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Abstract: Disease severity identification using computational intelligence-based approaches is gain-
ing popularity nowadays. Artificial intelligence and deep-learning-assisted approaches are proving
to be significant in the rapid and accurate diagnosis of several diseases. In addition to disease
identification, these approaches have the potential to identify the severity of a disease. The problem
of disease severity identification can be considered multi-class classification, where the class labels
are the severity levels of the disease. Plenty of computational intelligence-based solutions have been
presented by researchers for severity identification. This paper presents a comprehensive review
of recent approaches for identifying disease severity levels using computational intelligence-based
approaches. We followed the PRISMA guidelines and compiled several works related to the severity
identification of multidisciplinary diseases of the last decade from well-known publishers, such as
MDPI, Springer, IEEE, Elsevier, etc. This article is devoted toward the severity identification of two
main diseases, viz. Parkinson’s Disease and Diabetic Retinopathy. However, severity identification of
a few other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis, sepsis,
sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis, and Alzheimer’s
disease, was also briefly covered. Each work has been carefully examined against its methodology,
dataset used, and the type of disease on several performance metrics, accuracy, specificity, etc. In
addition to this, we also presented a few public repositories that can be utilized to conduct research
on disease severity identification. We hope that this review not only acts as a compendium but also
provides insights to the researchers working on disease severity identification using computational
intelligence-based approaches.

Keywords: disease severity; deep learning; machine learning; Parkinson’s disease; diabetic retinopathy;
Alzheimer’s disease; CNN

PACS: J0101

1. Introduction

Early and accurate diagnosis of diseases is essential for the right treatment. In ad-
dition to accurate and rapid diagnosis, the severity identification using computational
intelligence-based approaches is becoming popular and challenging nowadays. Traditional
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computational approaches (i.e., classification) are mainly focused on solving two-class clas-
sification problems, i.e., positivity or negativity of disease, or presence or absence of certain
values. However, nowadays, with the advancements in deep learning technologies, one can
easily diagnose the disease and its severity. Most of the work on severity identification is
based on recent deep-learning-based models. The training of these models depends on the
labeling of disease severity levels by expert personnel. However, the process of multi-class
manual labeling is quite tedious, time-consuming, and non-quantitative [1].

In this paper, the problem of severity identification is addressed with the help of multi-
class classification. A comprehensive review of various research articles concentrating
on disease severity identification using computational intelligence-based approaches is
presented. Research articles focused on the severity identification of Parkinson’s Disease
(PD) and Diabetic Retinopathy (DR) are mainly considered for this study. We followed
the PRISMA statement to prepare this review on the severity identification of diseases
using computational intelligence-based approaches. The search terms/combinations to
search sources for this study followed search phrases such as “(disease AND severity AND
deep learning)”, “(severity identification AND computational intelligence)”, “(Diabetic
Retinopathy AND severity AND artificial intelligence)”, “(Parkinson’s Disease AND sever-
ity AND artificial intelligence)”, etc. The search strategy followed by the identification
and analysis of sources for this study is also depicted in Figure 1. In addition to this,
we briefly surveyed a few articles on the severity identification of some other diseases,
i.e., COVID-19, Knee Osteoarthritis (KOA) [2], Autonomic Nervous System Dysfunction
(ANSD) [3], Tuberculosis [4], and Sepsis [5], etc. It is evident that radiology is widely used
for the diagnosis of various critical diseases. Some computational approaches also consider
radiological images for disease identification. Radiology is one discipline of medicine that
uses imaging technologies to diagnose diseases [6]. Radiology is divided into two main
classes, viz. Diagnostic Radiology and Interventional Radiology [7]. Diagnostic radiology
provides structures inside the body, whereas interventional radiology is associated with
minimally invasive procedures.

Figure 1. Strategy for inclusion of sources for this study.

Due to the recent advances in deep learning and machine learning, the potential of
computational approaches regarding the recognition of complex patterns from radiological
images has increased to a great extent. Nowadays, the integration of computational
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approaches and radiological imaging technologies is gaining tremendous popularity and
becoming an active research area. Undoubtedly, future clinical decision support systems
and monitoring systems will be equipped with state-of-the-art artificial intelligence. It is
observed that plenty of deep-learning- and machine-learning-based research work has been
carried out on radiological imaging. Deep-learning-based disease identification follows
several steps, viz. data collection, labeling, classification, and model evaluation. These
models can be optimized by fine-tuning the parameters, as depicted in Figure 2.

Figure 2. Process of optimizing a classification model for disease identification.

In the case of machine-learning-based disease identification, the non-imaging data
values and efficient algorithms play an important role in decision support systems. Machine-
learning and deep-learning techniques have numerous applications in the medical domain.
The work embodied in this paper mainly focuses on diagnosing Parkinson’s disease,
Diabetic Retinopathy (DR), and some other diseases (infectious diseases, tuberculosis,
COVID-19, sepsis, etc.) using computational approaches. The subsequent sections will
highlight some of the work conducted by researchers to diagnose these diseases. In short,
the major contributions of this paper are highlighted as follows:

• In-depth analysis of several recent pieces of work for disease severity identification
using computational intelligence-based approaches.

• A comprehensive discussion on the challenges and issues of each approach for sever-
ity identification.

• Classification of several works according to major disease types such as Parkinson’s
Disease and Diabetic Retinopathy.

• Presentation of several public repositories for conducting disease severity identifica-
tion research.

The remainder of this paper is organized as follows. Sections 2 and 3 discuss some of
the work related to detecting the severity of Parkinson’s Disease and Diabetic Retinopathy,
respectively. Works based on severity identification of a few other diseases, i.e., COVID-19,
autonomic nervous system dysfunction, tuberculosis, sepsis, sleep apnea, psychosis, trau-
matic brain injury, breast cancer, knee osteoarthritis, and Alzheimer’s disease, are briefly
presented in Section 4. A few public repositories are depicted in Section 5. Finally, Section 6
presents concluding remarks along with future directions for severity identification using
computational intelligence-based approaches.

2. Severity Identification of Parkinson’s Disease

Movement disorders caused by PD may not remain the same in different patients.
Thus, it is essential to develop an automated tool to evaluate a patient’s gait. Xia et al. [8]
presented a novel gait evaluation approach (known as “dual-modal attention-enhanced
deep learning network”), which not only distinguishes between normal gaits and PD gaits
but also computes the severity of PD by quantification of gaits. The system is capable of
modeling both left and right gaits separately. Multiple 1D vertical ground reaction force
(VGRF) signals achieve the segmentation of left and right samples. A CNN-LSTM-based
dual-modal attention-enhanced network was utilized to analyze the gait movements on
the gait dataset [9] with two severity levels, viz. Hoehn and Yahr (H&Y) and the Unified
Parkinson’s Disease Rating Scale (UPDRS). Their architecture utilizes an input with the
dimensions B × 150 × 9 × 1, where B indicates the batch size of samples, 150 indicates
the period of a sample, and 9 indicates the number of VGRF signals. Their CNN consists
of three layers in which every convolution operation is followed by the ReLU activation
function for feature extraction. However, pooling is not incorporated due to the limited data
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samples. After the last convolution, the output of the feature map comprises dimensions of
B × 150 × 9 × C3. Using flattening, the feature map 9 × C3 is converted into a tensor, i.e., C4,
which was fed to an attention-enhanced LSTM (AE-LSTM). The AE-LSTM concatenates
the branches and passes them to the fully connected (FC) layer. Finally, the severity
of PD is achieved using probability distribution by mapping the output of FC using a
SoftMax classifier. Experimental results claim 99.01% accuracy in classifying PD patients
into different severity levels.

Pereira et al. [10] have reviewed several papers to predict PD at the earliest stage.
After reviewing the papers, the authors have concluded that there are still many problems
that need to be addressed, so they proposed image processing techniques to address these
existing problems. For this experiment, handed datasets are utilized, collected from Brazil
University. It contains the meander and spiral images gathered through the handwritten
exam and 92 handwritten exams conducted on healthy people (control group) and PD
patients. Handwritten Trace (HT) and Exam Template (ET) features are extracted through
the blurring method. The feature extraction technique is applied to compare and evaluate
both the HT and ET features. The Support Vector Machine (SVM) with some modifications,
Naïve Bayes (NV) technique, and Optimum path forest (OPF) pattern recognition methods
are used for the severity classification. The experimental results show 67% accuracy in
identifying the precise class to predict the stage of the severity. As per the amount of
information concerned for PD identification, meander images represent more information
than spiral images. Although they presented an automated system that diagnosed the
PR at an early stage, the performance can be improved by considering large as well as
consistent datasets.

Prashanth et al. [11] addressed the fact that if PD disease is detected at an early stage,
it can be cured by the proper therapies and medicines. In this regard, they utilized Single-
Photon Emission Computed Tomography (SPECT) along with 123I-Ioflupane to diagnose
the PD disease at an earlier stage on the PPMI database. The dataset contains the Striatum
Binding Ratio (SBR) value of 179 normal people and 369 PD patients in the initial stage.
The logical regression is applied for the calculation of the significant numerical features.
The visualization of each SBR feature is calculated through histograms. The notched plots
mark the patients separately in normal, PD, and early-stage categorization. The classifica-
tions and prediction have been acquired through the Support Vector Machine (SVM) and
Logistic Regression (LR). The SVM uses a linear kernel to classify the decision boundary
through by input features. The binomial logistic regression model uses the logit transfor-
mation method to develop the prediction model to predict the risk factor in PD patients.
The experimental results report that the SVM classification method has achieved 96.14%
accuracy and 95.03% specificity for the classification of PD patients. Although this system
provided high performance and distinguished early PD patients from normal patients,
the system can be enhanced through the Scans Without Evidence of Dopaminergic Deficit
(SWEDD) and other validation approaches.

Parkinson’s Disease can be identified on various input signals, as depicted in Figure 3.
In this regard, Cernak et al. [12] proposed a model to identify voice characteristics to
predict the PD patient’s information. They utilized the read Voice Quality (VQ) datasets by
Kane (2012) and Laver (1980). They covered the five non-model vocalizations, viz. creaky,
breathiness, falsetto, harsh, and tense. To study the vocalization features, the Spanish
database contains the speech recording detail of PD patients and a healthy control group.
With the help of statistical measures, the authors differentiated the model and non-model
vocalization. They computed the probability of the vocalization features through a machine-
learning-based approach. The Euclidean distance calculates the similarity of the model
in PD, and the alignment of the non-model is calculated through the inverse distance.
The vocalization analysis section is computed through the Deep Neural Network (DNN).
Further, the binary classification method was utilized to identify the probability of a specific
vocalization class. They also applied the acoustic model for the phonic configurations.
The experimental results reported the characteristics of PD patients: the composition of
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a maximum of 30% of breathy voice and a minimum of 12% of harsh voice. The system
provided the accuracy of the vocalization speech based on the voice quality, but analysis of
the speech was limited due to available datasets.

Figure 3. Various inputs to Parkinson’s Disease diagnosis.

Lahmiri et al. [13] also proposed a method to detect PD through voice patterns. They
utilized the 195 vowels and voices data set comprising 147 PD-affected and 48 healthy
patients. The Wilcoxon and ROC techniques were used to identify eight different patterns.
The well-established SVM classification technique was applied to classify the PD patient
and the healthy one. The system reported a 92.21% accuracy, 82.79% specificity, and 99.63%
sensitivity. Although this automated system provided a good performance through voice
patterns only, the researchers may combine some other parameters for the identification of
PD patients at an early stage because voice is not the only symptom that characterizes PD.

Ertuǧrul et al. [14] presented a machine-learning model to detect PD disease at an ear-
lier stage. Initially, the data are collected from the gaitpdb datasets that contain information
about healthy people and PD patients. Eight sensors are placed under the foot for 2 min,
and the recorded sensor information is converted into the LBP domain and processed
through shifted 1D-LBP. The LBP signal value lies between 0 and 255, matched with a
special and distinct pattern formed through the shifted 1D-LBP signal. Then, the histogram
technique illustrated the 256 different signal patterns according to their corresponding
signal. The statistical features such as correlation, entropy, and skewness are computed
through the 1D-LBP histogram sensor. The classification and design features were pro-
cessed through the machine-learning approach. The experiment evaluation on 10-fold
cross-validation reported an accuracy of 88.89% and a sensitivity of 0.89. The authors
implemented the proposed system on biomedical information, and in addition to this, some
other symptoms such as speech may be considered in the future.

Marek et al. [15] stated that PD detection at the earliest age is crucial because there
is no accurate method to detect PD. Either motor symptoms or non-motor symptoms can
be detected through PD diseases. They proposed an automated multi-modal feature and
machine-learning techniques based on non-motor symptoms for detecting PD. Based on
biomarkers, the feature description is processed through the REM sleep Behavior Disorder
Screening Questionnaire (RBDSQ) and CerebroSpinal Fluid (CSF). The Wilcoxon sum test
is applied for the feature analysis. The PD classification is achieved through SVM, random
forest, and logistic regression. The experimental result reported a 96.0% accuracy for the
tested dataset.

Acharya et al. [16] differentiated PD patients from normal persons by drawing move-
ments. They investigated handwriting markers for muscular movements and interpretation
of other activities of the patients. To experiment with this model, the dataset was cate-
gorized into two parts, i.e., 20 healthy and 57 PD patients. The data pre-processing was
achieved through five different score vectors. The Normalized Velocity Variability (NVV)
is applied to identify the speed of the pen of the subject. They applied the NVVALL score
to focus on healthy and PD patients. The receiver operating characteristic (ROC) was
observed to be 0.9354. The UPDRS score represented the writing behavior of PD patients
on the Hoehn (H) and Yahr (Y) scale. Naïve Bayes, Adaboost, and logistic regression
methods were applied for the PD classification. The experimental results reported the
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highest accuracy of 90.90% through Naïve bays and the lowest accuracy of 86.36% through
the SVM classifier.

Nilashi et al. [17] presented a new automated method to predict and monitor PD
disease patients with characteristic motor and total UPDRS. Clustering was applied to
form a cluster with similar characteristics and merge similar features into one cluster. Thus,
in the output, different clusters were created of different sizes. A self-organizing map
(SOM)-based cluster approach effectively handled the large datasets and provided similar
clusters. The R2 method was utilized to evaluate the value of the SOM. In addition, the PCA
method was applied for the feature analysis of the cluster approach. Further, the deep
belief network was also applied to identify PD patients better. The RMSE method was
applied to find the exact and accurate information about PD patients. They also included
the SVR [18] and ANFIS [19] learning techniques and presented an accuracy of 89.4%.

Sztaho et al. [20] proposed a method to detect the severity level of Parkinson’s disease
through speech signals. To implement this method, the authors used the Hungarian speech
database that consists of the speech signals of 51 patients. The severity of patients was
classified according to the Hoehn (H) and Yahr (Y) scales. The sound card was utilized to
record the speech of patients. The feature extraction technique was utilized to categorize
speech, such as pause ratio and speech speed. The authors implemented this method using
two types of detection methods, viz. binary classification and regression. The classification
method was processed by the K-Nearest Neighbor (K-NN) method and SVM. They utilized
two types of regression methods, viz. linear regression and support vector regression.
The Root Mean Square Error (RMSE) was used to evaluate the performance of the regression
method. The binary classification method reported an overall accuracy of 83.56% for the
read text, 85.11% for the speech signal, and 84.62% for both.

Xia et al. [8] proposed a dual model based on the deep-learning method to detect the
characteristics of Parkinson’s disease from the gait signals. The left and right gaits were
recorded by the VGRF tool. The severity level is identified with the help of the Hoehn
(H) and Yahr (Y) scales. They applied an N-size vector for feature extraction and selection
through this vector gait cycle detection, which is processed by fixing the N = 150. The dual-
mode consists of two-channel levels for processing separate signals. The VGF gait signals
are first passed through the two-layer CNN model to understand the features of gait signals,
followed by LSTM for temporal features. Further, they utilized the attention method, which
provided meaningful information on the subject that can be accessed with the help of a
score. A Fully Connected layer (FC) was incorporated to combine both left and right gait
signals, followed by final classification through the SoftMax layer. The efficacy of the model
was measured using a five-fold cross-validation approach. The model experimentally
reported an accuracy of 99.31% and a sensitivity of 99.23%.

Park et al. [21] compared the performance of the PD diagnosis system through SVM
with the two methods, viz. Multiple Layer Perceptron (MLP) and Radial Basis Func-
tion Network (RBN). Seventy-four-year-old data are utilized to implement this method,
and the signal Electromyograph (EMG) is recorded through the AgCI conductor. In the pre-
processing stage, signals are firstly filtered into 3 to 10 Hz by a type-2 filter followed by Fast
Fourier Transformation (FFT) to identify the same frequency band of the tremor. After these
steps, EMG signals are classified into two stages, viz. experienced and visual signal to
detect the exact tremor status. The MLP network consists of the input layer, hidden layer,
and output layer, and it is used to reduce the overfitting issue in the datasets. The status of
tremors is detected through −1 and 1. On the other hand, the radial basis function utilized
the fuzzy c-mean clustering method to identify the initial stages of the cluster. Overall,
81.14% accuracy was reported using the SVM classification of tremor status.

Hariharan et al. [22] presented an intelligent system based on a hybrid model. They
initially incorporated the Gaussian mixture method as a pre-processing step to remove the
unwanted noise present in the dataset. They also utilized two types of feature reduction
methods, viz. PCA (Principal Component Analysis) to identify the hidden features pre-
sented in the datasets and LDA for mapping 22 features into a one-dimensional space. Gen-
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eral Regression Neural Network (GRNN), Probabilistic Neural Network (PNN), and SVM
were utilized for the severity classification of PD. The promising classification was reported
based on the cross-validation method.

On the other hand, Balaji E. et al. [23] proposed a machine-learning model that can
assist clinicians in detecting the stages of PD through gait information. Gait information
provides all mobility information about healthy people and PD-affected people. This
model is trained and tested with the public datasets based on the gait pattern provided by
Physionet. VGRF is placed under the foot to provide gait information through different
sensors. The feature extraction process is achieved using statistical and kinematic feature
extraction approaches. The statistical feature extraction process is used to identify the four
levels of PD through H and Y scales. It created a 16 × 166 matrix based on the sensor
and subject-level PD severity. In contrast, the kinematic features were used to identify PD
patients’ steps, swing time, and speed. A 10-fold cross-validation is adopted in which 90%
of data are used for training purposes and the remaining for testing purposes. Decision Tree
(DT), SVM, Bayes, and Ensemble classifier were utilized for the classification. Experimental
evaluation reported that the Decision Tree (DT) classifier has the highest accuracy of 99.04%,
the sensitivity of 99.06%, and the specificity of 99.08%.

Kim et al. [24] presented a novel approach based on CNN to detect the severity rate
of Parkinson’s disease by performing tremor quantification from raw datasets. For exper-
imental evaluation, 92 PD patients’ tremor sensor datasets were collected using a wrist
sensor device as wearable equipment. A neurologist was provided with the information on
PD on four-level severity, i.e., normal to severe, based on the unified Parkinson’s disease
rating scale (UPDRS). In addition, they designed a neural network to assess the severity
in PD patients. In this network, 2D images are used as input for the convolution layer,
and a 3 × 50 convolution filter combines both local and sensor information. They processed
the input signals computed by the wrist sensor in the form of gyroscope signals and
accelerometer signals. Experimental evaluation depicted a classification accuracy of 85%.

Oung et al. [25] addressed that the existing system does not differentiate between
people infected with Parkinson’s Disease (PD) and healthy people. Therefore, to handle
this issue, they proposed a multi-class classification system to classify PD severity levels
(low, mid, high) and a healthy control group. For experimental evaluation, datasets of
65 persons of different ages were collected from the Neurology hospitals and the severity
level in Hoehn (H) and Yahr (Y) was rated through the UPDRS measure. The dataset
signal is assorted through two stages, i.e., motion and speech-based signals. The speech
signals were recorded through the Motion Node Bus (MNB) from the IMU wearable device,
and the speech signals were recorded through the audio sensor, i.e., a headset placed
at 5 cm away from the mouth. The authors acquired the Empirical Wavelet Transform
(EWT) to decompose the motion signals to find the approximate information from the
detailed information, and the Empirical Wavelet Packet Transform (EWPT) was developed
to decompose the speech signals. The EWPT method uses Fast Fourier transform (FFT)
to obtain the exact frequency, i.e., lies between 0 and π. Feature extraction was processed
through the Hilbert transform based on amplitude and frequency. Extracted features are
categorized into three groups: speech signals, motion signals, and a mix of motion and
speech. They employed Probabilistic Neural Network (PNN), Extreme Learning Machine
(ELM), and K-Nearest Neighbor (kNN) for the classification. Experimental evaluation
reported an accuracy of 90% on classification using an Extreme Learning Machine (ELM)
for both motion and audio signals.

Recent studies analyzed that it is hard to diagnose PD at an earlier stage. Many
remote detecting tests were utilized to detect the PD severity and realized that variables
in gait signals could easily distinguish PD patients from healthy ones. In this regard,
Cantürk et al. [26] proposed a system to detect PD patients’ severity using gait signals.
Their system was trained and tested with 306 publicly available signals with 93 PD patients
and 73 healthy subjects based on different categories. The gait system was measured
through Ultraflex Computer Dyno Graphy (UCDG) with eight sensors placed under the
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foot. The Fuzzy Recurrence Plots (FRP) convert the signals into texture representations for
both PD and healthy patients. Further, AlexNet was applied to extract the deep features,
followed by implementing SVM and k-Nearest Neighbor (kNN) for binary and multi-class
classification. The experimental result of the kNN method reported an accuracy of 99%,
whereas the SVM reported 98%.

Zhao et al. [27] presented a machine-learning method to detect the severity level of PD
from the gait data. This is the hybrid technique consisting of both Long Short-Term Memory
(LSTM) and a Convolutional Neural Network (CNN) to recognize the spatial time-based
pattern through the gait data. The hybrid model has five convolution layers and two layers
of LSTM to detect the severity rate in PD patients. The authors acquired two convolution
layers of 5 × 5, in which the first layer is mapped with 32 features and the second one is
mapped with 64 features. LSTM and CNN are trained and tested on the PhysioNet [28]
dataset. The pre-processing and L2 normalization were applied to reshape the datasets into
100 × 19 × N (N =“Ga:13592, Si:7744, Ju:11734”). Further core parameters of LSTM were
transformed to achieve better classification results into four levels, viz. normal (severity 0),
severity 2, severity 2.5, and severity 3. Final classification was achieved using the SoftMax
layer. The model reported 98.70% accuracy for the first dataset, 98.41% for the second
dataset, and 98.88% for the third dataset. However, this method provided better accuracies
in PD detection, and this model is the baseline for detecting the PR disease.

An automated machine-learning-based method is proposed to detect and identify
the level of severity of Parkinson’s disease from the gait data by Maachi et al. [29]. They
employed a Deep Neural Network with the help of a 1D convolution Neural Network. This
algorithm has divided the information into two parts, viz. Parkinson’s and a control group.
For the experiment, publicly available datasets are used and cited from the PhysioNet.
The datasets contain 93 patients with Parkinson’s disease and 73 patients in the control
groups. The Vertical Ground Reaction Force (VGRF) based on 18-1D signals provides the
information of a recorded walk with the foot sensors positioned below the foot. The VGRF
signal is divided into datasets into m-parts that are based on subject categorization. Further,
these parts are the input of the proposed method of DNN. The DNN method is processed
with two parts, viz. 18 parallel 1D and a fully connected network. The feature extraction is
processed through the 18 1D-CNN. The Parallel 1D network has taken input from the VGRF
signal and processed it through the four convolution layers, which are fully connected.
Further, this layer has extracted the features used to help categorize the PD and control
groups. The output layer generates one neuron to detect the disease and five neurons to
classify the level of severity that were categorized into five classes based on some criteria.
This method reports an accuracy of 98.7% in detecting the severity and 85.8% accuracy in
the classification of the severity level.

Prashanth et al. [30] addressed different stages of PD as a very important factor
in a medical decision. The subject’s disordering features were measured by UPDRS,
but it does not give information about the PD stage. In this paper, they proposed a
new model based on machine-learning to detect the PD and different stages of PD (early,
normal, and moderate). This hybrid model supports SVM, AdaBoost, and RUSBoost-based
and ordinal logistic regression (OLR) classifiers. It utilized the Parkinson’s Progression
Markers Initiative (PPMI) datasets with 197 healthy and 434 PD subjects. The statistical
analyzer is used to classify the features into three categories based on a filter. They used
classification algorithms such as random forests, SVM, and logistic regression to classify the
PD stages. The validation of the performance was measured by the 10-fold cross method.
The experimental results indicated that AdaBoost reports the highest detection accuracy
of 97.46% for the normal PD subject, and SVM reports 98.04% for the early stage of PD
detection. Although automated detection improves the stage of PD, there is a need to
address more stages for PD patients.

Prashanth et al. [31] also presented a prediction model based on machine-learning to
distinguish healthy and early PD patients. The dataset utilized for the experiment is from
the Parkinson’s Progression Markers Initiative (PPMI). They further applied the Patient
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Questionnaire (PQ) to analyze the dataset. In PPMI, data are arranged in the longitudinal
format, so they performed the record and subject-wise cross-validations. The dataset is
divided into 90% training sets, and the remaining are test sets. To remove the redundancy
and select the appropriate features, they have used three different selection methods, viz.
Wilcoxon rank, Least Absolute Shrinkage and Selection Operator (LASSO), and Principal
Component Analysis (PCA). The Wilcoxon rank method is acquired for the significant
features through the sum test. The LASSO method is also applied to shrink the datasets,
and the PCA method is the reduction approach used for decomposing the multivariate
datasets into one manner format. The authors have processed the logistic regression, SVM,
random forests, and boosted trees for the classifications. The experimental results indicated
96.50% accuracy using SVM through the subject-wise validation.

Aydın et al. [32] presented the Hilbert–Huang Transform (HHT) method to detect
the severity of Parkinson’s Disease (PD) from the gait pattern. The datasets are utilized
from the PhysioNET [28], and the signals, such as step swing time, are measured through
the VGRF sensor. The authors applied three types of feature selection techniques, i.e., the
filter approach, the wrapper approach, and the embedded approach. The filter approach is
used to identify the common characteristic of the training datasets. The wrapper feature
selection approach is applied for mapping with relevance and extracting the optimal
features, and the last approach is applied to check the performance of the features. They
also applied the feature creation method, and a 10-fold cross-validation approach checks
the performance of this method. The regression tree classification approach is processed
to distinguish PD patients from healthy ones. The experimental results showed that the
accuracy of the proposed system is 98.79%, sensitivity is 98.92%, and specificity is 98.61%.
The performance analysis of some PD identification approaches is depicted in Table 1.
On the other hand, a systematic review of AI-based approaches for the diagnosis of PD is
presented by Saravanan et al. [33].

Table 1. Performance analysis of various Parkinson’s Disease (PD) identification approaches.

References Input Features Extraction
Approach Classifier Performance Accuracy

(%)

Pereira et al. (2016) [10] Spiral, Meander images Zhang–Suen-based
thinning algorithm NB, OPF, SVM 67.00

Cantürk (2021) [26] Gait Signals Alexnet SVM, kNN 99.00
Xia et al. (2019) [8] Gait information CNN 2D CNN & LSTM 99.31

Zhao et al. (2018) [27] Gait information CNN model CNN & LSTM 97.86
Hariharan et al.

(2014) [22] Speech samples PCA, LDA, SFS LS-SVM, PNN,
and GRNN 100.00

Prashanth et al.
(2014) [11] SPECT images LR SVM, LR 96.14

Sztaho et al. (2017) [20] Speech Rhythm Feature Vector SVM, Deep learning 94.87
Maachi et al. (2020) [29] Gait signals Manual method Deep 1D-convent 98.70

Lahmiri and Shmuel
(2019) [13] Voice pattern Wilcoxon-based SVM 92.21

Ertuǧrul et al. (2016) [14] Gait signals 1D-LBP LR, MLP, NB, BAyesNT 88.90

Yurdakul et al.
(2020) [34] Gait Signals Local Binary Patterns

Generalized Linear
Regression Analysis

(GLRA) and SVM
98.30

Oung et al. (2018) [25] Speech and Motion
signal

Wavelet Energy and
Entropy kNN, PNN, ELM 95.93

Prashanth and Roy
(2018) [30] Motor signals Wilcoxon rank-sum test

SVM, Random Forest,
probabilistic

ADAboost-based
ensemble

97.46

Aydın and Aslan
(2021) [32] Gait Pattern

One R Attribute
Evaluation and vibes

algorithm

Hilbert-Huang
transform 98.79

Kim et al. (2018) [24] Wrist sensor pattern Convolutional filters of
CNN CNN 85.00

Balaji E. et al. (2020) [23] Gait signals Statistical analysis DT, BC, EC and SVM 99.50
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Discussion

As stated earlier, the movement disorders caused by Parkinson’s Disease are not
uniform in all patients. Deep-learning models play crucial roles in developing automated
tools for evaluating a patient’s gait. It is obvious that to cure any disease, its detection must
take place at the early stages. To detect PD at an early stage, both artificial intelligence
and machine-learning-based techniques are contributing to a great extent, e.g., feature
extractions and pattern recognition from motor symptoms, voice pattern recognitions, etc.
Plenty of work has been carried out to identify PD at an early stage, but this field is still in
its infancy stage. It is observed that very few works are available on PD identification using
non-motor symptoms, and the availability of PD datasets is not adequate to develop auto-
mated models. The researchers may consider these issues while developing an automated
model for the detection of PD at an early stage with excellent efficiency.

3. Severity Identification of Diabetic Retinopathy

Excessive glucose growth in the blood causes diabetes that subsequently harms other
components of the human body, i.e., eyesight loss, kidney malfunctioning, nerve failure,
damage to blood vessels, etc. This excessive amount of glucose leads to damage to the
retina’s blood vessel, which is the main cause of Diabetic Retinopathy (DR) disease. Blur-
riness, color difficulty, floaters, and dark vision are early symptoms of DR disease. It
has become one of the major reasons globally for visual losses. Timely diagnosis and
subsequent treatment of its several stages/severities can save visual loss to some extent.
Several computational models are presented by plenty of researchers for the detection of
DR from fundus images. Shankar et al. [35] presented a novel automated model called
HPTI-v4 (Hyperparameter Tuning Inception-v4) DR detection from color fundus images.
Initially, the contrast of fundus images is enhanced using Contrast Limited Adaptive His-
togram Equalization (CLAHE) [36] followed by histogram-based segmentation. HPTI-v4
then processes the segmented images for feature extraction followed by a Multi-Layer
Perceptron (MLP) classifier. Experimental results on the MESSIDOR (Methods to Eval-
uate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology) DR
dataset exhibited that HPTI-v4 outperforms other state-of-the-art deep-learning models
(i.e., ResNet [37], GoogleNet [38], VGGNet-16 [39], VGGNetCOVID-19 [39], VGGNet-s,
AlexNet [40], Modified AlexNet, and DNN-MSO). The dataset consists of 1200 posterior
pole eye fundus images that were mainly classified into four classes, viz. normal, stage-1
(images with some microaneurysms), stage-2 (image with both microaneurysms and hem-
orrhages), and stage-3 (images with high microaneurysms and hemorrhages). In addition
to HPTI-v4, 10-fold cross-validation was used to subdivide the dataset into training and
testing sets; and Bayesian optimization was employed for selecting an optimal set of hyper-
parameters. The proposed HPTI-v4 obtained the highest accuracy of 99.49% as compared
to other models under consideration.

Wang et al. [41] presented a hierarchical multi-task framework based on deep learning
for simultaneously detecting DR features and severity levels. Severity levels in DR are
characterized by the presence of various signs in the fundus images. DR severity identi-
fication becomes easier if the DR disease-related signs are present in the fundus images.
Earlier, Wang et al. [42] investigated the feasibility of diagnosing DR severity levels and
the presence of DR-related features. Their hierarchical multi-task framework consists of
two main tasks, viz. severity diagnosis of DR and identification of DR-related features.
Their architecture consists of one backbone squeeze-and-excitation (SE) network [43] for
feature extraction and two neural networks (one for DR-related feature extraction and
the other for severity detection). To validate their framework, an experimental evaluation
was conducted on two independent test sets, followed by a grader study to compare the
performance of the proposed framework with experienced ophthalmologists. Results
depicted that the proposed model was able to improve the performance of traditional
machine-learning-based approaches.
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Torre et al. [44] developed a new method to detect diabetic retinopathy using a deep-
learning classifier. For the system’s good performance, they categorized the retinal images
according to the level of severity. To experiment with this model, the EyePacs dataset [45]
from Kaggle was utilized. The ophthalmologists classified the images into different criteria
based on the grading scale. The authors also applied the deep-learning model modifications
to classify the retinal images. They used the optimal retina images whose diameter size is
640 pixels. The Rectified Linear Unit (ReLU) is applied for the activation function with an
epoch size of 30. The multi-class classification model is used to obtain better identification
of the disease as well as severity levels. The experimental results reported a specificity
of 91.1% and a sensitivity of 90.8%. The main advantage of this model is classifying the
five-severity levels of DR disease and identifying the score levels of each class.

Shankar et al. [46] proposed a Synergic Deep-Learning Model (SDL) to classify the
severity level of diabetic retinopathy fundus images. The model utilized the MESSI-
DOR [47] dataset, which contains 1200 color fundus images. The first step was to apply
the pre-processing in which each image was converted into RGB format. Then the seg-
mentation was performed through a histogram to fetch the green color of the image for
further information. The SDL model has processed the classification to classify the DR
image into different stages. Different performance matrices, such as accuracy, sensitivity,
and specificity, are used to evaluate the system. The model experimentally proved 99.28%
accuracy for the classification, 98.54% sensitivity, and 99.38% specificity.

Nowadays, few smartphone-based systems help in performing the retinal screening
of diabetic patients. Still, the accuracy of DR identification is based on the quality of the
image and the region of the view. Therefore, the smartphone system must consider a highly
compact design to provide accurate information. In this regard, Hacisoftaoglu et al. [48]
presented a new system to detect DR based on a smartphone-based system through a deep
learning approach. The system uses transfer learning approaches such as GoogLeNet [38]
and ResNet [37]. The validation of the experiment has been processed through different
datasets, i.e., MESSIDOR and EyePacs. The experimental result reported an AUC of 0.99,
a sensitivity of 98.2%, a classification accuracy of 98.6%, and a specificity of 99.1%. On the
other hand, Son et al. [49] developed a new model that helps to identify the abnormality
in DR patients based on retinal images. They utilized three datasets for the validation
of the approach; 103262 images from 309786 were used to develop the model, and for
the testing, other external datasets were used. Finally, the MESSIDOR dataset [47] was
used for comparison purposes. The deep-learning model has been applied to classify
the abnormality in retinal images. The classification output has oscillated from 0 to 1,
which shows the probability of finding the existence of abnormalities. The experimental
evaluation reported an ROC value of 96.2% to 99.2%. The proposed deep-learning model
not only categorizes the finding by accuracy but also calculates the salient features of
the images.

A new automated method based on deep CNN for detection of DR is proposed in [50].
They utilized two datasets to validate their study: the EyePACS and MESSIDOR-1 & 2.
The pre-processing has been performed in both online and offline stages. In the online
stage, the image is cropped in the desired shape, followed by the removal of the black
border of the image, whereas in offline mode, the pre-processing has been processed by the
augmentation method. The results of the model show better accuracy on the same public
datasets compared to other existing algorithms. Moreover, the suitable preliminary process
for screening larger numbers of patients for an automated system is batch processing and
minimum assumption time. The efficient screening process helps to obtain the model’s best
results. The model was found to enhance the 0.92 AUC for the MESSIDOR-2 dataset [51]
with a sensitivity of 81.02% and a specificity of 86.09%.

The automated NAS (Neural Architecture Search) machine-learning model [52] pre-
dicts the DR patients with no and severe stages of DR disease. To train and validate the
model, a Kaggle dataset comprising the information of 3662 images was used. Out of
3662 images, 3113 images were used for the training data sets, and the remaining were used
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for the testing datasets. Harikrishnan et al. [52] first applied the pre-processing steps to
remove the unwanted noise and other information. They resized the image in a particular
format, then applied the Gaussian filter to improve the image quality. The NAS acquired
the RNN (Recurrent Neural Network) to add more functions with different combinations to
obtain the optimal solution. The accuracy of the model was reported to be 75%. To develop
this model, the learning rate was set as 0.0001, and the initial weight was chosen as the
net image weight. The authors observed that the model obtained the minimum accuracy
when including the dense layer without a pre-processing stage. The proposed model
was validated through the existing database based on E-Ophtha Exude. This model also
reported a sensitivity of 76.6% and a specificity of 77.1%.

Washburn et al. [53] proposed a new system design to detect the retinal image at the
earliest phase. The model utilized the public retinal image datasets. They applied the
image acquisition for the screening method with an existing database. The next step was
pre-processing, which helped in improving the images and removing the unwanted noise,
which consisted of three steps, viz. converting color space, filtering, and enhancement of
image for the quality of the retinal image. The region-based segmentation was processed
to identify the boundary of the backside images. The Gabor wavelets were applied for
the feature extraction approach to extract useful information from large datasets. Further,
the adaptive boost classification was applied to obtain a better prediction result for the
retinal images. The system experimentally reported an accuracy of 98.4%, a specificity of
98.8%, and a sensitivity of 98.4%.

Li et al. [54] developed a new optical coherence tomography system based on deep
learning to diagnose diabetic retinopathy at an earlier stage. The system was validated
with OCT images collected from the Wenzhou Medical University (WMU). The dataset
consists of 4168 OCT images collected from 155 patients. A total of 1112 images out
of the 4168 images belong to DR grade 1 and 1856 to DR grade 0. The pre-processing
was performed by resizing the OCT images to 224 × 224. The OrgNet and segmentation
calculated the deep characteristics to obtain an extra feature for better classifications. In this
work, the feature merging was processed through the summation method in place of
concatenation. The augmentation technique was processed to enhance the neural network
environment. The system is provided with the DR multi-classification, such as grades 0
and 1. An accuracy of 92%, specificity of 90%, and sensitivity of 0.95 were recorded for
grade 0 DR classification.

The fundus image is the perquisition stage to calculate the accurate severity rate of
DR. The manual scoring procedure is considered challenging because of the dissimilarity
in morphology, number, and image size. In this regard, Sambyal et al. [55] presented an
automated method based on segmentation that helps detect the boundaries and helps
ophthalmologists quickly detect the DR with severity grades. They developed an improved
U-Net architecture inspired by U-Net [56] that is pretrained on ResNet34 [37]. It contains
the encoder and decoder at their left and right parts, respectively, resulting in better system
performance. This method is also useful for improving the result compared to the existing
method. The system is validated on two public datasets, viz. e-ophtha [57] and IDRiD [58].
The experimental result reported 99.88% accuracy, 99.85% sensitivity, and 99.95% specificity
for the IDRiD Dataset. For the e-ophtha datasets, the accuracy was 99.98%, with a sensitivity
of 99.88%.

Quellec et al. [59] proposed a machine-learning-based solution for diabetic retinopathy
detection at an early stage. The authors utilized heat map concepts to identify the impor-
tance of a particular pixel in an image. To produce a good quality heat map, they trained the
ConvNets network with the help of the backpropagation method. Three different categories
of the dataset were used in this study (i.e., Kaggle Diabetic Retinopathy, DiaretDB1 [60],
and ‘e-ophtha’). The proposed method is validated on approximately 90,000 fundus images.
They followed data augmentation and pre-processing processes to transform images (i.e.,
448 × 448 pixels). To train the dataset, the three ConvNets were trained to detect diabetic



Diagnostics 2023, 13, 1212 13 of 25

retinopathy. The performance of the proposed model on different datasets was found to be
0.954, 0.955, and 0.949, respectively.

Liu et al. [61] proposed a weighted path CNN (WPCNN) model to detect the diabetic
retinopathy with severity levels. The system was validated through the raw database
comprising 60,000 images categorized into 0 and 1 on severity scales. The authors divided
the datasets into 80% and 20% training and testing sets. They scaled and resized the images
to 299 × 299 through the pre-processing steps. The data augmentation method was applied
to fit the image at standard formation such as right, up, left side, etc. The convolution
layer processed the feature extraction through CNN and extracted the noteworthy features
from the retinal fundus images. During the experimental setup, the authors suggested
an over-fitting issue if the size of the network expands. The coefficient of the WPCNN
was enhanced by using the backpropagation method. The system experimentally reported
94.02% accuracy in comparison to the existing models. It also achieved an AUC of 0.9823
and an F1-score of 0.9087, the highest compared to the existing methods. Although this
proposed system achieved a good performance, the authors pointed out that adding more
features to the automated system can improve the overall performance of the system.

Hua et al. [62] introduced a trilogy of skip-connection deep networks (Tri-SDN) to
analyze the DR images. The new attribute based on EMR was introduced to identify
the risk probability to increase the system’s performance. In the first phase, the feature
extraction was performed from the ImageNet database. The ResNet [37] is pre-trained by
the multiple convolution layers. Further, the corresponding vector mapped the feature map
to identify the risk factor in the DR images. The deep learning network was built with the
two skip connection blocks to identify the characteristics of the retinal images. The authors
also applied the EMR-based value to identify the risk factor of the severity because it
provides the numerical value, and in this work, 22 risk factors are involved. The EMR-
based value is used for the DR orientation characteristic to improve the performance.
The system was validated with the historical information of the 96 patients collected from
the medical university in South Korea. The system experimentally reported an accuracy of
90.6%, a sensitivity of 96.5%, and an of 88.8% of AUROC, which is higher than the existing
models such as random forest and 11-layer CNN. Although the system provides a good
performance compared to the existing algorithm, it needs to add more retinal images to
make the system more efficient so that the ophthalmologists can make easy decisions.

Reddy et al. [63] claimed that DR could be easily detected through different machine-
learning algorithms. For this experiment, they used the DIARETDb1 [60] data set containing
89 images, out of which 5 are of the normal stage, and the rest of the 84 images are Mild
Non-proliferative DR (NPDR) cases. The pre-processing was achieved through the grey
scaling method, image copper, and image resizing to remove the noise and improve detec-
tion accuracy. They applied the segmentation technique to visualize the blood vessels in the
retina. Further, the region growing technique was utilized to identify whether the pixels be-
long to the same region or different regions. The clustering method was applied for the data
analysis. Feature extraction was applied to generalize and extract different features from
the data sets. For classifications, the authors employed the SVM, k-NN, and probabilistic
neural network (PNN) techniques. Different matrices such as accuracy, TPR, and FPR
were employed to evaluate different classifiers. They experimentally determined the best
accuracy (96.57%) through cross-validation using SVM.

Wu et al. [64] proposed an automated hierarchically Coarse-to-Fine network (CF-
DRNet) tool to detect the DR, as depicted in Figure 4. They applied a convolution neural
network to classify severity, viz. no DR, mild DR, moderate DR, severe DR, and proliferative
DR. The experiment was performed on 88,400 fundus image datasets taken from Kaggle.
This technique integrates three steps in which the first step performed the pre-processing,
the second phase performed the CF-DRNet module, and the last stage performed the
aggregation concept. The pre-processing was performed through image enhancement,
image normalization, and data augmentation. Image enhancement is applied to remove
unwanted noise with varying luminous factors. Image normalization is used to reduce the
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complexity and normalize the pixels of images in the coarse network. Data augmentation
is performed to reduce over-fitting and imbalance issues in the datasets. Further, the CF-
DRNet is applied to check the presence of DR. For better detection, it is classified into two
different networks, such as the coarse and fine networks. Then, the aggregation method is
applied to determine the level of DR and No DR. The authors experimentally claimed that
CF-DRNet reported the highest accuracy of 83.10%, sensitivity of 53.99%, and specificity
of 91.22%.

Figure 4. Coarse–Fine Diabetic Retinopathy Network [64].

The detection of diabetes with different severity levels is a complicated system; hence,
it is very difficult and time-consuming. In this regard, Pratt et al. [65] proposed a machine-
learning-based approach with 75% accuracy for the diagnosis of diabetes in five levels
of severity classifications. To train the network, the KAGGLE dataset with 80,000 retinal
images was utilized. The color normalization has been processed through OpenCV for
the categorization of the data into a different age, group, and authenticity. Further, they
resized the images into 512 × 512 pixels for the identification of complex features. Stochastic
gradient descent was utilized for training the datasets with a 0.0001 learning rate for five
epochs. To concede, the first 10,290 images were pre-trained through the CNN network to
classify the severity levels. Further, 5000 images took 188 s for the validation process. This
technique achieved a specificity and sensitivity of 95% and 30%, respectively.

On the other hand, Yun et al. [66] proposed a backpropagation method to classify
the DR into four categories, viz. normal, severe, moderate, and proliferative DR. The
authors used 124 retinal images from Singapore University to process the work. This
method was trained with 27 samples as training sets and the remaining as testing data sam-
ples. A feed-forward neural network was utilized to classify images into different classes.
The pre-processing of images has been carried through the histogram and binarization
process. Further, the ANOVA process extracted the features of retinal images into different
areas and categories. The authors evaluated the model’s performance on three matrices,
i.e., accuracy, specificity, and sensitivity. The method reported 80% accuracy, 90% sensitivity
and 100% specificity.

Akram et al. [67] developed a multi-model for categorizing severity levels of DR into
normal, mild, moderate, and severe Non-Proliferative Diabetic Retinopathy (NPDR). This
model is the hybrid of medoids and the Gaussian Mixture Model (GMM) for the best
classification and solving the overfitting issue. The mean-based approach was utilized to
remove the noise and background. The segmentation process has been processed through
Gabor and the multi-layer thresholding processes. For processing, the authors utilized
datasets such as DRIVE and STARE, which are easily available in the public domain. They
divided the datasets into two parts: an image and a lesion. Further, the feature vector was
used to classify the severity of NPDR through color and intensity factors. The performance
was evaluated on accuracy, sensitivity, specificity, and AUC metrics. The model reported
97.56% accuracy and 97.39% sensitivity, with 98.02% specificity.
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Mookiah et al. [68] proposed a system for automated classification of normal, Non-
Proliferate Diabetes Retinopathy (NPDR) and Proliferated Diabetes Retinopathy (PDR)
using retinal images. They applied pre-processing techniques such as Wiener filtering, gray
level shading correction using low pass filtering, and contrast enhancement to remove noise
and uneven illumination. They also removed the optical disk to reduce the number of false
positives reported while detecting the lesions. The authors applied A-IFS Histon and the
2D Gabor-matched filter approach for segmentation. Further, they extracted the features
such as blood vessel area, exudate area, bifurcation point count, Local Binary Pattern
(LBP) energy, LBP entropy, Laws mask energy, and entropies from the fundus images.
The authors employed Probabilistic Neural Network (PNN), Decision Tree (DT), and SVM
for the classification. They applied genetic algorithm and Particle Swarm Optimization
(PSO) algorithms to optimize the efficacy of the classifiers. The authors experimentally
determined the threshold value as 0.0104 and claimed that PNN reports the highest accuracy
of 96.15%, sensitivity of 96.27%, and specificity of 96.08%.

Chowdhury et al. [69] developed a method to detect DR through four levels catego-
rized as normal, PDR, average PDR, and acute PDR. The categorization into four levels was
completed through a random forest classifier. The pre-processing was achieved through a
contrast enhancement technique which helped in extracting the RGB value from 120 reti-
nal images. The contrast augmentation was completed through adaptive thresholding
to remove the unwanted noise. For conversion to a binary image, the global threshold
technique was adopted. The authors utilized a feed-forward neural network based on
three-layer architecture. This technique reported 90% accuracy in normal cases, 87.5%
accuracy in the case of acute NPDR cases, and 90% sensitivity and 100% specificity classifi-
cation. Table 2 depicts the comparison of a few works based on the severity identification
for Diabetic Retinopathy. On the other hand, Kaur et al. [70] presented a systematic survey
of computational methods for DR diagnosis based on fundus image analysis.

Table 2. Performance analysis of some diabetic retinopathy identification approaches.

References Input Image Features Extraction
Approach Classifier Performance Accuracy

(%)

Hua et al. (2019) [62] Fundus Images ResNet 50 Tri-SDN 90.60
Wu et al. (2020) [64] Fundus Images Resnet CF-DRNet 83.10

Pratt et al. (2016) [65] Fundus Images PCA CNN 75.00
Chowdhury et al.

(2019) [69] Fundus Images Feature Vector RF, NB 93.58

Li et al. (2019) [54] OCT images Org_Net and Seg_Net OCTD_Net 92.00
Hacisoftaoglu et al.

(2020) [48] Fundus images Not mentioned SVM, NB, RF 98.60

Akram et al. (2014) [67] Fundus Images Gabor filter GMM and m-Mediods 97.56
Mookiah et al.

(2013) [68] Fundus images LBP, LTE PNN, DT, SVM 96.15

Sambyal et al. (2020)
[55] DR Images ResNet 34 Modified U-net with

ResNet 99.88

Liu et al. (2019) [61] Fundus images WP-CNN WP-CNN 94.23
Washburn et al.

(2020) [53] Color retinal images Gabor wavelets AdaBoost 98.40

Yun et al. (2008) [66] Retinal optical images Imaging technique Neural Network 84.00

Discussion

As mentioned earlier, early detection of the DR can help patients to recover quicker.
In this regard, most of the work toward DR detection involves extracting features and
classification using SVM and machine-learning-based models. The level of severity has
defined various stages of the disease. Based on the literature analysis, it can be stated that
although various techniques are still used to detect the disease, there is a need to improve
the system in terms of complexity, detection time, and severity stages. Many existing
techniques had worked on small datasets, and most of the algorithms did not elaborate
on the method of feature extraction approaches. Therefore, there is a need to develop a
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hybrid as well as an efficient computed model to identify the severity of the DR disease at
an earlier stage.

4. Severity Identification of Some Other Diseases

Infectious diseases, e.g., Tetanus and Hand Foot and Mouth Disease (HFMD), have
a significant influence on the low- and middle-income countries [3]. Mortalities due to
infectious diseases are associated with Autonomic Nervous System Dysfunction (ANSD).
In addition to clinical examinations, the development of some automated computerized
system is essential for the severity analysis of ANSD. In this regard, Tadesse et al. [3]
presented an automated system to diagnose the severity of HFMD based on the fusion of
multi-modal physiological data collected via low-cost wearable devices. For rapid diagnosis
of severity levels of HFMD, their multi-layer decision system comprises an on-site triage
process followed by a longitudinal model and the fusion of a multi-modal framework.
Finally, deep-learning-assisted mapping of time-series physiological signals with images
was obtained using spectrogram representations.

Mithra and Emmanuel [4] proposed a Gaussian Decision Tree-based Deep Belief
Network (GDT-DBN) for the detection of the degree of infection in the patients of Tuber-
culosis (TB), as depicted in Figure 5. This network is the hybrid of a Deep Belief Network
(DBN), Decision Tree (DT) and Gaussian model. Initially, the sputum smear image was
used as an input to the system, followed by color space transformation. For segmenta-
tion, thresholding-based mechanism was adopted. Once the segmentation is achieved,
the important features (e.g., length density, local direction pattern, histogram, etc.) were
extracted. The authors used the ZNSM-iDB [71] dataset comprising microscopic digital
images for training and testing of the model. A two-level classification was achieved using
the proposed GDT-DBN classifier. However, it is ineffective in distinguishing abnormal
mycobacteria from mycobacteria TB substances due to a similarity in their geometrical
structure. As mentioned earlier about the immense popularity of deep-learning-based
approaches in severity identification, Alebiosu et al. [72] presented a novel DAvoU-Net seg-
mentation framework for improving the severity assessment of tuberculosis. Experimental
evaluations on the ImageCLEF 2019 TB dataset showed promising results as compared to
seven other models under consideration.

Figure 5. Block diagram of GDT-DBN classification for TB infection level identification [4].

Sepsis is a fatal disease if not detected at an early phase. Sequential Organ Failure
Assessment (SOFA) is used to determine the level of Sepsis, but this method is totally
dependent upon the laboratory measurements. In this regard, Aşuroğlu [5] presented a
regression-based method to detect the level of sepsis. They used the Mart In Intensive
Care (MIMIC)-III dataset [73] for experimental evaluations and binary classification for the
prediction of sepsis. This model consumed less time and provided an AUC of 0.98, which
is higher than other existing models. However, due to the large number of samples in
the dataset, it seems difficult to balance the sepsis and un-sepsis samples, thereby causing
a delay.

COVID-19 is a contagious disease that has spread all over the world, affecting the
human body and health, and as such, it is very necessary to identify the level of severity at
an early stage. Deep-learning-based approaches proved to be significant in the diagnosis
of COVID-19 at earlier stages. CT-Scans are helpful in providing information about the
severity of COVID-19 patients in medical reports. Cai et al. [74] presented a deep-learning-
based approach for recognition of the infection region. Initially, patient data (RT-PCR, CT
Samples) were collected and examined at different levels of severity, i.e., moderate, severe,
and critical. In addition, the clinical data, including routine blood tests, clinical symptoms,
demographic data, and treatments, etc., were also considered for the same reason. The
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3DQI tool [75] was utilized for lesion quantifications, followed by data analysis with respect
to disease severity and clinical outcomes. Chi-squared test, Student’s t-test and other ML
models are applied for the analysis of clinical data. Two U-Net models were employed for
performance analysis on 99 chest CT scans. The mean Dice Similarity Coefficient (DSC) is
found to be 0.981 for lung segmentation and 0.778 for lesion segmentation. On the other
hand, Yao et al. [76] proposed a machine-learning-based model to detect the severity of
COVID-19. The level of severity of COVID-19 in a person is recognized by SVM with
32 features. The algorithm was used on 137 COVID-19 patients, which were confirmed
by Huazhong University. Among this dataset, only 17 patients were diagnosed with mild
cases, 45 cases were diagnosed with moderate cases, and the remaining 75 patients were
severely infected by this disease. The samples were categorized into 80% of testing and
20% of training sets. Feature extraction has been processed through the conservative re-
cursive features (cREF) technique to enhance the performance of the model by eliminating
redundant features. The model exhibited 81% accuracy and 0.699 specificity. Roy et al. [77]
presented a novel deep-learning model called Reg-STN (Regularized-Spatial Transformer
Network) based on Spatial Transformer Networks (STNs) [78] for analyzing Lung Ultra-
sonography (LUS) images. Disease severity was predicted for each input frame of LUS
images. Each frame of the LUS image was classified into four different severity levels.
In addition to this, they implemented a fully annotated database called “Italian COVID-19
Lung Ultrasound DataBase (ICLUS-DB)” [79] that consists of four-level scale labels. STNs
are composed of three components: (i) a localization network that is responsible for the
prediction of affine transformations, (ii) a grid generator for selecting grid coordinates from
images, and (iii) a sampler for wrapping the input image. The evaluation of their method
was conducted for accurate prediction and localization of COVID-19 at both the frame level
and video level. On the other hand, Lai et al. [80] presented a combination of ML- and
DL-based approaches for detecting novel coronavirus-infected pneumonia (NCIP) from
CT images. Their model is based on a few-shot learning approach. For the segmentation
of lung regions from CT images, a pre-trained network is utilized. Segmentation not only
reduces the lesion detection but also the computation time, thereby avoiding false positives.
For lesion detection and prediction, a multitask DCNN based on U-Net was utilized. Ex-
perimental results on a real patient’s data revealed Area Under the Curve (AUC) of 0.91.
Fouzia Altaf et al. [81] introduced a transfer learning concept by implementing augmented
ensemble transfer learning that gives better results as compared to conventional transfer
learning. To implement an efficient deep transfer learning model, they also modified the
architecture of the existing network by adding an extra layer to change the dimensionality
between the input image and the target image. They tested their model on the pre-trained
ImageNet model. The authors used two different publicly available datasets for their
execution purpose, namely Chest-Xray 14 radiographs and COVID-19 radiographs. Results
on the Chest-Xray 14 dataset indicated a 50% reduction in the error rate compared to the
baseline transfer learning technique. Another dataset was used for a binary problem as
well as a multi-class classification problem. The modified trained model secured a 99.49%
accuracy for the binary classification and 99.24% accuracy for multi-class classification.
Zekuan Yu [82] identified 19 severity levels in CT scans through the classification of deep
features. A total of 729 2D axial plan slices with 246 severe cases and 483 non-severe
cases were employed in this study. By taking advantage of the pre-trained deep neural
network, four pre-trained off-the-shelf deep models (Inception-V3, ResNet-50, ResNet-101,
DenseNet-201) were exploited to extract the features from these CT scans. To identify the
severe and non-severe COVID-19 cases, the features were then fed to multiple classifiers.
Three validation strategies (holdout validation, tenfold cross-validation, and leave-one-
out) were employed to validate the feasibility of the proposed pipelines. Experimental
evaluations represented promising results as the DenseNet-201 with cubic SVM model
achieved the best performance. Specifically, it achieved the highest severity classification
accuracy of 95.20% and 95.34% for 10-fold cross-validation and leave-one-out, respectively.
The established pipeline was able to achieve a rapid and accurate identification of the
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severity of COVID-19. This may assist physicians in making more efficient and reliable
decisions. Many other works on COVID-19 diagnosis using AI-based approaches [83–85]
were published by researchers. Chahar et al. [86] and Sinwar et al. [87] presented a survey
of such learning models.

Taehoon Kim et al. [88] implemented a machine-learning model to identify the severity
of sleep disorder breathing (sleep apnea). As a dataset, they considered patients that
were presented at a sleep center with snoring while breathing during sleep. The authors
developed four categories (i.e., normal, mild, moderate, and severe) of severity based on
their Apnea Hypopnea Index (AHI) value among 120 patients. To capture the breathing
sound, they used polysomnography, which records the sound using four different methods,
as mentioned in Figure 6.

Figure 6. Different categories to measure the sound using polysomnography [88].

The recorded sound also had some noise components (i.e., machine noise, conversion
noise); thus, the authors utilized two different filtering processes (i.e., spectral subtraction
filtering and sleep stage filtering) to capture the useful information from the recorded
sound. After filtering the sound, various audio features were extracted, and then four
group and binary classification algorithms were applied to it. As a result, they scored 88.3%
accuracy for the four-stage classifier and 92.5% accuracy for binary classification.

Linda A. Antonucci et al. [89] illustrated a machine-learning model to identify psy-
chosis at an early stage. To implement the model, the authors used a support vector
classifier and cross-validation section. They trained the model on approximately 105 sam-
ples composed of 71 samples of healthy controls, and 34 were psychosis samples. A total of
three tests were evaluated on the samples, namely the discovery sample (healthy controls
vs. psychosis), clinical validation sample (healthy controls vs. early stage of disease),
and validation of familial risk (healthy controls vs. familial high risk). The resultant accu-
racy achieved for all three above-mentioned tests was found to be 72.2%, 63.5%, and 44.2%,
respectively. The performance of the system may be improved with the help of a large
dataset because a small dataset may lead to an overfitting issue.

Ahmad Abujaber et al. [90] implemented two different machine-learning models (i.e.,
linear regression and Artificial Neural Network) to predict the severity level of traumatic
brain injury. The authors included 785 patients’ (581 survived and 204 deceased) data as a
dataset in their research. Pre-processing steps were also applied to the gathered dataset in
the form of cleaning and transformation. The trained model achieved an accuracy of 87%
using LR and 80.9% using ANN. In the end, they concluded that the LR model provided
good results compared to an ANN.

Zeng Z et al. [91] identified local recurrences in breast cancer using Electronic Health
Records (EHRs). They reviewed the development corpus of 50 progress notes and extracted
partial sentences that indicated breast cancer local recurrence. MetaMaps were used to
process these partial sentences to obtain a set of Unified Medical Language Systems (UMLS).
After using MetaMaps on patients’ progress notes, the sets that came under positive concept
sets were retained. An SVM was trained to identify the local recurrences using these features
with the pathology records of each patient. The model was compared with three baseline
classifiers using either full MetaMap concepts, filtered MetaMap concepts, or bag of words.
The model achieved the best AUC of 0.93 in cross-validation and 0.87 in held-out testing.
This model provides an automated way to identify local breast cancer recurrences as
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compared to a labor-intensive chart review. By minimally adapting the positive concept set,
the study can be replicated at other institutions with a moderately sized training dataset.

Kwon et al. [92] presented an automated classification of Knee Osteoarthritis (KOA) by
combining both deep-learning and machine-learning approaches. Their automated system
is based on the Kellgren–Lawrence (KL) grading system, gait analysis data, and radio-
graphical images. Inception-ResNet-v2 was utilized for extracting relevant features from
radiographical images followed by KOA multi-classification using SVM. Experimental
results on both radiographical images and gait data indicated that both radiographical
images and gait data are complementary for KOA classification.

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in
the world. Currently, the diagnosis of AD is carried out using Mini-Mental State Exam
(MMSE), which is quite a complex and time-consuming process. Martinez-Murcia et al. [93]
presented an autoencoder-based deep-learning methodology to find out the relationship
between neurodegeneration and cognitive symptoms. For the analysis and visualization of
distortion of extracted features, regression and SVM-based classification techniques were
employed. Experimental results on the ADNI dataset revealed the classification accuracy
to be 84%. On the other hand, Sethuraman et al. [94] evaluated the severity of Alzheimer’s
Disease using Biomarkers. They utilized an ADNI Dataset [95] that comprises neuroim-
ages of persons affected by AD. Their deep-learning-based model showed a performance
accuracy of 96.61%.

Discussion

Computational intelligence-based methods are used in a variety of ways to strengthen
the medical field. It is hard to imagine the existence of the medical field and the subsequent
treatment of several critical diseases without CI-based methods. In this section, a critical
review of various CI-based methods for identifying the severity of diseases is presented.
A variety of diseases (e.g., COVID-19, sleep disorder, psychosis, brain diseases, breast
cancer, knee osteoarthritis, sepsis, tuberculosis, etc.) are covered for severity identification
by different researchers using various techniques (deep belief networks, decision tree,
Chi-squared test, Student’s t-test, regression, deep learning, etc.). The performance of
these systems on a single type of data (e.g., imaging data, sensor data, etc.) is found
to be satisfactory. However, in the future, hybrid systems (comprising several types of
data as well as an ensemble of several techniques) need to be deployed to strengthen the
medical field.

5. Some Public Repositories for Disease Severity Identification

The dataset plays a very crucial role in analyzing the performance of disease identifi-
cation methods. Table 3 presents some public repositories that can be utilized to conduct
disease severity identification tasks, mainly on DR, PD, and COVID-19.

Table 3. Public datasets available for conducting disease severity identification tasks.

Contributor Name of Database Modality Disease

EyePACS [45] EyePACS Fundus Images DR
Decencière et al. [51] MESSIDOR Fundus Images DR

Porwal et al. [58] IDRiD fundus Fundus Images DR
Kauppi et al. [96] DIARETDB0 Fundus Images DR
Kauppi 2007 [96] DIARETDB1 Fundus Images DR

S. R. Rath [97] Diabetic Retinopathy Fundus Images DR
Chalakkal et al. [98] UoA-DR Fundus Images DR

J. Staal et al. [99] DRIVE Fundus Images DR
M. Goldbaum [100] STARE Fundus Images DR

Decencière [101] E-ophtha Fundus Images DR
Clayton et al. [102] HandPD Handwriting images PD

Goldberger et al. [9] PhysioNET Spiral & meander image PD
Alam et al. [103] VGRF Gait information PD
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Table 3. Cont.

Contributor Name of Database Modality Disease

Acharya et al. [16], University
of Bonn [104] EEG time series data EEG Signals Epilepsy

ICLUS [79] ICLUS—Italian COVID-19
Lung Ultrasound project Ultrasound

Cohen et al. [105] COVID-19 image data
collection X-ray, CT COVID-19 and other

associated diseases

Xuehai He et al. [106] CT-Dataset: a CT scan dataset
about COVID-19 CT COVID-19

Wang et al. [107] COVIDx X-ray COVID-19, Pneumonia,
Normal

RSNA [108] COVID-19 Imaging Data Sets X-ray, CT COVID-19, Pneumonia

Chowdhury et al. [109,110] COVID-19 Radiography
Database X-ray COVID-19, Pneumonia,

Normal
Eduardo Soares et al. [111] SARS-CoV-2 CT-scan dataset CT COVID-19, Normal

The EyePACS dataset [51] is found to be one of the famous datasets for performing
DR identification. It consists of approximately five million retinal images captured on
different degrees of DR. In addition to retinal images, fundus images are also playing
vital roles in the identification of diabetic retinopathy. MESSIDOR [58], IDRiD fundus [96],
DIARETDB0 [96], DIARETDB1 [97], and E-ophtha [16] are a few famous repositories
that contain fundus images to accomplish DR identification tasks. To perform COVID-19
identification from chest X-ray and CT-scan images at an early stage, several COVID-19
datasets [105–110] were made available to the public.

6. Conclusions

There is no doubt that on-time disease severity identification can save the lives of
human beings. Many researchers have used artificial intelligence and machine-learning-
based techniques to identify the severity level of different categories of diseases based on
their symptoms. The study embodied in this paper was focused mainly on two diseases, viz.
Parkinson’s Disease and Diabetic Retinopathy. However, severity identification of a few
other diseases, such as COVID-19, autonomic nervous system dysfunction, tuberculosis,
sepsis, sleep apnea, psychosis, traumatic brain injury, breast cancer, knee osteoarthritis,
and Alzheimer’s disease, was also briefly covered. For severity identification, the task of
multi-level classification was adopted. Based on patterns in the input data, the multiple
output classes indicated different severity levels of the disease. Hoehn (H) and Yahr (Y),
through the UPDRS measure, was found to be utilized mainly for severity identification. It
was observed from the literature on Parkinson’s Disease (PD) that there is a huge scope
to improve the accuracy using non-motor symptoms. On the other hand, for severity
identification of Diabetic Retinopathy (DR), a scope to reduce the algorithmic complexity
and detection rate was observed. For rapid diagnosis of COVID-19, researchers applied
various models (e.g., Inception-V3, ResNet, DenseNet, etc.) to a patient’s X-ray and CT
scan images. This article also provided the information of some public repositories for
conducting disease severity identification tasks on DR, PD, and COVID-19. It is evident
that that deep-learning models provide several advantages, viz. rapid diagnosis of diseases,
automatic feature extraction, learning from examples, etc. In addition to these, they also
suffer from several drawbacks, viz. lack of transparency, inefficiency in processing low-
quality images, a massive amount of data required for better accuracy, etc. It can be
stated that not only the development of automated disease severity identification is in its
infancy stage, but also the development of massive as well as hybrid datasets enriched
with epidemic characteristics. There is no doubt that deep-learning approaches have
the capability of rapid diagnosis of disease, but imaging data alone do not serve this
purpose. Thus, the integration of clinical and statistical observations with computational
intelligence-based approaches is essential not only for an enhancement in the accuracy
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of computations, severity identification, and subsequent validation of results but also for
minimizing outbreaks.
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