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Abstract: The causes of sore throat are complex. It can be caused by diseases of the pharynx, adjacent
organs of the pharynx, or even systemic diseases. Therefore, a lack of medical knowledge and
experience may cause misdiagnoses or missed diagnoses in sore throat diagnoses, especially for
general practitioners in primary hospitals. This study aims to develop a computer-aided diagnostic
system to assist clinicians in the differential diagnoses of sore throat. The computer-aided system is
developed based on the Dynamic Uncertain Causality Graph (DUCG) theory. We cooperated with
medical specialists to establish a sore throat DUCG model as the diagnostic knowledge base. The
construction of the model integrates epidemiological data, knowledge, and clinical experience of
medical specialists. The chain reasoning algorithm of the DUCG is used for the differential diagnoses
of sore throat. The system can diagnose 27 sore throat-related diseases. The model builder initially
tests it with 81 cases, and all cases are correctly diagnosed. Then the system is verified by the third-
party hospital, and the diagnostic accuracy is 98%. Now, the system has been applied in hundreds of
primary hospitals in Jiaozhou City, China, and the degree of recognition for doctors to the diagnostic
results of the system is more than 99.9%. It is feasible to use DUCG for the differential diagnoses
of sore throat, which can assist primary doctors in clinical diagnoses and the diagnostic results are
acceptable to clinicians.

Keywords: causality; probability graph; sore throat; computer-aided diagnoses

1. Introduction

Sore throat is a common clinical symptom. Pharyngeal infection, trauma, ulcer, foreign
body, malignant tumor, styloid process syndrome, and some systemic diseases manifest as
sore throats of varying degrees [1–3]. Because the causes of sore throat are complex, it is
necessary to make differential diagnoses. Lack of clinical experience may lead to missed
diagnoses or misdiagnoses of sore throat, especially for doctors in primary hospitals.
Therefore, using computer-aided technology to complete the diagnosis of sore throat
is one of the solutions. Computer-aided diagnoses and decision-making systems can
help doctors shorten diagnostic time, reduce missed diagnoses and misdiagnoses, and
make the diagnoses as soon as possible [4–7]. Since 1970, various algorithms have been
applied to computer-aided clinical diagnoses, including rule-based algorithms [8–11],
case-based reasoning methods [12], machine learning methods [13–19], and probabilistic
models [20–23]. However, those algorithms have some defects when used in computer-
aided clinical diagnoses. Clinical diagnoses require a lot of knowledge, but the rule-based
and case-based methods are challenging to manage a large amount of knowledge, existing
problems of knowledge conflict, and reasoning inefficiency. The computer-aided clinical
diagnostic system needs to be interpretable. Most machine learning algorithms have no
explainable or weak interpretability. For example, the SVM and the neural network models
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are incomprehensible to doctors, and their algorithms cannot interpret how the diagnostic
results are obtained. The Bayesian network is one of the probabilistic graphical models
with the ability of interpretability. The training of conditional probability tables (CPTs)
requires a lot of high-quality data sets. However, in reality, it is difficult for us to obtain
a large number of high-quality medical records to train Bayesian networks, which affects
the practical application of the Bayesian network in computer-aided clinical diagnoses.
These shortcomings weaken doctors’ confidence in the diagnostic results. Therefore, those
models are difficult to generalize in practical clinical applications.

The algorithms applied in computer-aided clinical decision-making need to have high
diagnostic accuracy. Meanwhile, it also requires the capability of interpreting the results,
and the diagnostic methods are in line with the diagnostic idea of clinical doctors.

Currently, the clinical diagnostic system can be divided into expert knowledge-based
and neural network-based. The rule-based expert systems have explanatory ability, but
their reasoning efficiency is not high, and they have difficulties in knowledge management.
The neural network-based diagnostic systems have no interpretability to the diagnostic
results. In this study, we developed an intelligent clinical diagnostic system based on
the DUCG for sore throat diseases. It has high reasoning efficiency and the ability to
explain results. The model of DUCG can be built in a modular way. This feature makes it
easy to build and update complex knowledge bases. The inference process of the DUCG
is transparent to doctors, and the diagnostic results are well interpretable, making the
diagnostic results more acceptable to clinical doctors. Now, this system has been applied
to assist doctors in completing clinical diagnoses in primary hospitals, and it has high
diagnostic accuracy.

The rest of this paper is organized as follows. Section 2 introduces the theoretical
basis of DUCG, inference methods, and modeling methods of sore throat based on DUCG.
Section 3 explains the validation process and results of the diagnostic model of sore throat
based on DUCG. Section 4 concludes this paper and outlines future work.

2. Materials and Methods
2.1. Causal Expression of DUCG

The dynamic uncertain causality graph is a probabilistic graphical model. It can
graphically represent the uncertain causalities of events and perform causal reasoning
based on the DUCG model [24]. Figure 1 depicts a simple DUCG model. B1, B6, and
B10 are root cause events, other variables are consequence events, and they are caused
directly or indirectly by these three variables. The red-directed arcs indicate the causal
propagation directions. From this DUCG model, we can understand the causal propagation
paths among events, such as the causal path (B1→X2→X3→X9). The variables and their
physical meaning in the DUCG are illustrated in Appendix A. When constructing the
DUCG model, we can select appropriate types of variables to express knowledge according
to the characteristics and functions of events. Different variables play different roles in
the causal reasoning process. The DUCG model can be built in a modular way. When
building a large and complex DUCG model, we can model some local knowledge as
some sub-DUCGs. Then those sub-DUCGs can be automatically merged into a complete
DUCG model according to the compilation rules of DUCG [25]. This modular knowledge
base construction method reduces the construction difficulty of the large and complex
knowledge base and makes the DUCG model well-maintainable. When we need to modify
the DUCG model, we only need to modify the local knowledge in the corresponding
sub-DUCGs, to achieve the purpose of modifying the whole DUCG model. Some other
features of DUCG include: (1) DUCG can deal with loops, so the DUCG model supports
the expression of causal loops [26]; (2) DUCG can deal with discrete, continuous, and fuzzy
evidence, which increases the robustness of the model [25,27]; (3) the causal reasoning
of DUCG depends much on the structure of the model and has low requirements for the
precision of model parameters; (4) DUCG can realize the concise expression of knowledge
and allow the incomplete expression of knowledge.
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Figure 1. An example of DUCG.

In DUCG, the causal mechanism between a child variable and its parent variables is
shown in Figure 2. The child event Xnk may be caused by one or more parent events. In
order to calculate the probability that each parent variable causes the occurrence of the child
event, the child event performs logic expression expansion operations along the opposite
direction of the causal chain. After expression expansion, the child event is expressed by its
parent variables. The expansion process can be executed recursively until the parent events
are the B-type or BX-type variables. The B-type and BX-type variables are the root causes
of other variables and the targets of inference calculation. The logic expansion expression
is shown in Equation (1).

Xnk = ∑
i

∑
ji

Xnk;iji = ∑
i

∑
ji

Fnk;iji Viji = ∑
i

∑
ji

(rn;i/rn)Ank;iji Viji (1)

For simplicity, Equation (1) can be briefly written as Equation (2).

Xnk = ∑
i

∑
j

Fnk;ijVij = ∑
i

∑
j
(rn;i/rn)Ank;ijVij (2)
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Figure 2. The causal mechanism of the DUCG.

In Equation (2), Xnk (n is the index of the variable in DUCG, k is the current state of Xn,
usually, k 6= 0 stands for the abnormal state) denotes the child event. Vij (V∈{B, X, BX, RG,
D, SG}) denotes the parent variables of Xn. Fnk;ij = (rn;i/rn)Ank;ij is the weighted functional
event, the strength of causality that the parent variable Vij affects the child variable Xnk.
Ank;ij denotes the virtual random functional event representing the causal mechanism that
Vij independently causes Xnk. rn;i/rn (rn = ∑i rn;i) is the weight; it is used to normalize the
effect of parent variables on child variables.

2.2. The Inference Process of the DUCG

The reasoning process of DUCG contains four steps: DUCG simplification, DUCG
decomposition, expression expansion, and probability calculation.
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Step 1. DUCG simplification. Simplifying the DUCG according to the current evidence
E (E = E′E′′, E′ = {Xij, j 6= 0} is the collection of abnormal evidence, E′′ = {Xi0} is the
collection of normal evidence) based on the simplification rules of DUCG. The purposes
of simplification are deleting the unrelated variables and causalities under the current
evidence and reducing the complexity of inference computation. The simplified DUCG
demonstrates the causalities between current evidence and their related hypotheses.

Step 2. Decomposition. The inference of DUCG is based on the rule that abnormal
evidence is caused by only one root cause at once. The purpose of decomposition is to
decompose the simplified DUCG into a series of sub-DUCGs. The sub-DUCG demonstrates
the causalities between a single hypothesis and the current evidence. Meanwhile, we get
the hypothesis set SH = {Hkj} = {Bkj, BXkj}.

Step 3. Logical expansion of HkjE. Expand HkjE according to Equation (2) on each
sub-DUCGs. We can get the evidence expansion expressions in the form of sum-of-products
composed of only {B-, BX-, D-, A-, r-}-type events and parameters on each sub-DUCGs,
they are used for conditional probability calculation in the next step.

Step 4. Probability calculation. Calculate the evidence probability ζkj = Pr{HkjE} on each
sub-DUCG. According to the expansion result of HkjE in Step 3, ζkj can be easily obtained.
Then the conditional probability of each hypothesis can be calculated by Equation (3).

hs
kj =

ζkj

∑
k,j

ζkj
(3)

The results are ranked in descending order as the final inference results.

2.3. Sore Throat DUCG Modeling

We cooperated with ENT specialists to construct the sore throat DUCG. The construc-
tion of the model not only uses the expert’s clinical knowledge and experience but also
uses the results of statistical data [28]. The sore throat DUCG is built in a modular way.
We model each disease as one individual sub-DUCG. Then, those sub-DUCGs are merged
into one complete DUCG as the knowledge base for sore throat diagnoses. An example of
laryngopharyngeal reflux (LPR) illustrates the process of constructing the sub-DUCG.

LPR is a common disease in otolaryngology. Due to the lack of understanding of the
disease in the past, the disease has been misdiagnosed as chronic pharyngitis for a long
time. In recent years, as otolaryngologists have gradually deepened their understanding of
laryngopharyngeal reflux, they found that the incidence of laryngopharyngeal reflux in the
population is very high, accounting for 10% of all patients in otolaryngology outpatient
clinics and 50% of patients with hoarseness. The DUCG of LPR is shown in Figure 3.
B23 (
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SA23;23 =

(
− −
1 10

)
(5)
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diagnosis; it is represented by the SX-type variable. When the manifestation appears, the
disease can be directly diagnosed based on this evidence. Appendix B shows the parameters
of causal strength between variables of the sub-DUCG of LPR shown in Figure 3. This sub-
DUCG model describes the relationship between LPR and its clinical diagnostic information,
including the involved symptoms, signs, laboratory tests, diagnostic gold standard, risk
factors, and other information. This information is understandable to doctors.

The complete DUCG with a sore throat as the chief complaint is shown in Figure 4.
Currently, it contains 27 diseases, including acute and chronic inflammation, trauma,
cancer, and other diseases related to sore throat; the diseases are shown in Table 1. A
total of 354 variables are used to build the DUCG, 27 groups of {B, SG, BX}-type variable
combinations are used to represent diseases and the impact of risk factors on diseases. A
total of 153 X-type variables are divided into two classes, 22 variables are used to stand
for the risk factors, 131 variables are used to represent nonspecific clinical manifestations,
and 11 SX-type variables stand for the specific clinical manifestations. A total of 76 C-type
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variables are used to classify the diseases’ manifestations in each sub-DUCG. A total of
651 F-type variables are used to represent the causalities between variables. As we can
see, the complete DUCG is complex, and it is difficult for medical specialists to build
this knowledge base directly on one graph. The modular knowledge base construction
method of DUCG makes the construction of large and complex knowledge bases feasible
and simple.
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Table 1. The sore throat-related diseases in the complete DUCG.

Classification Disease ID

Inflammation

Acute tonsillitis B1
Acute pharyngitis B2
Acute epiglottitis B3
Acute laryngitis B4

Chronic laryngitis B11
Chronic pharyngitis B12

Chronic tonsillitis B9
Peritonsillitis B19

Peritonsillar abscess B7

Trauma
Pharyngeal burn B5

Closed laryngeal trauma B17
Foreign body Pharyngeal foreign body B8
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Table 1. Cont.

Classification Disease ID

Tumor

Cancer of the larynx B10
Tonsil carcinoma B13

Carcinoma of hypopharynx B18
Tonsil lymphoma B22

Tuberculosis
Laryngeal tuberculosis B20

Pharyngeal tuberculosis B26

Syphilis Laryngeal syphilis B24
Pharyngeal syphilis B25

Uncommon disease
Glossopharyngeal neuralgia B6

Styloid process syndrome B14
Infectious mononucleosis B15

Cardiovascular disease Coronary heart disease B28
Reflux disease Laryngopharyngeal reflux B23

Bacterial or viral infection
Upper respiratory tract infection B27

Throat ulcers B16

3. Results

The computer-aided diagnostic model based on DUCG has good interactivity and
interpretability. Doctors can make clinical inquiries based on diagnoses and carry out
the following diagnosis until the disease is confirmed. A case is employed to explain the
diagnostic process of DUCG.

A young (X7,4) male (X52,1) patient with bilateral sore throat (X85,1) as the chief com-
plaint, together with the symptoms of hoarseness (X21,1), foreign body sensation in throat
(X45,1), throat itching (X44,1), throat clearing (X150,1), subacute stage (X5,1), other symptoms
that need to be consulted are negative, i.e., dry throat (X51,0), cough (X22,0), expecto-
ration (X23,0), dyspnea (X18,0). When we input the evidence E = E′E′′ into the model
(E′ = X7,4X52,1X85,1X21,1X15,1X45,1X44,1X150,1X5,1 is the positive symptoms of the patient, E′′

is the negative symptoms of the patient). The top 5 inference results are shown in Table 2,
and the probabilities of other diseases are less than 1%.

Table 2. The diagnostic result of DUCG basing on the patient’s current symptoms.

Disease ID Probability

Chronic laryngitis B11,1 39.52%
Chronic pharyngitis B12,1 26.56%

Laryngopharyngeal reflux B23,1 25.50%
Chronic tonsillitis B9,1 5.89%
Acute laryngitis B4,1 1.92%

According to the patient’s current symptoms, the inference results of the DUCG show
that the patient is most likely to have chronic laryngitis. Chronic pharyngitis comes second,
and LPR comes third. The patient is less likely to suffer from other diseases. Figures 5–7
are graphic interpretations of the three diseases. From Figure 5, we can see that chronic
laryngitis can explain most abnormal symptoms, except for the evidence of throat clearing
(X150,1). Throat clearing is not the manifestation of chronic pharyngitis. Therefore, it is
regarded as isolated evidence in the Figure. Standing for it cannot be explained by the
current disease. It decreases the conditional probability of the disease during the reasoning
calculation. X15,0, X23,0, and X22,0 are normal evidence; they function as negative evidence
to reduce the conditional probability of the disease. X5,1 and X52,1 are two risk factors for
chronic laryngitis. They increase the incidence of the disease. Similarly, chronic pharyngitis
and laryngopharyngeal reflux also have isolated and normal evidence. In the DUCG model,
the prior probabilities of the three diseases are 0.04, 0.09, and 0.03. Therefore, the diagnostic
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result is reasonable based on the current evidence, and the diagnostic results provide a
reference for follow-up consultation and physical examination.
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According to the first diagnostic result, the physical signs related to these three
diseases were checked first. Physical examination found that the patient has one pos-
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itive physical sign; laryngoscopy reveals vocal cord edema. The evidence E = E′E′′

(E′ = X7,4X52,1X85,1X21,1X15,1X45,1X44,1X150,1X5,1X153,1) is inputted into the model for an-
other diagnosis, and the diagnostic results are shown in Table 3. The probability of LPR
is 82.74%. The probabilities of acute laryngitis and chronic laryngitis are only 11.11%
and 6.11%. They are far less than the probability of LPR. From the graphic interpretation
in Figures 8–10, we can see that LPR can explain the patient’s abnormal physical signs.
Although acute laryngitis can explain abnormal physical signs, it has 3 unexplainable
abnormal symptoms. Similarly, chronic laryngitis can not explain abnormal physical signs.
We can initially confirm that the patient has LPR, depending on the diagnostic result. In
the following, some laboratory tests or imaging tests related to LPR are done to validate
the result.

Table 3. The diagnostic result of DUCG basing on the patient’s current symptoms and physical signs.

Disease ID Probability

Laryngopharyngeal reflux B23,1 82.74%
Acute laryngitis B4,1 11.11%

Chronic laryngitis B11,1 6.11%
Chronic pharyngitis B12,1 0.017%

Acute epiglottitis B3,1 0.0039%
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In the case record, the patient’s routine blood test report showed that the patient’s
neutrophil percent (NEUT%) was normal (X9,0) and the white blood cell count (WBC) was
normal (X8,0). The result of pharyngeal pH monitoring was positive (X158,1). When we
inputted this new evidence E = X158,1X9,0X8,0 to the model, the diagnostic results showed
that the probability of LPR is 99.98%. From the graphic interpretation in Figure 11, we can
see that LPR can explain all the abnormal evidence except throat itching. This means most
of the abnormal evidence can be traced back to LPR, so the diagnostic result is believable.
Throat itching is not the clinical manifestation of LPR; it is regarded as interference with
the diagnosis of LPR. The existence of interference evidence does not affect the diagnostic
results of the model, which shows that the model has good robustness.
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This case study demonstrates the whole diagnostic process of the DUCG. The disease
is finally diagnosed through a gradual process of continuous inference and clinical inquiries.
Based on the diagnostic result in each step, the scope of the disease is determined. Further
consultation information for each disease can be calculated based on the DUCG. The
graphical explanation can explain every step of the calculation so that the doctor can
understand the whole reasoning process of the system, and it is convenient for the doctor
to make a judgment on rejecting or accepting the reasoning results of the system.
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The validation of the model contains two stages. First, the creator of the knowledge
base self-tests the model. The purpose of the self-test is to initially verify the correctness
of knowledge representation in the model and adjust the knowledge structure of the
model according to the test results. The test cases are selected from published case reports,
outpatient cases, or created by the medical specialists by their experience. For the diseases
in the DUCG model, each disease was tested with 3 cases, and a total of 81 cases were used
to test the model. The accuracy of the test was 100%. The self-test results manifest that
the medical knowledge expression of the model is reasonable and correct. If the test finds
that the knowledge expression is wrong, the medical specialist should modify the model.
After modifying the model, the original case and some new cases are used to test the model
again to avoid the overfitting problem.

The second stage of testing is third-party testing. The third-party hospital is Suining
Central Hospital, a Grade 3 and Class A hospital located in Suining City, Sichuan Province.
During the test, the doctor reads the clinical information in the case, inputs it into the
system for calculation, and compares whether the calculation results of the system are
consistent with the case record results. The test cases are randomly selected from the health
information system (HIS) of the hospital from the past five years. The test cases were
obtained using an equal sampling method. Each disease is tested with 10 cases. If there are
fewer than 10 cases of the disease, all eligible cases are used to test for the disease. The test
results are shown in Table 4.

Table 4. The third-party test of the model in Suining Central Hospital.

Disease Name Total Cases Test cases True Cases Accuracy

Acute tonsillitis 388 10 10 100%
Acute pharyngitis 129 10 10 100%
Acute epiglottitis 233 10 10 100%
Acute laryngitis 204 10 10 100%
Pharyngeal burn 0 0 0 0%

Glossopharyngeal neuralgia 6 4 4 100%
Peritonsillar abscess 26 10 10 100%

Pharyngeal foreign body 11 10 10 100%
Chronic tonsillitis 831 10 10 100%

Cancer of the larynx 55 10 10 100%
Chronic laryngitis 14 9 9 100%

Chronic pharyngitis 255 10 10 100%
Throat ulcers 45 9 9 100%

Tonsil carcinoma 4 4 4 100%
Styloid process syndrome 2 2 2 100%
Infectious mononucleosis 53 10 9 90%
Closed laryngeal trauma 8 8 8 100%

Carcinoma of hypopharynx 15 10 10 100%
Peritonsillitis 120 10 9 90%

Laryngeal tuberculosis 14 10 10 100%
Tonsil lymphoma 1 1 1 100%

Laryngopharyngeal reflux 6 5 5 100%
Laryngeal syphilis 0 0 0 0%

Pharyngeal syphilis 0 0 0 0%
Pharyngeal tuberculosis 2 2 2 100%

Upper respiratory tract infection 157 10 10 100%
Coronary heart disease 13 9 9 100%

Total 2592 196 194 98.96%

In the HIS of Suining Central Hospital, in the past five years, a total of 2592 cases
can be used to test the diagnosis model of pharyngeal pain, among which there are more
common inflammatory diseases and fewer tumor-related diseases. A total of 196 cases with
sore throat as their chief complaint was used to test the model, accounting for 7.5% of the
total cases. For each case, the doctor reads the patient’s clinical information recorded in
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the case and inputs it into the system. The system makes clinical diagnoses according to
the input information and outputs the probability of each disease the patient may have in
the form of probabilities. The top 1 disease is regarded as the system’s diagnostic result.
Doctors compare the diagnosed diseases recorded in the cases with the system results. If
the results are consistent, the system’s diagnostic result is true (true case); otherwise, the
diagnosis is considered false (false case). The accuracy of the diagnostic system is evaluated
by Equation (6).

Accuracy =
true cases
test cases

× 100% (6)

Out of 196 cases, 194 cases were correctly diagnosed, and the diagnostic accuracy
was 98.9%. Two cases were misdiagnosed. One infectious mononucleosis case was mis-
diagnosed as acute tonsillitis. Another case is peritonsillitis, which was misdiagnosed as
chronic pharyngitis. Three diseases (pharyngeal burn, laryngeal syphilis, and pharyngeal
syphilis) are not validated because there have been no cases in the HIS of the hospital in
the past five years.

After the third-party test, the model was used for clinical assistant diagnoses in all
primary hospitals in Jiaozhou City, Shandong Province, China. In clinical diagnoses, the
doctor inputs the patient’s self-reported symptoms and physical signs into the system for
preliminary calculation. For some common diseases, if the doctor highly agrees with the
diagnostic result, then the diagnosis is completed, and the doctor evaluates the diagnostic
results of the system. For some uncommon diseases, such as cancer, the doctor should
input the patient’s symptoms and physical signs for initial diagnoses and advise the patient
to perform corresponding imaging or laboratory tests. Then, all the evidence is input into
the system for diagnoses. This result is used as the final diagnostic result. The actual
application of the model is shown in Table 5.

Table 5. Application of sore throat diagnostic model in primary hospitals in Jiaozhou City.

Disease Diagnosed Cases Agreed Diagnoses

Pharyngeal foreign body 48 48
Throat ulcers 55 55

Carcinoma of hypopharynx 3 3
Glossopharyngeal neuralgia 18 18

Upper respiratory tract infection 2625 2625
Chronic pharyngitis 564 564
Chronic laryngitis 152 152
Chronic tonsillitis 65 65
Acute pharyngitis 1188 1188
Acute epiglottitis 809 809
Chronic laryngitis 907 906

Acute tonsillitis 425 425
Coronary heart disease 325 325

Laryngopharyngeal reflux 29 29
Peritonsillitis 17 17

Peritonsillar abscess 6 6
Total 7236 7235

Table 5 is the application data of the system from 8 April 2020 to 16 April 2022. In
the past two years, doctors used the system to diagnose 7236 patients with sore throat,
involving a total of 16 conditions. In the process of using the system, we collected doctors’
feedback on the recognition of diagnostic results. Doctors’ recognition of the diagnostic
system exceeded 99.9%. Among the 7236 diagnostic results, doctors had doubts about the
diagnostic results only once. This shows that it is feasible to use the system for clinical
assistant diagnoses in primary hospitals.
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4. Conclusions

Doctors in primary hospitals have the problem of a lack of diagnostic knowledge and
insufficient experience, which is the main reason for missed diagnoses and misdiagnoses. In
this study, we develop a computer-aided diagnostic system for differential diagnoses of sore
throats based on DUCG. The diagnostic model integrates medical specialists’ knowledge,
experience, and epidemiological data and presents the diagnostic knowledge of diseases in
a way that doctors can intuitively understand. The purpose of designing the diagnostic
system is to help doctors make differential diagnoses of sore throat-related diseases and
reduce misdiagnoses and missed diagnoses caused by lacking knowledge and experience.
Meanwhile, we hope doctors can improve their diagnostic experience and knowledge using
the system.

The diagnostic accuracy of the model depends on the accuracy and completeness of
expert clinical diagnosis and knowledge expression. Therefore, this study’s main challenge
is building a large and complex diagnostic model and ensuring the accuracy of knowledge
expressed in the model. Building a knowledge base with experienced clinical experts and
verifying the knowledge base many times is one method to ensure the accurate expression
of knowledge. With the help of DUCG’s modular model construction method and causal
knowledge expression method, each disease is constructed as an independent sub-DUCG
model, which can be understood and maintained easily. The reasoning mode of DUCG
is chain reasoning; that is, based on the current evidence, the evidence along the causal
propagation chain is expanded until it reaches the root cause variable, then the conditional
probability of each hypothesis under the current evidence is calculated, and the results
are explained graphically. This reasoning method is in line with the diagnostic idea of
evidence-based medicine in clinical science and is easily accepted by doctors.

The model was built by medical specialists in otolaryngology at Capital Medical
University Xuanwu Hospital and can differentially diagnose 27 common and uncommon
sore throat-related diseases. The model used 81 cases from Xuanwu Hospital for self-test,
and the test accuracy was 100%. Then, the model was tested by a third party, and the
test accuracy was 99.8%. Currently, the model has been applied in primary hospitals in
Jiaozhou City, Shandong Province. Doctors agree with the diagnosis results by more than
99.9%. This shows that it is feasible to use DUCG for sore throat-related diseases and has
high diagnostic accuracy. It can be applied to primary hospitals to assist doctors in clinical
diagnosis. Meanwhile, the study indicates that it is feasible to construct a diagnostic model
based on expert knowledge, experience, and statistical data.

The purpose of this study is to differentially diagnose the diseases with a sore throat
as the chief complaint, that is, the patient with a sore throat as his main symptom. If
the patient has no sore throat or it is not his main symptom, this diagnostic model is not
applicable. In order to realize clinical assistant diagnoses in general practice, we construct
many diagnostic models according to different chief complaints. For example, the model of
abdominal pain takes abdominal pain as the chief complaint and can diagnose 93 kinds of
diseases related to abdominal pain. At present, we have constructed 46 diagnostic models
with different chief complaints, and these models have been applied in clinical practice. In
clinical diagnoses, the doctor chooses the corresponding diagnostic model according to the
patient’s chief complaint, then inputs the patient’s clinical information for diagnoses. We
constantly update and improve the diagnostic system according to the doctors’ feedback.
There are two kinds of improvement. The first is the improvement of the chief complaint. If
the doctors propose to add a new chief complaint model, we will build a new DUCG model
based on the chief complaint, and all diseases in the model will take the chief complaint
as the main symptom. The second part is the updating and improvement of the model. If
doctors find a disease missing in the model, we will add the disease to the model so that
the model can diagnose this disease. Based on the DUCG modular modeling approach, this
model is easily updated. We plan to use this approach to improve the disease diagnosis
capabilities of the system continuously. In the following work, we will continue to expand
the model so that the model can diagnose more diseases. In addition, we consider adding
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treatment guidelines to the model so that the model can recommend treatment for doctors
after getting the diagnostic conclusion.
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to represent the logic combinations of its child variables.

The red-directed arc (F-type variable, written as Fn;i, represented as→) is the weighted
functional event variable; it is used to represent and quantify the causalities between parent
variables and child variables. The red dashed directed arc is the condition weighted
functional event variable; its condition is described as Zi;j. When Zi;j is true, the causal
relationship between its parent and child variable holds. Otherwise, the causality does
not exist.

The double line directed arc (SA-type variable, written as SAn;I, represented as
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Appendix B

The parameters of causal strength between variables in the DUCG of the LPR. The
parameter bi records the prior probability of abnormal states of diseases. The parameter
ai;j records the causal strengths that the variable Vj may cause Vi to occur. The parameter
εi,j is the importance of variables, which is used to calculate the influence of isolated
evidence on reasoning. The accuracy of these parameters is not strictly required. Doctors
only need to give the relative magnitude of the action intensity between variables, while
reasoning diagnosis has a high dependence on the model structure and low dependence
on parameters.
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