
Citation: El-Latif, A.A.A.; Chelloug,

S.A.; Alabdulhafith, M.; Hammad, M.

Accurate Detection of Alzheimer’s

Disease Using Lightweight Deep

Learning Model on MRI Data.

Diagnostics 2023, 13, 1216. https://

doi.org/10.3390/diagnostics13071216

Academic Editor: Dechang Chen

Received: 1 March 2023

Revised: 17 March 2023

Accepted: 18 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Accurate Detection of Alzheimer’s Disease Using Lightweight
Deep Learning Model on MRI Data
Ahmed A. Abd El-Latif 1,2 , Samia Allaoua Chelloug 3,* , Maali Alabdulhafith 3 and Mohamed Hammad 1,4,*

1 EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University,
P.O. Box 66833, Riyadh 11586, Saudi Arabia; aabdellatif@psu.edu.sa

2 Department of Mathematics and Computer Science, Faculty of Science, Menoufia University,
Shibin El Kom 32511, Egypt

3 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah
bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; mialabdulhafith@pnu.edu.sa

4 Department of Information Technology, Faculty of Computers and Information, Menoufia University,
Shibin El Kom 32511, Egypt

* Correspondence: sachelloug@pnu.edu.sa (S.A.C.); mohammed.adel@ci.menofia.edu.eg or
mohamedadelhaamad@gmail.com (M.H.)

Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive
impairment and aberrant protein deposition in the brain. Therefore, the early detection of AD
is crucial for the development of effective treatments and interventions, as the disease is more
responsive to treatment in its early stages. It is worth mentioning that deep learning techniques
have been successfully applied in recent years to a wide range of medical imaging tasks, including
the detection of AD. These techniques have the ability to automatically learn and extract features
from large datasets, making them well suited for the analysis of complex medical images. In this
paper, we propose an improved lightweight deep learning model for the accurate detection of AD
from magnetic resonance imaging (MRI) images. Our proposed model achieves high detection
performance without the need for deeper layers and eliminates the use of traditional methods
such as feature extraction and classification by combining them all into one stage. Furthermore,
our proposed method consists of only seven layers, making the system less complex than other
previous deep models and less time-consuming to process. We evaluate our proposed model
using a publicly available Kaggle dataset, which contains a large number of records in a small
dataset size of only 36 Megabytes. Our model achieved an overall accuracy of 99.22% for binary
classification and 95.93% for multi-classification tasks, which outperformed other previous models.
Our study is the first to combine all methods used in the publicly available Kaggle dataset for
AD detection, enabling researchers to work on a dataset with new challenges. Our findings show
the effectiveness of our lightweight deep learning framework to achieve high accuracy in the
classification of AD.

Keywords: Alzheimer’s disease; deep learning; detection; Kaggle dataset; lightweight model;
MRI data

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition characterized by cognitive
impairment and aberrant protein buildup in the brain. AD is a devastating disease that
affects millions of people around the world [1]. It is the most prevalent kind of dementia
among the elderly and is characterized by a steady decline in memory, cognition, and the
ability to perform daily activities [2]. As the disease progresses, individuals with AD may
experience changes in their behavior, mood, and personality, and they may eventually lose
the ability to communicate and interact with others. The impact of AD on individuals
and their families is significant [3]. The progression of the disease can be emotionally and
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financially taxing for caregivers, and it can also have a major impact on the overall quality
of life for both the individual with AD and their loved ones. Dementia with AD is typically
divided into the following stages [4]:

• Early or Preclinical stage: During this stage, the individual may have no symptoms or
only mild memory problems.

• Mild Cognitive Impairment (MCI): In this stage, the individual may experience
more noticeable memory problems but still has the ability to perform daily activ-
ities independently.

• Mild Dementia: During this stage, the individual may have trouble remembering
recent events, completing familiar tasks, and communicating effectively. They may
also experience confusion, disorientation, and mood swings.

• Moderate Dementia: In this stage, the individual may require assistance with daily
activities and have difficulty recognizing friends and family members. They may
also experience more severe memory loss, confusion, and changes in personality
and behavior.

• Severe Dementia: During this stage, the individual is typically completely depen-
dent on others for their care and may lose the ability to communicate and recognize
loved ones.

The early detection of AD is crucial for the development of effective treatments and
interventions, as it is more responsive to treatment in its early stages. Magnetic resonance
imaging (MRI) is a popular imaging technique for diagnosing and treating AD [5]. MRI
allows for the visualization of brain structure and the detection of structural changes that
may occur in AD, such as the shrinkage of certain brain regions, changes in brain tissue
density, and the accumulation of certain substances in the brain [6]. MRI can also be used
to distinguish AD from other causes of dementia and to track the progression of the disease
over time. In combination with other diagnostic tools, such as cognitive and neurological
assessments, MRI can help support a diagnosis of AD.

There is currently no cure for AD, but there are a number of treatments and interven-
tions that can help manage the symptoms of the disease [7]. These can include medications
to improve cognitive function, therapies to address behavioral and psychological symp-
toms, and support for caregivers. Research is ongoing to develop more effective treatments
and to better understand the underlying causes of AD [8–23]. In recent years, deep learning
techniques have been successfully applied to a wide range of medical imaging tasks [24–28],
including the detection of AD [8–16]. These techniques have the ability to automatically
learn and extract features from large datasets, making them well suited for the analysis of
complex medical images. However, the use of deep learning for AD detection is not without
limitations. The performance of deep learning models can be affected by factors such as
the quality and size of the dataset, the choice of model architecture, and the optimization of
model parameters.

Despite these limitations, deep learning has shown great potential for the detection of
AD, and further research is needed to fully understand its capabilities and limitations in
this area. This paper aims to review the recent literature on the use of deep learning for
AD detection and to discuss the limitations of related work in this field. In addition, we
overcome these limitations by proposing a new lightweight deep learning model for the
accurate detection of AD from MRI images. To ensure the robustness and effectiveness
of our model, we trained it using a combination of different techniques, including data
augmentation, deep learning, and early stopping. We also evaluated the performance of
our model using multiple metrics, including accuracy, precision, recall, and F1-score, to
provide a comprehensive analysis of its effectiveness. The main novelties of this paper are
the following:
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• We propose a novel lightweight deep learning model using MRI images for the accu-
rate detection of AD. The proposed model can be employed in real-time applications
with high detection performance, unlike other previous models that needed deeper
layers to obtain high detection accuracies.

• The proposed model is an end-to-end model that eliminates the use of traditional
methods such as feature extraction and classification and combines them all into one
stage. In addition, the proposed method consists only of seven layers, which makes
the system less complex than other previous deep models and less time-consuming
to process.

• We introduce a model that works on binary classification and multi-classification tasks
with higher performance than other previous models. Consequently, the proposed
model is more robust than earlier deep learning techniques.

• This is the first study that reviews and combines all methods used in such datasets
from Kaggle. This paper combines all previous methods that work on the same
publicly available Kaggle dataset [29], allowing researchers to work on a dataset with
new challenges. Unlike other previous methods that used other unpublished large-size
datasets, which are approximately 1.5 Gigabytes with a small number of records, we
employed a small-size dataset (only 36 Megabytes) with a large number of records.

The impact of the proposed model is significant, as it provides a more lightweight and
efficient approach for accurately detecting AD from MRI images. Unlike previous models
that required deeper layers and more complex processing, the proposed model consists
of only seven layers and can be employed in real-time applications with high detection
performance. The end-to-end nature of the model also eliminates the need for traditional
methods such as feature extraction and classification, making it a more streamlined and
robust solution. By combining and reviewing all previous methods used on the same
publicly available Kaggle dataset, this paper provides a comprehensive approach for
researchers to work on a dataset with new challenges. Overall, the proposed model has
the potential to improve the accuracy of AD detection and help in the early diagnosis,
which can lead to earlier treatment and better management of the disease. In addition, the
proposed model’s ability to work on both binary classification and multi-classification tasks
with high accuracy makes it a useful tool for clinicians and researchers working in the field
of AD.

2. Related Work

In recent years, techniques employing deep learning to diagnose AD have gained
prominence [8–16]. Deep learning is a type of machine learning that is particularly well
suited for the analysis of complex medical images, as it has the ability to automatically learn
and extract features from large datasets. In addition to medical applications, deep learning
is used in other applications [30–32]. For example, Darehnaei et al. [30] presented an
approach for multiple vehicle detection in UAV images using swarm intelligence ensemble
deep transfer learning (SI-EDTL). The presented method has the potential to enhance
the effectiveness of various applications, such as surveillance and disaster response. A
number of studies have explored the use of deep learning for AD detection using various
imaging modalities, including structural MRI, functional MRI, PET, and amyloid imaging.
However, in this paper, we focused on the methods that used the same dataset of MRI
images. These studies have demonstrated the potential of deep learning to accurately
classify the AD disease.

Several different approaches have been used to develop deep learning models for
AD diagnosis using MRI images. Menagadevi et al. [8] developed a computer-aided
diagnosis system for detecting AD based on a combination of a deep learning model
with traditional classification methods. They first start with preprocessing stages on
the input MRI images to enhance the images. After that, they perform segmentation on
the preprocessed images to obtain the region of interest. Then, they extract the features
using the presented multiscale pooling residual autoencoder model. Finally, they used
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separate classifiers such as K-Nearest Neighbor (KNN) and Extreme Learning Machine
(ELM) for final classification. They obtained an overall accuracy of 96.88% using the
KNN classifier and 98.97% using the ELM classifier for the binary classification task.
However, the study focused on only one imaging modality, MRI, and used relatively
small datasets. Murugan et al. [9] introduced a deep learning modality called “DEMNET”
for diagnosing AD from MRI images. They used several image processing techniques,
such as preprocessing, oversampling, and splitting the input data. After that, they
fed the split data to the presented deep model for feature extraction and classification.
They obtained an overall accuracy of 95.23% for the multi-classification task. However,
similar to Menagadevi et al. [8], the study only focused on MRI imaging and used
small datasets. Loddo et al. [10] presented a fully automatic model based on ensemble
deep learning approaches for diagnosing AD from MRI images. They employed three
pretrained deep models: AlexNet, ResNet 101, and InceptionResNetV2. After that,
they used an average strategy to generate the ensemble output. They obtained the
best accuracy of 96.57% for the binary classification task and an accuracy of 97.7% for
the multi-classification task. However, the study did not use any image preprocessing
techniques, and the ensemble approach may not always improve the performance of
deep learning models. Sharma et al. [11] presented a hybrid modality called “HTLML”
based on AI approaches for the detection of AD from MRI images. They perform the first
preprocessing stage on the input MRI images. After that, they fed these preprocessed
images in parallel into two pretrained models, such as DenseNet201 and DenseNet121.
Then, they perform classification using separate classifiers for each pretrained model.
Finally, they combine the output for each classifier using the voting strategy to obtain the
final decision. They obtained an overall accuracy of 91.75% for the multi-classification
task. However, the study did not employ any data augmentation techniques and used
relatively small datasets. Hazarika et al. [33] presented an approach for the classification
of AD using deep neural networks and MRI. The approach involves preprocessing the
MRI scans, extracting features from segmented brain images using a combination of 2D
and 3D CNNs, and classifying the scans into AD and non-AD using a fully connected
neural network. The authors achieved promising results with an accuracy of 95.34%, a
sensitivity of 96% and a specificity of 94.67%. The presented method has the potential
to significantly improve the early detection and treatment of AD. However, further
validation on larger and more diverse datasets is necessary to assess its generalizability
and robustness.

Another hybrid model based on deep learning and traditional classifiers was pre-
sented by Mohammed et al. [12] for the early diagnosis of AD from MRI images. The
authors first enhanced the input MRI images using several preprocessing techniques.
After that, they fed the preprocessed images to the presented deep model, which is a
convolutional neural network (CNN) model for extracting the features. Finally, these
features are fed to a separate classifier, such as a support vector machine (SVM), for final
classification. They worked on a multi-classification task and obtained an overall accu-
racy of 94.80%. However, the use of a traditional classifier may limit the performance
of the model. Balasundaram et al. [13] used the ResNet50 pretrained model for the
diagnosis of AD from MRI images. They used preprocessing techniques such as resizing
and thresholding on the input images. After that, they fed these images to the presented
pretrained model for final classification. They obtained an overall accuracy of 94.1% on
the multi-classification task. However, the study did not employ any data augmentation
techniques, and the use of a single pretrained model may limit the performance of the
model. Bangyal et al. [14] applied deep learning techniques to MRI images to detect AD.
A comparative analysis between them proves that deep learning approaches can detect
AD better than traditional machine learning approaches. They finally obtained an overall
accuracy of 94.63% using deep learning approaches on a multi-classification task from
MRI images. However, the study did not employ any data augmentation techniques
and used relatively small datasets. Ahmed et al. [15] presented a classification method
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called “DAD-Net” using an optimized neural network for the early diagnosis of AD.
They split the data and performed preprocessing techniques on the input MRI images.
After that, they fed these images to the presented deep classification model for extract-
ing features and final classification. They obtained an overall accuracy of 90% for the
multi-classification task. Tuvshinjargal and Hwang [16] presented a combination model
between the VGG-C transform and CNN for the prediction of AD from MRI images.
They use Z-score scaling to preprocess the input images and quantize pixel intensity.
After that, they fed these images to the VGG pretrained model for final prediction. They
obtained an overall testing accuracy of 77.46 when working on a multi-classification task.
However, the study used a relatively simple deep learning model and achieved lower
performance compared to the other studies. Balaji et al. [34] presented a hybridized
deep learning approach for detecting AD using MRI images. The authors combine a
CNN and a long short-term memory (LSTM) network to learn spatial and temporal
features from MRI scans. The authors report an accuracy of 98.50% in classifying MRI
scans into AD or normal cases using the presented hybridized deep learning approach.
However, the study requires a large amount of data to learn complex features and
patterns accurately. In addition, the use of this combination can be computationally
expensive, which may limit the scalability of the model. Hu et al. [22] introduced a deep
learning model for a short-term longitudinal study of MCI using brain structural MRI
(sMRI) as the main biomarker. The VGG-TSwinformer model combines a VGG-16-based
CNN and Transformer to extract and encode features from longitudinal sMRI images,
and it uses sliding-window and temporal attention mechanisms to integrate local and
distant spatial features for MCI progression prediction. They obtained an accuracy of
77.20% for the binary classification task. The study still has some limitations, such as not
mining 2D local features inside slices, not adopting an effective feature fusion method
for axial, coronal and sagittal plane slices, and not taking full advantage of available
cross-sectional biomarkers.

The summary of all previous methods is shown in Table 1, along with the disadvan-
tages of each method. In this study, we present a novel lightweight CNN model that
overcomes the previous limitations for all related work with higher performance in both
binary and multi-classification tasks. Our model and the dataset we used are discussed in
detail in the following section.

Table 1. Summary of previous works for AD detection based on deep learning.

Authors and Reference Methodology Disadvantages

Menagadevi et al. [8]
(2023) Pooling residual autoencoder + ELM

- Complex model
- Classifier-dependent method
- Require more time for training
- Not suitable for real applications

Murugan et al. [9]
(2021) Preprocessing + CNN + RMS

- High computational complexity
- Overfitting problem
- A problem in model convergence.
- Low performance on big data

Loddo et al. [10]
(2022) Pretrained models + Ensemble classifier

- Less interpretable
- Time and cost complexity
- Not suitable for real applications
- Low accuracy on big and small data
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Table 1. Cont.

Authors and Reference Methodology Disadvantages

Sharma et al. [11]
(2022) Pretrained models + SVM - Low accuracy with big data

- Perform poorly in imbalanced datasets
- Overfitting problem
- Classifier dependent method

Mohammed et al. [12]
(2021) Pretrained models + SVM

Balasundaram et al. [13]
(2023) Segmentation + Pretrained models

- Overfitting problem
- Takes large number of resources (time and

computation power)
- Not suitable for real applications
- Low performance on big data

Bangyal et al. [14]
(2022) CNN

- Exploding gradient
- Problem with imbalanced datasets
- Overfitting problem
- Complex model

Ahmed et al. [15]
(2022)

Preprocessing + CNN + optimization
method

- Obtained low accuracy
- Complex model
- Not suitable for real applications

Tuvshinjargal and Hwang [16]
(2022) Preprocessing + pretrained model

- Overfitting problem
- High computational complexity
- Low accuracy on big data
- Not suitable for real applications
- Perform poorly in imbalanced datasets

Hazarika et al. [33]
(2023) Preprocessing + 2D CNN and 3D CNN

- Obtained low accuracy for binary
classification task

- Low accuracy with big data
- Not robust

Balaji et al. [34]
(2023) 3D CNN + LSTM

- Difficult to understand how the model is
making its predictions

- Computationally expensive
- Require a large amount of data to learn

complex features accurately

Hu et al. [22]
(2023) Pretrained model + CNN

- Not adopting an effective feature fusion
method for axial

- Obtained very low accuracy for binary
classification task

- Not robust

3. Dataset and Methodology

This section discusses in detail the used dataset and provides visual examples of the
data. In addition, all stages of the proposed model with all hyperparameters are also
discussed in this section.

3.1. Dataset

In this study, we employed the Alzheimer’s dataset [29], which is a hand-collected
dataset consisting of MRI images that have been verified and labeled by experts. The
data includes four different classes of images: Mild Demented, Moderate Demented, Non-
Demented, and Very Mild Demented. These images can be used to train and test deep
learning models aimed at accurately predicting the stage of AD. The dataset provides an
opportunity for researchers and practitioners to develop algorithms that can accurately
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diagnose AD and aid in the development of effective treatments. With the growing global
burden of AD, this dataset could play an important role in advancing our understanding of
the disease and improving patient outcomes. The dataset is available on Kaggle and can be
easily accessed, unlike other datasets, which are difficult to access. By making this dataset
publicly available, the creators aim to encourage more research in the field and support the
development of better algorithms for the diagnosis and treatment of AD. We employed this
dataset as it is totally free, available with different classes, and small in size on a hard disk,
unlike other common datasets in this field. Figure 1 shows samples of the dataset for the
different classes. Table 2 shows the distribution of the records in the dataset, and Figure 2
shows the statistics of this dataset. Furthermore, a comparison between this dataset and
other common datasets in this field is shown in Table 3.

Table 2. Distribution of the records in the dataset used in this work.

Mild Demented Moderate Demented Non-Demented Very Mild Demented

Train 717 52 2560 1792

Test 179 12 640 448

Table 3. Comparison between Kaggle dataset and other common datasets in this field.

Dataset Number of Subjects Number of Classes Size on Desktop Availability

ADNI [35] 822 3 5 GB Need Access

OASIS [36] 416 2 1.5 GB Need Access

Kaggle [29] 6400 4 32 MB Publicly Available
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The difficulty with this dataset is that when working on a multi-classification task,
we can see that the class Moderate Demented has a very low number of images compared
to other classes, which causes false positives and affects the final results. We solve this
problem by using a data augmentation technique to increase the number of images in this
class while also addressing the imbalance issue. Figure 3 shows the general block diagram
of our method, which is discussed in detail in the next section.
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3.2. Preprocessing Stage

In this stage, we used the ImageDataGenerator class from the Keras library, where
various image augmentation techniques can be applied to the input data, generating a new
set of augmented images that can be used for training. The specific augmentation tech-
niques applied in this paper include the rescaling of pixel values, brightness adjustments,
zoom changes, filling in new pixels created by augmentation with a constant value, and
random horizontal flipping of images. These techniques aim to artificially increase the size
of the training dataset as well as make the model more robust to variations in the input
data. Once the ImageDataGenerator instance has been defined, the input image data can
be fed into our deep model, and the resulting augmented data can be used for training a
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deep learning model. This step is important in ensuring that the model is able to generalize
well to new or unseen data.

3.3. Proposed Deep Model for Binary-Classification

The proposed deep learning model was created using Keras, which is a high-level neural
network API built on top of TensorFlow [37]. The model is designed for binary classification,
with the goal of predicting whether an input image is of a certain class or not. Figure 4 shows
the visualization of our model for a binary classification task. The model starts with an input
layer that takes in an image of size 150 × 150 × 3 (height × width × depth), which represents
a color image with 3 channels (red, green, and blue). The image is then processed through a
series of convolutional layers (Conv2D) and pooling layers (MaxPooling2D) to extract features
from the image. The convolutional layers apply filters to the input image, and the pooling
layers down-sample the feature maps produced by the convolutional layers. The features
are then flattened and passed through two dense layers (Dense), which use the activation
function ‘ReLU’ to perform non-linear transformations on the features. Finally, the output
layer uses the sigmoid activation function, which maps the input to a probability-like output
between 0 and 1, to produce the final prediction. The binary cross-entropy loss function and
the ‘Adam’ optimizer are used to construct the model [38], and they are trained on the training
data using the fit method. The training results show a loss of 0.061 and an accuracy of 0.993,
indicating that the model is able to make accurate predictions based on the training data. The
summary of the proposed model for binary classification is shown in Figure 5. From the
summary, we can see that the model is lightweight, as it consists of only 7 layers with total
parameters of 6581645. As a result, we reduce the complexity of the method and decrease the
processing time.
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3.4. Proposed Deep Model for Multi-Classification

This model takes as input images with shape (150, 150, 3), which means that each
image is 150 × 150 pixels and has 3 color channels (red, green, blue). The model then
applies a series of Conv2D and MaxPooling2D layers to reduce the spatial dimensions of
the image and extract meaningful features from it. The extracted features are then flattened
and passed through two dense layers with activation functions ‘ReLU’ and ‘SoftMax’. The
‘SoftMax’ activation function provides the final probability scores for each class in the
classification task. The model is then compiled with an optimizer ‘Adam’ and a categorical
cross-entropy loss function. The model is trained on the training data with 100 epochs
and evaluated on the validation data, resulting in an accuracy of 96%. Figure 6 shows the
visualization of our model for multi-classification tasks. The summary of the proposed
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model for multi-classification is shown in Figure 7. From the summary, we can show that
the model is lightweight as it consists of only 7 layers with total parameters of 6582098,
which is almost the same number as the first model. As a result, we reduce the complexity
of the method and decrease the processing time.
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The pseudocode of our algorithm is shown in Algorithm 1. The proposed deep learn-
ing model for binary and multi-classification tasks is based on a lightweight architecture
that can be trained efficiently on large datasets. The use of data augmentation techniques
helps to improve the generalization performance of the model, making it more robust to
variations in the input data. The model achieves high accuracy on the validation dataset,
demonstrating its effectiveness in performing binary and multi-classification tasks on
image datasets.

Compared to existing methods, the proposed model is simpler in terms of the number
of layers and parameters, which results in faster training times and lower computational
resources. Additionally, the use of data augmentation techniques further improves the
model’s performance without requiring additional data or computational resources. The
proposed model can be used in a variety of applications, including medical image analysis,
autonomous driving, and object recognition in robotics.

The hyperparameters for both models are almost the same except for the number
of hidden layers and the used loss function. In binary classification (the first model), we
employed 0.001 for the learning rate with 151 units in hidden layers and a batch size of 50.
This model is finished after 100 epochs with the loss function binary_crossentropy function
and ‘Adam’ optimizer. In multi-classification (the second model), we employed 0.001 for
the learning rate with 154 units in hidden layers and batch size of 50. This model is finished
after 100 epochs with the loss function, CategoricalCrossentropy function, and the Adam
optimizer. The summary of all parameters for both models is shown in Figure 8.
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Algorithm 1: The proposed algorithm (Summary of the proposed model)

1. BEGIN
2. INPUT: dataset_directory, training_percentage, image_augmentation_parameters,

model_parameters, optimizer, loss_function, performance_metrics.
3. Load input dataset from dataset_directory
4. Split the dataset into training set and validation set with training_percentage
5. Instantiate an ImageDataGenerator object with image_augmentation_parameters
6. IF model_parameters is a pre-trained model THEN
7. Load pre-trained model
8. ELSE
9. Define a deep learning model using Keras with model_parameters
10. ENDIF
11. Compile the model using optimizer and loss_function
12. Train the model on the training set for a number of epochs with the compiled model and

ImageDataGenerator object
13. FOR each epoch in the training process DO
14. Evaluate the model on the validation set using performance_metrics
15. IF the validation accuracy is not improving THEN
16. Reduce learning rate
17. ENDIF
18. ENDFOR
19. Test the final model on a separate test set to evaluate its generalization performance using

performance_metrics
20. OUTPUT: the performance_metrics of the proposed method and existing methods for

comparison
21. END
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4. Results and Discussion

Multiple experiments are carried out using the proposed deep model from the Kaggle
dataset to train the aforementioned AD deep model. For the training and testing, a standard
approach of cross-validation (10-CV) [39] was used for a fair and reliable evaluation of the
proposed AD detection model. The proposed approach is implemented on a computer
with a GPU (specifically, an NVIDIA Tesla T4 GPU) and 14 GB DDR4 RAM. Keras, a
Python-based library, is used for the implementation. For training the neural network, the
‘Adam’ optimizer is applied, and the binary cross-entropy class is used as the loss function
for model 1, and CategoricalCrossentropy is used as a loss function for model 2. In this
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study, four evaluation measures were used: Accuracy, Precision, Recall, and F1-score. These
metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score = 2 × Precision × Recall
Precision + Recall

(4)

where TP denotes true positives, FP denotes false positives, TN denotes true negatives and
FN denotes false negatives.

4.1. Experimental Analysis

Two experiments are evaluated in this paper based on the previous four metrics.
The first experiment is based on the first model for a binary classification task, whereas
the second experiment is based on the second model for multi-classification tasks. The
following are the details of each experiment with the analysis:

A. The first experiment

We classified input MRI images into two groups using the proposed deep model
for a binary challenge (AD or Normal). Figure 9 depicts the confusion matrix of the
proposed approach for detecting AD, in which class 0 represents normal instances and
class 1 represents AD patients.
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From the previous confusion matrix shown in Figure 10, we can show that the number
of normal MRI images that were detected as normal is 1081, and 0.3% of the normal
cases are detected as AD cases. In addition, we can find that 98% of the AD cases are
correctly detected as AD and that 13 MRI images are detected wrongly as normal cases.
The performance of the proposed model is shown in Table 4.
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Table 4. The performance of the proposed model for binary classification task.

Precision Recall F1-Score

0 98.81% 99.63% 99.21%

1 99.63% 98.81% 99.21%

Accuracy 99.22%

Macro Avg 99.22%

Weighted Avg 99.22%
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From the performance table, we can observe that the overall accuracy of the proposed
model is 99.22%, the overall precision and recall are both 99.22%, and the overall F1-score
is 99.21%. Figure 10 shows the loss curves (left) and accuracy curves (right) for the training
and testing data of the proposed model. From the curves, we can see that the accuracy of
the model is stable after 20 epochs and has not changed, and the loss of training data are
stable after 15 epochs. For the testing data, the loss is slightly increased after 20 epochs and
totally stable after 80 epochs.
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B. The second experiment

In this case, we used the proposed deep model for multi-classification to catego-
rize the input MRI images into four categories (Mild Demented, Moderately Demented,
Non-Demented, and Very Mild Demented). Figure 11 shows the confusion matrix of the
proposed method to detect demented cases, where Class 0 refers to Non-Demented cases,
Class 1 refers to Very Mild Demented cases, Class 2 refers to Mild Demented cases and
Class 3 refers to Moderate Demented cases.
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Figure 11. Confusion matrix of the proposed model for multi-classification task.

According to the previous confusion matrix in Figure 11, 653 Non-Demented cases
were correctly detected as Non-Demented; 2 MRI images of Non-Demented cases were
incorrectly detected as Mild Demented cases, and 6 MRI images were correctly detected
as Moderately Demented cases. We can also find that 100% of the Very Mild Demented
cases are correctly detected as Very Mild Demented cases. In addition, we can observe
that 93% of the Mild Demented cases are correctly detected as Mild Demented, 4.9% of the
images are wrongly detected as Moderate Demented, and 2.1% are wrongly detected as
Non-Demented cases. Finally, we can also observe from the confusion matrix that 91.7% of
the Moderate Demented cases are correctly detected as Moderate Demented, 42 MRI images
are wrongly detected as Mild Demented, 1.29% are wrongly detected as Non-Demented
cases and 0.16% of the images are wrongly detected as Very Mild Demented cases. Table 5
shows the overall performance of the proposed model for multi-classification tasks.

From the performance table, we can observe that the overall accuracy of the proposed
model is 95.93%, the overall precision is 95.93%, the overall recall is 95.88%, and the overall
F1-score is 95.90%. Figure 12 shows the loss curves (left) and accuracy curves (right) for
the training and testing data of the proposed model. From the curves, we can see that
the accuracy of the model is stable after 30 epochs and has not changed, and the loss of
training data is stable after 20 epochs. For the testing data, the loss is slightly increased
after 20 epochs and totally stable after 90 epochs.
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Table 5. The performance of the proposed model for multi-classification task.

Precision Recall F1-Score

0 96.88% 98.78% 97.82%

1 100% 100% 100%

2 93.16% 93.02% 93.08%

3 93.70% 91.73% 92.70%

Accuracy 95.93%

Macro Avg 95.93%

Weighted Avg 95.93%
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4.2. Comparison with Other State-of-the-Art Deep Models

In this section, we will conduct a comprehensive comparison between a state-of-the-art
deep learning model for our model for AD detection and other prominent models that have
been developed for the same task. The comparison will be based on the same dataset and
provide insights into the relative performance of the different models. Table 6 compares
our model with various cutting-edge techniques for binary classification problems. Table 7
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contrasts our model for multi-classification tasks with previous state-of-the-art deep meth-
ods on the same dataset. Table 8 shows a comparison of our method with recent papers
using several datasets.

Table 6. Comparison between the proposed model with other previous model for binary classification task.

Reference/Author Methodology Performance

Menagadevi et al. [8]
(2023) Deep residual autoencoder + ELM Accuracy = 98.97%

Loddo et al. [10]
(2022) Deep-Ensemble

Accuracy = 96.57%
Sensitivity = 96.57%
Specificity = 98.28%
F1-score = 96.57%

Tuvshinjargal and Hwang [16]
(2022) Pretrained model

Accuracy = 0.774
Precision = 0.774

Recall = 0.785
F1-score = 0.779

Proposed
(2023) Lightweight deep model

Accuracy = 99.22%
Precision = 99.22%

Recall = 99.22%
F1-score = 99.21%

Table 7. Comparison between the proposed model with other previous model for multi-
classification task.

Reference/Author Methodology Performance

Murugan et al. [9]
(2021) CNN

Accuracy = 95.23%
Precision = 96%

Recall = 95%
F1-score = 95.27%

Loddo et al. [10]
(2022) Deep ensemble

Accuracy = 97.71%
Sensitivity = 96.67%
Specificity = 98.22%

Sharma et al. [11]
(2022) Pretrained deep models Accuracy = 91.75%

Mohammed et al. [12]
(2021) Pretrained deep model + SVM

Accuracy = 94.80%
Sensitivity = 93%

Specificity = 97.75%

Balasundaram et al. [13]
(2023) Pretrained deep models

Accuracy = 94.10%
Precision = 96.50%

Recall = 94.75%
F1-score = 95.5%

Bangyal et al. [14]
(2022) CNN

Accuracy = 94.63%
Precision = 94.75%

Recall = 94.75%
F1-score = 94.50%

Ahmed et al. [15]
(2022) CNN

Accuracy = 90%
Precision = 91.34%

Recall = 87.34%
F1-score = 88.09%

Proposed
(2023) Lightweight deep model

Accuracy = 95.93%
Precision = 95.93%

Recall = 95.88%
F1-score = 95.90%
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Table 8. Comparison between the proposed model with other recent models on several datasets.

Reference/Authors Methodology Database Classification Task Performance

Hazarika et al. [33]
(2023)

Hybrid pretrained
models ADNI [35] Multi-classification

Accuracy = 88%
Precision = 92%

Recall = 90%
F1-score = 91%

Balaji et al. [34]
(2023) CNN + LSTM Kaggle [29] Binary classification

Accuracy = 98.50%
Precision = 94.80%

Recall = 98%

Hu et al. [22]
(2023)

Pretrain model +
Transformer ADNI [35] Multi-classification

Accuracy = 77.20%
Sensitivity = 79.97%
Specificity = 71.59%

Sethuraman et al. [40]
(2023)

Hybrid pretrained
models ADNI [35] Binary classification

Accuracy = 96.61%
Sensitivity = 94.34%
Specificity = 94.96%

Shojaei et al. [41]
(2023) 3D CNN ADNI [35] Binary classification Accuracy = 96.60%

EL-Geneedy et al. [23]
(2023) CNN OASIS [36] Binary classification Accuracy = 99.68%

Proposed Lightweight CNN Kaggle [29] Binary classification
and multi-classification

For binary classification:
Accuracy = 99.22%
Precision = 99.22%

Recall = 99.22%
F1-score = 99.21%

For multi-classification:
Accuracy = 95.93%
Precision = 95.93%

Recall = 95.88%
F1-score = 95.90%

From the previous tables, it is evident that the proposed model is more robust than
earlier models, which attained the greatest accuracy among other approaches for both
binary classification and multiclassification tasks. Menagadevi et al. [8] obtained good
accuracy in both tasks, but our method was still better. Furthermore, they used a very
complex model with separate classifiers, which, unlike our lightweight model, is unsuit-
able for real-world applications. Using a pretrained model for a multi-classification task
gives better accuracy than a binary classification task, as in [11–13,16]. The normal CNN
model as in [9,14,15] obtains acceptable accuracy but is still worse than our model and the
combination of deep learning with traditional classification as in [8,10]. Loddo et al. [10]
obtained very low accuracy for binary tasks compared with our model and better than our
method for multi-classification tasks. However, the model they used has a higher time and
cost complexity than ours, making it unsuitable for real-time applications. Finally, we can
confirm that, we proposed a robust deep learning model that is more robust than other
recent deep learning models for AD detection.

4.3. Computational Complexity

Complexity analysis is an important aspect of evaluating the performance of any
algorithm, and it is especially critical when working with large datasets. In this section, we
will perform a complexity analysis of our lightweight deep learning model for the accurate
detection of AD using MRI data. The proposed deep learning model uses a reduced number
of parameters and layers compared to traditional CNNs, making it computationally more
efficient. The training complexity of our model is O(m ∗ n), where m is the number of
training examples and n is the number of pixels in each input image. The reduced number
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of parameters and layers in our model allows for faster convergence and more efficient
training compared to traditional CNNs.

Based on the above analysis, we can see that the proposed lightweight deep learning
model for the accurate detection of AD using MRI data is computationally efficient in terms
of time and training complexity. This makes it suitable for deployment on limited hard-
ware resources, such as edge devices or mobile devices, without the need for specialized
hardware. The reduced complexity also allows for faster convergence and more efficient
training, leading to improved performance and accuracy in detecting AD. Table 9 shows the
computational complexity required to accomplish the performance accuracy for training
the proposed deep model.

Table 9. Computational complexity required to accomplish the performance accuracy for training the
proposed deep model.

Steps Complexity in Big-O Notation

Handling the unbalanced problem of the dataset Depends on the size of the data, which is not
more than O(n)

The inner steps (number of parameters
and layers)

O(m) ∗ O(1)
Where O(1) is the time required for each layer
of the proposed model

Training the deep learning model
O(m ∗ n), where m is the number of training
examples and n is the number of pixels in
each input image

The total big-O O(m ∗ n)

5. Conclusions

This study aims to evaluate the performance of deep learning models in detecting and
classifying AD using MRI images. The results obtained in the binary classification task,
with an accuracy of 99.30%, and in the four-class classification task, with an accuracy of
95.96%, demonstrate the potential of deep learning models for accurately detecting and
differentiating between the different stages of AD. The use of image data with a shape of
150 × 150 × 3, as well as image augmentation techniques and a SoftMax activation function
with a dense four-output layer, were found to be critical factors in achieving these results.

Our study contributes to the growing body of literature on the use of deep learning
models for AD detection and classification. Specifically, our study demonstrates the
potential of using MRI images and deep learning models to accurately detect and classify
AD, which has important implications for early diagnosis and treatment. Moreover, the
findings of our study provide a foundation for future research in this area.

However, our study has some limitations that should be considered. First, the dataset
used in this study is relatively small, and it may not be representative of the entire popula-
tion. Second, our study only considered a single modality (MRI images), and future studies
could explore the use of other imaging modalities (e.g., PET scans) in combination with
deep learning models. Finally, the generalizability of our findings may be limited by the
specific deep learning architecture and hyperparameters used in this study.

Future work in this area could focus on addressing the limitations of our study as
well as exploring the use of deep learning models in other areas of medical imaging.
Additionally, the development of more explainable deep learning models that can provide
insights into the underlying biological mechanisms of AD could further advance our
understanding of this disease.



Diagnostics 2023, 13, 1216 20 of 21

Author Contributions: Methodology, M.H. and A.A.A.E.-L.; software, M.H and A.A.A.E.-L.; vali-
dation, M.H., S.A.C. and A.A.A.E.-L.; investigation, A.A.A.E.-L.; resources, S.A.C. and M.A.; data
curation, M.H., S.A.C. and A.A.A.E.-L.; writing—original draft preparation, M.H. and A.A.A.E.-L.;
writing—review and editing, M.H., S.A.C. and A.A.A.E.-L.; visualization, M.H., S.A.C. and A.A.A.E.-
L.; funding acquisition, S.A.C. and M.A. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry
of Education in Saudi Arabia for funding this research work through the project number RI-44-0487.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data will be available upon reasonable request from the correspond-
ing authors.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number RI-44-0487.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [CrossRef]
2. Kocaelli, H.; Yaltirik, M.; Yargic, L.I.; Özbas, H. Alzheimer’s Disease and Dental Management. Oral Surg. Oral Med. Oral Pathol.

Oral Radiol. Endod. 2002, 93, 521–524. [CrossRef]
3. Chassain, C.; Cladiere, A.; Tsoutsos, C.; Pereira, B.; Boumezbeur, F.; Debilly, B.; Marques, A.-R.; Thobois, S.; Durif, F. Evaluation

of Common and Rare Variants of Alzheimer’s Disease-Causal Genes in Parkinson’s Disease. Park. Relat. Disord. 2022, 97, 8–14.
[CrossRef]

4. Kalaria, R. Similarities between Alzheimer’s Disease and Vascular Dementia. J. Neurol. Sci. 2002, 203, 29–34. [CrossRef]
5. Sarasso, E.; Gardoni, A.; Piramide, N.; Volontè, M.A.; Canu, E.; Tettamanti, A.; Filippi, M.; Agosta, F. A Multiparametric MRI

Study of Structural Brain Damage in Dementia with Lewy Bodies: A Comparison with Alzheimer’s Disease. Park. Relat. Disord.
2021, 91, 154–161. [CrossRef]

6. Simic, G.; Stanic, G.; Mladinov, M.; Jovanov-Milosevic, N.; Kostovic, I.; Hof, P. Does Alzheimer’s Disease Begin in the Brainstem?
Neuropathol. Appl. Neurobiol. 2009, 35, 532–554. [CrossRef]

7. Desai, A.K.; Grossberg, G.T. Diagnosis and Treatment of Alzheimer’s Disease. Neurology 2005, 64 (Suppl. 3), S34–S39. [CrossRef]
8. Menagadevi, M.; Mangai, S.; Madian, N.; Thiyagarajan, D. Automated Prediction System for Alzheimer Detection Based on Deep

Residual Autoencoder and Support Vector Machine. Optik 2023, 272, 170212. [CrossRef]
9. Murugan, S.; Venkatesan, C.; Sumithra, M.G.; Gao, X.Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A Deep Learning

Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images. IEEE Access 2021, 9, 90319–90329. [CrossRef]
10. Loddo, A.; Buttau, S.; Di Ruberto, C. Deep Learning Based Pipelines for Alzheimer’s Disease Diagnosis: A Comparative Study

and a Novel Deep-Ensemble Method. Comput. Biol. Med. 2022, 141, 105032. [CrossRef]
11. Sharma, S.; Gupta, S.; Gupta, D.; Altameem, A.; Saudagar, A.K.J.; Poonia, R.C.; Nayak, S.R. HTLML: Hybrid AI Based Model for

Detection of Alzheimer’s Disease. Diagnostics 2022, 12, 1833. [CrossRef] [PubMed]
12. Mohammed, B.A.; Senan, E.M.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Al-Mekhlafi, Z.G.; Ghaleb, F.A. Multi-Method

Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning
and Hybrid Methods. Electronics 2021, 10, 2860. [CrossRef]

13. Balasundaram, A.; Srinivasan, S.; Prasad, A.; Malik, J.; Kumar, A. Hippocampus Segmentation-Based Alzheimer’s Disease
Diagnosis and Classification of MRI Images. Arab. J. Sci. Eng. 2023, 1–17, online ahead of print. [CrossRef] [PubMed]

14. Bangyal, W.H.; Rehman, N.U.; Nawaz, A.; Nisar, K.; Ibrahim, A.A.A.; Shakir, R.; Rawat, D.B. Constructing Domain Ontology for
Alzheimer Disease Using Deep Learning Based Approach. Electronics 2022, 11, 1890. [CrossRef]

15. Ahmed, G.; Er, M.J.; Fareed, M.M.S.; Zikria, S.; Mahmood, S.; He, J.; Aslam, M. DAD-Net: Classification of Alzheimer’s Disease
Using ADASYN Oversampling Technique and Optimized Neural Network. Molecules 2022, 27, 7085. [CrossRef]

16. Tuvshinjargal, B.; Hwang, H. VGG-C Transform Model with Batch Normalization to Predict Alzheimer’s Disease through MRI
Dataset. Electronics 2022, 11, 2601. [CrossRef]

17. Varalakshmi, P.; Priya, B.T.; Rithiga, B.A.; Bhuvaneaswari, R.; Sundar, R.S.J. Diagnosis of Parkinson’s Disease from Hand Drawing
Utilizing Hybrid Models. Park. Relat. Disord. 2022, 105, 24–31. [CrossRef]

18. Inguanzo, A.; Sala-Llonch, R.; Segura, B.; Erostarbe, H.; Abos, A.; Campabadal, A.; Uribe, C.; Baggio, H.; Compta, Y.; Marti,
M.; et al. Hierarchical Cluster Analysis of Multimodal Imaging Data Identifies Brain Atrophy and Cognitive Patterns in
Parkinson’s Disease. Park. Relat. Disord. 2021, 82, 16–23. [CrossRef]

http://doi.org/10.1186/s13024-019-0333-5
http://doi.org/10.1067/moe.2002.123538
http://doi.org/10.1016/j.parkreldis.2022.05.007
http://doi.org/10.1016/S0022-510X(02)00256-3
http://doi.org/10.1016/j.parkreldis.2021.09.003
http://doi.org/10.1111/j.1365-2990.2009.01038.x
http://doi.org/10.1212/WNL.64.12_suppl_3.S34
http://doi.org/10.1016/j.ijleo.2022.170212
http://doi.org/10.1109/ACCESS.2021.3090474
http://doi.org/10.1016/j.compbiomed.2021.105032
http://doi.org/10.3390/diagnostics12081833
http://www.ncbi.nlm.nih.gov/pubmed/36010183
http://doi.org/10.3390/electronics10222860
http://doi.org/10.1007/s13369-022-07538-2
http://www.ncbi.nlm.nih.gov/pubmed/36619218
http://doi.org/10.3390/electronics11121890
http://doi.org/10.3390/molecules27207085
http://doi.org/10.3390/electronics11162601
http://doi.org/10.1016/j.parkreldis.2022.10.020
http://doi.org/10.1016/j.parkreldis.2020.11.010


Diagnostics 2023, 13, 1216 21 of 21

19. Liu, C.; Huang, F.; Qiu, A.; Alzheimer’s Disease Neuroimaging Initiative. Monte Carlo Ensemble Neural Network for the
Diagnosis of Alzheimer’s Disease. Neural Netw. 2023, 159, 14–24. [CrossRef]

20. Lahmiri, S. Integrating Convolutional Neural Networks, kNN, and Bayesian Optimization for Efficient Diagnosis of Alzheimer’s
Disease in Magnetic Resonance Images. Biomed. Signal Process. Control 2023, 80, 104375. [CrossRef]

21. Abbas, S.Q.; Chi, L.; Chen, Y.P.P. Transformed Domain Convolutional Neural Network for Alzheimer’s Disease Diagnosis Using
Structural MRI. Pattern Recognit. 2023, 133, 109031. [CrossRef]

22. Hu, Z.; Wang, Z.; Jin, Y.; Hou, W. VGG-TSwinformer: Transformer-Based Deep Learning Model for Early Alzheimer’s Disease
Prediction. Comput. Methods Programs Biomed. 2023, 229, 107291. [CrossRef] [PubMed]

23. Marwa, E.G.; Moustafa, H.E.D.; Khalifa, F.; Khater, H.; AbdElhalim, E. An MRI-Based Deep Learning Approach for Accurate
Detection of Alzheimer’s Disease. Alex. Eng. J. 2023, 63, 211–221. [CrossRef]

24. Hammad, M.; Abd El-Latif, A.A.; Hussain, A.; Abd El-Samie, F.E.; Gupta, B.B.; Ugail, H.; Sedik, A. Deep Learning Models for
Arrhythmia Detection in IoT Healthcare Applications. Comput. Electr. Eng. 2022, 100, 108011. [CrossRef]

25. Hammad, M.; Bakrey, M.; Bakhiet, A.; Tadeusiewicz, R.; Abd El-Latif, A.A.; Pławiak, P. A Novel End-to-End Deep Learning
Approach for Cancer Detection Based on Microscopic Medical Images. Biocybern. Biomed. Eng. 2022, 42, 737–748. [CrossRef]

26. Jabeen, F.; Rehman, Z.U.; Shah, S.; Alharthy, R.D.; Jalil, S.; Khan, I.A.; Almohammedi, A.; Alhumaidi, A.S.; Abd El-Latif, A.A.
Deep Learning-Based Prediction of Inhibitors Interaction with Butyrylcholinesterase for the Treatment of Alzheimer’s Disease.
Comput. Electr. Eng. 2023, 105, 108475. [CrossRef]
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