determine how well a data-driven method performed, it is necessary to 

compare the predicted values with the actual ones that were collected [31]. The models 

were evaluated in this study using several different statistical error measures, as well as 

the determination coefficient (R2) as a goodness-of-fit measure [32]. Other measures used 

included the mean squared error (MSE), the root mean squared error (RMSE), the mean 

absolute percentage error (MAPE), and the correlation coefficient (R): 

𝑅2 = 1 −
∑ [(𝑌)𝑜𝑏𝑠,𝑗−(𝑌)𝑐𝑜𝑚,𝑗]

2𝑁
𝑗=1

∑ [(𝑌)𝑜𝑏𝑠,𝑗−(𝑌)̅̅ ̅̅̅
𝑜𝑏𝑠,𝑗]

2𝑁
𝑗=1

  (7) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑜𝑏𝑠𝑖−𝑌𝑐𝑜𝑚𝑖)2𝑁

𝑖=1

𝑁
  

(8) 

MSE =  
1

𝑁
 ∑ (𝑌𝑜𝑏𝑠𝑖 − 𝑌𝑐𝑜𝑚𝑖)2𝑁

𝑖=1  
  

(9) 

 𝑅 =
∑ (𝑌𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)(𝑌𝑐𝑜𝑚−�̅�𝑐𝑜𝑚)𝑁

𝑖=1

√∑ (𝑌𝑜𝑏𝑠−�̅�𝑜𝑏𝑠)2𝑁
𝑖=1 ∑ (𝑌𝑐𝑜𝑚−�̅�𝑐𝑜𝑚)2𝑁

𝑖=1

 (10) 

where N is the number of data points, Y obsi is the number of data points that have been 

observed, Y is the average value of the observed data, and Y comi is the computed value. 

3. Application of Results and Discussion 

Data-driven methods, such as MLR and ANN, were used to predict COVID-19 cases 

in Israel based on related independent variables. Prior to detailing the model calibration, 

the results of the statistical analysis of the data have been presented in Table 1. Analyzing 

data helps determine the navigational and scientific value of the data, thus fixing prob-

lems that could otherwise prevent an accurate simulation of the results. MATLAB 9.3 

(R2019A) was used in the process of developing the model that was used in the construc-

tion of the ANN model. To predict cases of COVID-19 in Israel, R-programming software 

2017 and Excel were used to run correlation analyses. To develop the classical linear re-

gression (MLR) model using Excel, the average of the segmented, data-driven correlations 

of 53 input variables was taken. 
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Table 1. Results of the Models. 

Training 

Models R2 R RMSE MSE 

ANN 0.846 0.919 0.035 0.001 

MLR 0.971 0.985 0.037 0.001 

Testing 

ANN 0.943 0.971 0.056 0.003 

MLR 0.976 0.988 0.057 0.004 

3.1. Descriptive Analysis 

Figures 2–5 shows that the numbers of reported cases of COVID-19 in Greece and 

Israel were significantly correlated with the number of patients admitted to hospitals each 

week. On the other hand, when compared to Greece, Israel reported a greater number of 

cases of COVID-19 each week. In addition to this, Greece reported an overall increase in 

the number of deaths as well as a regular increase in the number of newly reported deaths 

on a monthly basis, as shown in Figures 2–5. There was not even a hint of an inverse cor-

relation found when looking at the input variables, which, as shown in Figures 2–5, all 

contributed to an increase in the number of cases of COVID-19 and the accumulated death 

cases for Greece and Israel, respectively. 

 

Figure 2. Weekly COVID-19 cases in Greece. 
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Figure 3. COVID-19 mortality cases in Greece. 

 

Figure 4. Weekly COVID-19 cases in Israel. 

 

Figure 5. COVID-19 mortality cases in Israel. 
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As demonstrated in Figure 6, there was a strong correlation between total vaccina-

tions and total death cases in Israel. The rate of vaccination, therefore, did not influence 

the mortality rate. 

 

Figure 6. Vaccination influence on COVID-19 mortality cases in Israel. 

3.2. Results of the Models 

From the comparative predictive results of the models, as seen in Table 1, it can be 

clearly observed that the MLR model and the ANN model were capable of predicting 

COVID-19 cases. Therefore, the MLR and ANN models can act as reliable tools in predict-

ing COVID-19 cases in the future. The results in Table 1 can be further discussed compar-

atively based on their corresponding determination coefficients (R2) using a clustered col-

umn and funnel chart (see Figures 7–10). For R2 and R, the training results for ANN were 

84% and 91%, while the results for MLR were 97% and 98% accuracy. Further, for the 

testing results, R2 and R for ANN were 94% and 97%, while the results for MLR were 97% 

and 98% accuracy. We can present and organize the findings from our predictive compar-

ison in the following way: Regarding the prediction of COVID-19, MLR was superior to 

ANN, and this result is similar to the findings of [6,7,23,24,33,34]. Additionally, ref. [35] 

showed that the ANN model adopted to estimate and quantify the impact of the response 

measures imposed by many countries around the world to suppress the rapid spread of 

the COVID-19 pandemic on urban traffic mobility was capable of mapping the complex 

relationship between traffic flows and the response measures with a high level of accuracy 

and good performance. The predicted values were close to the observed ones, with a co-

efficient of determination (R2) of 0.9761. Similarly, a study by [36] adopted the ANN model 

to forecast the number of daily cases and deaths caused by COVID-19, in a generalized 

way, to fit different countries’ spread. The ANN model developed in this study showed 

86% overall accuracy in predicting the mortality rate and 87% in predicting the number of 

cases, which makes it a reliable tool to predict the spread of the virus. Finally, a study by 

[37] predicted the daily COVID-19 cases in 10 African countries using machine learning 

models. The study concludes that ANN was among the models that offered accurate pre-

dictions that could assist governments and health organizations in making informed de-

cisions and evaluating measures to prevent and control COVID-19. 
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Figure 7. MLR training data showing experimental and predicted values. 

 
Figure 8. MLR testing data showing experimental and predicted values. 

 
Figure 9. Clustered column of the determination coefficients (R2) of the models in both the training 

and testing stages. 
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Figure 10. Funnel chart of determination coefficients (R2) of the models in both the training and 

testing stages. 

The MLR model was found to be a satisfactory and reliable tool based on the com-

parative outcome. Moreover, the corresponding determination coefficients (R2) in Table 1 

demonstrate the statistical advantages of MLR over the ANN model, i.e., the data follows 

a linear pattern. Additionally, the ANN model produces negative values during the sim-

ulation, which may reduce its performance effectiveness. Figures 9 and 10 show a clus-

tered column and a funnel chart of the model’s performance showing how the data fol-

lowed a linear pattern, with a scale of R2 from 0 to 1 for both the training and testing 

phases. For R2, the training result for ANN was 84% while the result for MLR was 97% 

accuracy, and for the testing result, the R2 for ANN was 0.94%, while the R2 for MLR was 

0.97% accuracy. 

4. Conclusions 

In order to predict COVID-19 cases, this study investigated two data-driven models, 

one based on artificial neural networks (ANN) and the other using traditional linear re-

gression (MLR). Input parameters were selected from a set of potentially relevant varia-

bles. The results demonstrated the MLR and ANN models’ potential as useful instruments 

for the prediction of COVID-19 cases. Additional models, such as ensemble models, opti-

mization models, and regression models, could be used to improve this study and en-

hance the performance of the models. 
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