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Abstract: Henssge’s nomogram is a commonly used method to estimate the time of death. However,
uncertainties arising from the graphical solution of the original mathematical formula affect the
accuracy of the resulting time interval. Using existing machine learning techniques/tools such as
support vector machines (SVMs) and decision trees, we present a more accurate and adaptive method
for estimating the time of death compared to Henssge’s nomogram. Using the Python programming
language, we built a synthetic data-driven model in which the majority of the selected tools can
estimate the time of death with low error rates even despite having only 3000 training cases. An
SVM with a radial basis function (RBF) kernel and AdaBoost+SVR provided the best results in
estimating the time of death with the lowest error with an estimated time of death accuracy of
approximately ±20 min or ±9.6 min, respectively, depending on the SVM parameters. The error in
the predicted time (tp[h]) was tp ± 0.7 h with a 94.45% confidence interval. Because training requires
only a small quantity of data, our model can be easily customized to specific populations with varied
anthropometric parameters or living in different climatic zones. The errors produced by the proposed
method are a magnitude smaller than any previous result.

Keywords: forensic pathology; post mortem interval; multidisciplinary approach; machine learning;
support vector machine

1. Introduction

The determination of the post mortem interval (PMI) is one of the oldest questions in
forensic medicine, which has posed major challenges for experts since its inception and
remains the focus of significant research. Both mathematical [1–4] and nonmathematical
methods are used to address the problem [5]. The process of changing the temperature
of the body involves a complicated interplay of various biological processes and factors,
yet it is nevertheless characterized by physical laws. Early studies suggested that the
Newtonian cooling law was unsuitable for mathematically characterizing the process be-
cause the cooling curve is sigmoidal rather than exponential due to a plateau phase [6–8].
The Marshall–Hoare formula, which was created empirically and contains a linear combi-
nation of two exponential functions [9–11], can be used to describe this sigmoidal curve.
As it is a transcendental equation, if we want to determine the PMI, we can solve it numeri-
cally or graphically with the help of Henssge’s nomogram [12–15] or another simplified
graphical solution [16]. Subsequent studies required the extension of the Marshall–Hoare
formula with a weight-related correction factor [12,17–20], known as the Henssge formula,
allowing for a more precise estimation of the PMI.

The mathematical description of the process has not changed since the introduction of
the Henssge formula; however, multiple solutions for fitting empirical data using diverse
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methodologies have been developed: nonlinear least squares [21], conditional probabil-
ity [22], Bayesian estimation [23,24], finite element simulation [25], Laplace transforma-
tion [26], numerical simulations [27–29], and neural networks [30]. A triple exponential
model was another strategy to take into account; however, it did not yield the desired
outcomes [31,32]. Brute-force calculations [33,34], heat-transfer modeling [25,35,36], the
evaluation of a back-calculation [37], and a computational approximation in PHP [38] are
other examples of unique approaches.

Machine learning is widely used in numerous fields of medical diagnostics and prog-
nostics [39–42]. One possible method of estimating parameters is finding them by using
the method of linear regression. We can choose from various mathematical tools to do
so, such as different regression methods, decision trees [43], or applying different neural
networks, in which the goal is to find an approximation to the model function belonging to
a given learning set. A support vector machine (SVM) can be considered a special neural
network, which is a supervised learning method that can have different kernel functions
for its decision function [44–46]. The objective of the kernel method is to convert the
original problem into a linearly solvable one. With its use, the data describing the problem
to be solved are transformed into the kernel space through the application of nonlinear
transformations, such as radial basis functions (RBF). The aim of our study was to analyze
the accuracy of several different regression methods (decision tree [47], random forests [48],
extra trees, bagging, AdaBoost, SVM, AdaBoost + SVM) and their combination in solving
the aforementioned mathematical problem using the Python programming language.

The motivation behind this work comes from our desire to support the work of forensic
experts by developing a modernized, flexible, and adaptive method that utilizes existing
machine learning tools to enable a more accurate estimation of the PMI using present
day training data than the commonly used Henssge nomogram and that can adapt to the
constantly changing population.

2. Materials and Methods

The Henssge formula, and its graphical solution, the Henssge nomogram, are com-
monly used in methods to estimate the PMI:

Tr − Ta

T0 − Ta
= A · exp(Bt) + (1− A) · exp

(
AB

A− 1
t
)

, (1)

where Tr and Ta are the rectal and environmental temperatures, respectively, measured at
time t, T0 = 37.2 ◦C is a constant representing the rectal temperature commonly assumed
at the time of death. In the formula, A and B are parameters obtained empirically [17].
The value of the parameter A depends on the environmental temperature (Table 1).

Table 1. The value of the parameter A.

Ta A

≤23.2 ◦C 1.25
≥23.3 ◦C 1.11

The parameter B includes the body weight (m).

B = −1.2815 ·m−0.625 + 0.0284 (2)

The Henssge formula in the two temperature ranges is as follows:
For Ta ≤ 23.2 ◦C,

Tr − Ta

37.2− Ta
= 1.25 · exp(Bt)− 0.25 · exp(5Bt); (3)

for Ta ≥ 23.3 ◦C,
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Tr − Ta

37.2− Ta
= 1.11 · exp(Bt)− 0.11 · exp(10Bt). (4)

Any proper mathematical model should be capable of handling the uncertainties that
can affect the accuracy of the resulting time of death, the estimate of which is based on the
Henssge formula. As can be seen in Henssge’s nomogram, uncertainty can be caused by
various factors, including the correction factor [49], body weight [12], and a variable envi-
ronmental temperature and humidity [50]. From a practical point of view, a basic source of
error may be the incorrect size ratio of the printed nomogram [51]. The Henssge nomogram
graphically handles the uncertainties which can affect the accuracy of the determined PMI,
while data-based models incorporate these uncertainties within themselves.

2.1. Data-Driven Model

The purpose of creating the data-driven model was to examine the estimation of the
PMI using other mathematical methods. We decided to use decision trees (regression trees)
and an SVM with an RBF kernel. Our model relied on the assumption that the generated
data from which the system learned closely resembled reality. To create the model and
perform the calculations, we used the Python programming language to generate data for
learning and testing, which formed the basis of the theoretical model. We chose various
regression trees and an SVM from the scikit-learn [52] package.

2.1.1. The Generation of Data and Test Data

For training and testing the regression trees and the SVM, we used generated data.
For each parameter that is required for the calculation using the Henssge formula, we
randomly selected from a predetermined list of values. These were as follows:

• Time (h): 1–18, with a step of 0.5 h.
• Ambient temperature (◦C): −10–35, in increments of 0.5 ◦C.
• Correction factor: 0.7, 0.9, 1.0, 1.1, 1.2,1.3, 1.4, based on Table 5 in [49]
• Body weight (kg): between 50 and 100 kg, with a precision of 0.5 kg, drawn from a

normal distribution with postselection (mean of 70 kg with σ large enough to generate
an appropriate quantity of test data close to the upper limit).

• Rectal temperature (◦C). Based on the randomly selected data described above, it was
calculated from the Henssge formula according to Algorithm 1 which uses Algorithm 2.

• The number of desired data points, which is an approximate value, since some of
the weights drawn from a normal distribution were outside of the desired range
and therefore were not considered in either the training or test data sets.

According to the literature [49], certain restrictions were taken into account when
creating the data:

1. The ambient temperature must not be higher than the measured rectal temperature.
Since the rectal temperature was calculated during data generation, this case could
not occur.

2. For the correction factors, the value does not need to be adjusted based on weight
until 1.4. Beyond this value, it must be corrected, but our model is currently not set
up for this (see Table 5 in [49]).

3. In the case of the weight, the selection of the lower and upper limits was again based on
the Table 5 in [49]. The selection of the 70 kg average was also based on Table 5 in [49].

Steps for generating the training and test data:

1. Randomly select one parameter set (weight, correction factor, environmental tempera-
ture) from the required sets of parameters for the Henssge formula.

2. Determine the rectal temperature by evaluating the Henssge formula.

In the pseudocode of Algorithm 3, the input parameter “count” is an integer that
roughly determines the number of generated data points, as values outside the lower and
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upper bounds of the weight given by the normal distribution were also generated, but they
were not used for training and testing.

The samples were separated into training and test data by dividing the total generated
data set (X, y) into two parts. Usually, these parts are comprised of different percentages
of data, with one part being used as the data to train the model, and the other part being
used as the test data to evaluate the performance of the model. X is an n× 4 dimensional
matrix, where n is the number of actual data points that meet the conditions, and it contains
the selected and calculated parameters in the following order [m, c f , Tr, Ta]; y is an n-
dimensional vector, where yi, i = 1 . . . n contains the randomly selected expected time
interval for Xi. During the division, a prespecified percentage of the total data set was
chosen for the test data and the rest was used for training.

Algorithm 1 Calculating rectal temperature

function CALCULATERECTALTEMPERATURE(t, Ta, k, m)
Bc ← B(k, m)
if Ta <= 23.2 then

return (37.2− Ta) · (1.25 · eBc ·t − 0.25 · e5·Bc ·t) + Ta
if Ta >= 23.3 then

return (37.2− Ta) · (1.11 · ec·t − 0.11 · e10·Bc ·t) + Ta

Algorithm 2 Body weight adjusted by correction factor

function B(k, m)
return −1.2815 · (k ·m)−0.625 + 0.0284

Algorithm 3 Generating training data and test data

function GENERATEDATA(count)
times← set of possible elapsed hours
ambient temperature← set ot possible ambient temperatures in ◦C
correction factors← set of possible correction factors
body weights← set of possible weights in kg, typically with a normal distribution
while i < count do

t← selecting a time randomly from among the times
Ta ← selecting a temperature randomly from among the ambient temperatures
k← selecting a correction factor randomly from among the correction factors
m← selecting a mass randomly from among the weights
/* Calculating rectal temperature */
Tr ← CALCULATERECTALTEMPERATURE(t, Ta, k, m)

storage of generated data

2.1.2. Training

We began the process of training our selected regression models by utilizing the partial
sample (Xtrain, ytrain). This data set served as the input for our model training, which was
performed using several different approaches.

One of the approaches we utilized was decision (regression) trees, including bagging,
random forests, and extremely randomized trees. These techniques have been shown to
be effective at modeling complex relationships between variables and making predictions
in a variety of scenarios. In addition to the decision trees, we also used support vector
regression (SVR) with a radial basis function (RBF) kernel. This is a powerful method
that has been shown to be effective at modeling nonlinear relationships between variables.
To further refine the results obtained from our extremely randomized trees and SVM, we
applied a tree modified with an adaptive boosting method. This allowed us to improve the
accuracy and precision of our model predictions.
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Once our models had been successfully trained and optimized, we saved them for
later use. This ensured that we could quickly and easily access our models and use them
to make predictions in new scenarios, without having to repeat the time-consuming and
computationally expensive training process.

2.1.3. Testing

We tested the trained model with (Xtest, ytest) subsets. The performance of the model
was determined based on the mean absolute error (MAE), mean squared error (MSE),
and coefficient of determination (R2) values (see below). The results of the runs can be
found in Appendix A Tables A1–A6.

2.1.4. Error Calculation

There are several mathematical tools available for determining the prediction error.
Let N be the size of the sample and ŷi = β̂0 + β̂1xi the estimated value of yi. The residual
for the ith observation is defined as ei = yi − ŷi, that is, the difference between the expected
value yi and the estimated value for the ith observation.

Sum of Squared Residuals (SSR)

In most cases, we minimized the sum of squared residuals (least-squares method).

SSR = e2
1 + e2

2 + · · ·+ e2
N =

N

∑
i=1

(yi − ŷi)
2 (5)

Mean Squared Error (MSE)

The average of the squares of the differences between the estimated values and the
actual values.

MSE =
∑N

i=1(yi − ŷi)
2

N
(6)

Mean Absolute Error (MAE)

The average of the absolute differences between the estimated and actual values.

MAE =
∑N

i=1|yi − ŷi|
N

(7)

Coefficient of Determination (R2)

R2 is a statistical measure that represents the proportion of the variance in the depen-
dent variable that is predictable from the independent variable(s) in a regression model. R2

ranges from 0 to 1, where 0 indicates that the model explains none of the variance in the
dependent variable, and 1 indicates that the model explains all of the variance.

R2 =
TSS− SSR

TSS
, (8)

where

TSS =
N

∑
i=1

(
yi −

1
N

N

∑
i=1

yi

)2

=
N

∑
i=1

(yi − y)2 (9)

is the sum of squared errors, where y is the mean value of the given data set.

3. Results

The accuracy of the mathematical model we used for estimating the PMI depended on
the proper choice of the relatively large number of adjustable parameters. We considered
a choice proper, if we obtained it through a learning process and the resulting model
gave meaningful estimates in cases that were similar to those it had already encountered.
If we tested a case that fell outside of the domain determined by the learned data, then
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the estimation error was supposed to grow. The version in this paper used the most
commonly used correction factors from the set of all correction factors. The choice of
environmental temperature range was based on the Henssge nomograms. One important
factor influencing the quality of the generated data was the mean value (70 kg) and standard
deviation (σ) of the normal distribution of the body weight, which determined the width of
the Gaussian curve, which, in turn, set the range for the random weights obtained. When σ
was very small, <5, the generated weights were in a very small range with a very high
probability, but if σ was chosen large enough, the data were selected from a larger set.
The goal was to have enough data for training with weights between 50 and 100 kg. We
determined the σ through multiple trials and for ≈ 11, 000 generated data, and we found
that σ = 10 was already sufficient.

The data were generated such that for each body weight, we were randomly selecting
Ta, the correction factor, and the expected time of death using a uniform distribution. Then,
Tr was calculated based on these values.

In order to examine the results of the theoretical model, we trained and tested the
model using a variety of number of cases and methods, so as to find the tool working with
the smallest error for solving the problem.

We designated 25% of the generated data as test data and utilized the remainder for
training the system. As the foundation for the theoretical model, we employed various
regression tools with differing configurations and sought out the best parameterization for
each tool individually. Following this, by using the mathematical tools in combination, we
further improved the results obtained. The methods investigated were as follows:

• Regression tree;
• Random forests;
• Extremely randomized trees;
• Tree modified with the bagging method;
• SVR with an RBF kernel;
• SVR improved with adaptive boosting.

Results of Training

The training and estimation time, the errors (MAE, MSE, R2), and the best parameteri-
zation of the regression tools tested with various parameterizations are presented in the
tables in Appendix A Tables A1–A6 for each method. The number of generated data was
increased by a thousand, minus the number of cases that did not fall within the determined
range of 50–100 kg.

Based on the results, it can be concluded that with a larger training data set, all
methods were capable of estimating the time of death with a decreasing error, as shown in
the graphs in Figure 1. According to both the MAE, MSE, and the R2 (≈ 1) values, the best
result was achieved by the combined use of SVR and an adaptive regression tree, as this
method further improved the results obtained by SVR [53,54]. Since in the used Python
implementation, the C parameter represents the compromise between minimizing false
classification errors and maximizing the decision boundary, meaning the higher the value of
C, the fewer the false classifications and the stricter the decision margin, we performed four
additional control runs with higher C values (10, 20, 50, 100) to check the accuracy of the
SVR estimate when improved by adaptive boosting for these four cases as well. The results
of these were divided into two parts, first for SVR alone, and then for the improved results
using the adaptive boosting method.

According to Figure 1, it can be observed that most selected mathematical tools were
able to estimate the time of death with low error rates even with a minimum of 3000 training
examples, based on the current settings. However, the decision tree was an exception, as it
still produced high errors compared to the others, even with over 10,000 data points.
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Figure 1. MAE, MSE, and R2 of theoretical model.

The results obtained with SVR and AdaBoost + SVR models using the parameters
C = 50 and C = 100 at at a sample size of approximately 11,000 were as follows: Based on
Tables 2 and 3, it can be concluded that increasing the value of C further improved the
achieved results. By breaking down the average error of the 25% of test data into correction
factors with a 5 kg binning, we determined for the cases of C = 5 and C = 100 (see in Figure 2)
that in the former case, the error was approximately ±0.3 h = 20 min, and in the latter case,
the two worst results were approximately ±0.16 h = ±9.6 min, but the average errors were
below 4 min.

Table 2. The errors of SVR.

MAE MSE R2

C = 10 0.2578 0.2746 0.9886
C = 20 0.2255 0.2252 0.9906
C = 50 0.1979 0.1828 0.9924
C = 100 0.1683 0.1290 0.9947

Table 3. The errors of AdaBoost + SVR.

MAE MSE R2

C = 10 0.2177 0.1340 0.9944
C = 20 0.1875 0.0987 0.9959
C = 50 0.1820 0.1109 0.9954
C = 100 0.1606 0.0762 0.9969

Figure 2. Average error with a 5 kg windowing as a function of the correction factor for C = 5 and
C = 100 cases with the AdaBoost + SVR model.

After comparing the results of various selected methods, it can be concluded that the
two best results were obtained with SVR and AdaBoost + SVR, as can be seen in Figure 3
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and Table 4. This is due to the fact that these two methods had the most test results within
1σ of the mean.

Figure 3. The results of the different methods at distances of 1σ and 2σ.

Table 4. The results of the different methods at distances of 1σ and 2σ.

Name 1σ Value 2σ Value 1σ 2σ

Decision tree −1.1751–1.0571 −2.2912–2.1732 2161 (80.36%) 2546 (94.68%)
Bagging −0.64297–0.60864 −1.2688–1.2344 2004 (74.53%) 2506 (93.19%)

Random forests −0.64995–0.59144 −1.2706–1.2121 2034 (75.64%) 2504 (93.12%)
Extra trees −0.5316–0.51464 −1.0601–1.0395 2064 (76.76%) 2514 (93.49%)

SVR −0.60545–0.54442 −1.1804–1.1194 2292 (85.24%) 2569 (95.54%)
AdaBoost + SVR −0.3423–0.32924 −0.67807–0.66501 2076 (77.2%) 2552 (94.91%)

4. Discussion

The Henssge formula and its graphical solution, the Henssge nomogram, are com-
monly used to estimate the PMI. However, uncertainties—including the correction factor,
body weight, and variable environmental conditions—can affect the accuracy of the re-
sulting time interval. The Henssge nomogram handles these uncertainties graphically,
while our model incorporated these uncertainties within itself. In other words, our model
did not require the use or knowledge of the Marshall–Hoare or Henssge formula with
correction factors, and it did not contain any empirical variables. The generated data closely
resembled the reality and formed the basis of our theoretical model. Our data-driven model
showed that an SVM with an RBF kernel and the AdaBoost + SVR method provided the
best results in estimating the time of death with the lowest error. The estimated accuracy of
the time of death was approximately within ±20 min or ±9.6 min, depending on the SVM
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parameters used. The predicted time error was tp ± 0.7 h with a 94.45% confidence interval.
When compared to the Henssge nomogram, where the accuracy was claimed to be ±2.8 h
for both temperature ranges when correction factors were applied, it can be concluded that
the created model was capable of estimating the time of death with a sufficient accuracy
while taking into account the constraints based on the learned data set. The significant
differences and errors arose from the fact that the model encountered these cases with
fewer samples during the learning process, but they still fell within the accuracy zone
determined by the nomogram. The current limitations of the theoretical model are the
number of correction factors, a maximum time interval of 18 h, the need for the training
data to be provided with an accuracy of 30 min, and a body weight limited to 50–100 kg.
Based on the results presented in Figure 1, it can be inferred that most of the mathematical
tools used in this study were able to accurately estimate the time of death with relatively
low error rates, even with a minimum of 3000 training examples under the current settings.
One notable advantage of our models was that they required very few data for training,
which means that they can be applied in various geographical regions, including smaller
areas. This feature makes the model highly versatile and adaptable to specific populations
with differing anthropometric characteristics or living in different climate zones, because it
can be trained with real, available data. Moreover, the model can be easily adapted to suit
one’s needs, making it an ideal tool for a range of settings and situations.

Most articles on this topic determine the PMI using basic physics or numerical calcula-
tions. However, these results cannot be compared to ours because we used the Henssge for-
mula to generate synthetic data. To the best of our knowledge, there is only one paper that
used neural networks (multilayer feedforward networks) to address this problem [30]. Zer-
dazi and coworkers constructed a network using MATLAB 2012 with two layers. The first
layer, called the hidden layer, contained 10 neurons, each using the hyperbolic tangent as
an activation function. The second layer, known as the output layer, had only one neuron,
which employed a linear activation function.

Our method achieved much better results with 257 cases than Henssge’s solution.
While our model used a different machine learning approach, we can compare our results
to theirs (see Tables 5 and 6). To obtain the best comparability, we trained our model
again with the same features as those described in that paper [30]. Two scenarios were
investigated with common features: an environmental temperature ranging from 4.5 ◦C to
18 ◦C, 20% of data for validation, and 20% for testing.

Scenario 1: 275 observations, time of death between 20 min and 18 h. The results
obtained are as follows:

Table 5. Comparison of our SVM and AdaBoost + SVM results with the result from the multilayer
feedforward network (neural method) by Zerdazi et al. [30] in case of Scenario 1.

Name MAE MSE

Neural method 1.85 5.69
SVR 0.17 0.14

AdaBoost + SVR 0.17 0.12

Scenario 2: 184 observations, time of death less than 7 h. The results obtained are
as follows:

Table 6. Comparison of our SVM and AdaBoost + SVM results with the result of the multilayer
feedforward network (neural method) by Zerdazi et al. [30] in case of Scenario 2.

Name MAE MSE

Neural method 0.86 1.21
SVR 0.18 0.08

AdaBoost + SVR 0.14 0.05
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From these results, we can conclude that the proposed method performed much better:
all the errors were at least one order of magnitude smaller than the results in [30].

Further testing with real data is needed. The future goal is to develop a phone or web
application based on the model with a graphical interface for easier use and to create a
database for storing anonymized training data.

5. Conclusions

Our research demonstrated that the estimated PMIs produced by our models using
existing machine learning tools such as SVMs and decision trees were far more satisfactory
than those produced by the Henssge formula or the method utilizing neural networks.
In contrast to traditional mathematical methods, including the Henssge nomogram, that
yield fixed formulas and whose performance remains constant, our models can be con-
tinuously improved because training can be resumed whenever new additional data are
available. As our models estimated the PMI with low error rates even with only 3000 train-
ing cases, they can be easily adapted to specific populations with different characteristics
or living in different climatic zones.
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Appendix A

Table A1. Results of running the model with: DecisionTreeRegressor.

(#) Case Number Training Time (s) Prediction Time (s) MAE MSE R2 Best Parameters

1 986 3.210 0.028 1.4494 4.1032 0.8285 random_state = 10
2 1955 4.079 0.035 1.1186 2.7904 0.8814 criterion = ‘friedman_mse’
3 2925 4.773 0.085 1.0143 2.2565 0.9114 criterion = ‘friedman_mse’, random_state = 10
4 3909 3.410 0.066 1.0092 2.2439 0.9048 criterion = ‘poisson’, random_state = 10
5 4881 3.994 0.084 0.9533 1.8468 0.9199 criterion = ‘friedman_mse’, random_state = 50
6 5864 3.757 0.094 0.9168 1.7343 0.9275 criterion = ‘friedman_mse’, random_state = 10
7 6806 5.299 0.106 0.8515 1.4768 0.9386 default
8 7824 5.210 0.122 0.8436 1.5394 0.9380 criterion = ‘friedman_mse’, random_state = 100
9 8785 4.753 0.139 0.7854 1.2311 0.9476 random_state = 50
10 9759 5.269 0.150 0.7842 1.2724 0.9480 criterion = ‘friedman_mse’, random_state = 50
11 10755 4.995 0.166 0.7522 1.2489 0.9505 criterion = ‘poisson’, random_state = 25
12 11708 6.811 0.184 0.7371 1.1654 0.9523 criterion = ‘poisson’, random_state = 10

Table A2. Results of running the model with: RandomForestRegressor.

(#) Case Number Training Time (s) Prediction Time (s) MAE MSE R2 Best Parameters

1 986 39.188 2.749 0.9662 1.7966 0.9249 criterion = ‘poisson’, max_features = None, n_estimators = 200, random_state = 10
2 1955 61.648 2.630 0.7092 1.0064 0.9572 max_features = None, random_state = 25
3 2925 106.174 8.661 0.6797 0.9713 0.9619 criterion = ‘poisson’, max_features = None, n_estimators = 200, random_state = 25
4 3909 120.701 9.031 0.6110 0.8032 0.9659 criterion = ‘poisson’, max_features = None, n_estimators = 150, random_state = 25
5 4881 148.617 14.466 0.5761 0.6445 0.9720 criterion = ‘poisson’, max_features = None, n_estimators = 200, random_state = 25
6 5864 154.820 15.039 0.5370 0.5759 0.9759 max_features = None, n_estimators = 200, random_state = 50
7 6806 180.887 15.659 0.4801 0.4774 0.9802 criterion = ’friedman_mse’, max_features = None, n_estimators = 150
8 7824 207.772 15.076 0.4967 0.5081 0.9795 criterion = ‘poisson’, max_features = None, n_estimators = 150
9 8785 266.933 24.548 0.4510 0.4271 0.9818 criterion = ‘poisson’, max_features = None, n_estimators = 200
10 9759 342.604 31.534 0.4608 0.4486 0.9817 criterion = ‘poisson’, max_features = None, n_estimators = 200, random_state = 10
11 10755 401.349 31.706 0.4252 0.3816 0.9849 criterion = ’friedman_mse’, max_features = None, n_estimators = 200, random_state = 10
12 11708 344.101 29.897 0.4134 0.3625 0.9852 criterion = ‘poisson’, max_features = None, n_estimators = 200, random_state = 10
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Table A3. Results of running the model with: ExtraTreesRegressor.

(#) Case Number Training Time (s) Prediction Time (s) MAE MSE R2 Best Parameters

1 986 12.355 0.883 0.8422 1.3935 0.9417 max_features = None, n_estimators = 50
2 1955 24.224 5.954 0.5849 0.7086 0.9699 criterion = ‘friedman_mse’, max_features = None, n_estimators = 200
3 2925 29.064 9.108 0.5909 0.7653 0.9700 criterion = ‘friedman_mse’, max_features = None, n_estimators = 200
4 3909 40.331 13.009 0.5108 0.5983 0.9746 criterion = ‘friedman_mse’, max_features = None, n_estimators = 200
5 4881 48.345 10.611 0.4896 0.5011 0.9783 criterion = ‘poisson’, max_features = None, n_estimators = 125
6 5864 60.539 17.568 0.4568 0.4608 0.9807 criterion = ‘poisson’, max_features = None, n_estimators = 200
7 6806 67.474 11.464 0.4143 0.3983 0.9834 criterion = ‘poisson’, max_features = None, n_estimators = 125
8 7824 81.665 23.157 0.4052 0.3798 0.9847 max_features = None, n_estimators = 200
9 8785 103.041 15.619 0.3745 0.3372 0.9856 criterion = ‘poisson’, max_features = None, n_estimators = 125
10 9759 132.059 32.412 0.3645 0.3218 0.9869 criterion = ‘friedman_mse’, max_features = None, n_estimators = 200
11 10755 144.701 33.263 0.3419 0.2745 0.9891 max_features = None, n_estimators = 200
12 11708 139.604 30.451 0.3437 0.2850 0.9883 max_features = None, n_estimators = 200

Table A4. Results of running the model with: BaggingRegressor.

(#) Case Number Training Time (s) Prediction Time (s) MAE MSE R2 Best Parameters

1 986 2.176 1.593 0.9907 1.8638 0.9221 n_estimators = 100
2 1955 3.515 4.360 0.6796 0.9420 0.9600 n_estimators = 125
3 2925 4.198 4.913 0.6961 1.0027 0.9606 n_estimators = 100
4 3909 6.989 13.231 0.6193 0.8344 0.9646 n_estimators = 200
5 4881 7.111 10.565 0.5726 0.6419 0.9722 n_estimators = 125
6 5864 7.989 18.109 0.5387 0.5820 0.9757 n_estimators = 200
7 6806 6.822 10.743 0.4857 0.4862 0.9798 n_estimators = 100
8 7824 9.390 24.057 0.4859 0.4912 0.9802 n_estimators = 200
9 8785 9.695 19.855 0.4592 0.4441 0.9811 n_estimators = 150
10 9759 9.830 17.622 0.4616 0.4524 0.9815 n_estimators = 150
11 10755 11.064 24.376 0.4313 0.3870 0.9847 n_estimators = 150
12 11708 11.208 24.229 0.4153 0.3629 0.9851 n_estimators = 200
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Table A5. Results of running the model with: SVR.

(#) Case Number Training Time (s) Prediction Time (s) MAE MSE R2 Best Parameters

1 986 0.749 0.070 0.9406 2.5332 0.8941 C = 5, epsilon = 0.005, gamma = 1
2 1955 3.184 0.163 0.5779 1.2309 0.9477 C = 5, epsilon = 0.01, gamma = 1
3 2925 5.612 0.333 0.4774 0.8372 0.9671 C = 5, epsilon = 0.01, gamma = 1
4 3909 9.611 0.360 0.4257 0.9012 0.9618 C = 5, epsilon = 0.05, gamma = 1
5 4881 13.404 0.626 0.3987 0.7310 0.9683 C = 5, epsilon = 0.05, gamma = 1
6 5864 18.982 0.612 0.3873 0.6430 0.9731 C = 5, epsilon = 0.05, gamma = 1
7 6806 28.362 1.058 0.3181 0.4621 0.9808 C = 5, epsilon = 0.01, gamma = 1
8 7824 28.212 0.824 0.3372 0.4831 0.9805 C = 5, gamma = 1
9 8785 36.948 1.110 0.2882 0.3819 0.9837 C = 5, epsilon = 0.05, gamma = 1
10 9759 50.228 1.318 0.3093 0.4550 0.9814 C = 5, epsilon = 0.05, gamma = 1
11 10755 58.958 1.651 0.2763 0.3306 0.9869 C = 5, epsilon = 0.01, gamma = 1
12 11708 70.528 2.318 0.2753 0.3388 0.9861 C = 5, epsilon = 0.01, gamma = 2

Table A6. Results of running the model with:AdaBoostRegressor + SVR.

(#) Case Number Training Time (s) Prediction Time (s) MAE MSE R2 Best Parameters

1 986 30.903 1.401 0.9026 2.1245 0.9112 loss = ‘exponential’, n_estimators = 20, random_state = 15
2 1955 132.368 2.591 0.5437 0.8068 0.9657 loss = ‘exponential’, n_estimators = 20, random_state = 15
3 2925 262.288 3.775 0.4243 0.4630 0.9818 loss = ’square’, n_estimators = 20
4 3909 474.196 7.863 0.3575 0.4367 0.9815 loss = ‘exponential’, n_estimators = 20
5 4881 737.671 9.702 0.3358 0.3134 0.9864 loss = ‘exponential’, n_estimators = 20, random_state = 15
6 5864 1163.730 13.094 0.3190 0.2559 0.9893 loss = ‘exponential’, n_estimators = 20, random_state = 25
7 6806 1507.816 16.351 0.2619 0.1962 0.9918 loss = ‘exponential’, n_estimators = 20, random_state = 10
8 7824 1778.717 19.738 0.2667 0.1764 0.9929 loss = ‘exponential’, n_estimators = 20
9 8785 2378.614 25.049 0.2325 0.1434 0.9939 loss = ‘exponential’, n_estimators = 20, random_state = 25
10 9759 3199.345 31.656 0.2607 0.1788 0.9927 n_estimators = 20, random_state = 25
11 10755 3350.830 33.012 0.2102 0.1115 0.9956 loss = ‘exponential’, n_estimators = 20, random_state = 25
12 11708 4460.481 44.018 0.2177 0.1323 0.9946 loss = ’square’, n_estimators = 20, random_state = 2
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