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Abstract: Voxel-wise quantitative assessment of typical characteristics in three-dimensional (3D) mul-
tiphase computed tomography (CT) imaging, especially arterial phase hyperenhancement (APHE)
and subsequent washout (WO), is crucial for the diagnosis and therapy of hepatocellular carcinoma
(HCC). However, this process is still missing in practice. Radiologists often visually estimate these fea-
tures, which limit the diagnostic accuracy due to subjective interpretation and qualitative assessment.
Quantitative assessment is one of the solutions to this problem. However, performing voxel-wise
assessment in 3D is difficult due to the misalignments between images caused by respiratory and
other physiological motions. In this paper, based on the Liver Imaging Reporting and Data System
(v2018), we propose a registration-based quantitative model for the 3D voxel-wise assessment of
image characteristics through multiple CT imaging phases. Specifically, we selected three phases
from sequential CT imaging phases, i.e., pre-contrast phase (Pre), arterial phase (AP), delayed phase
(DP), and then registered Pre and DP images to the AP image to extract and assess the major imaging
characteristics. An iterative reweighted local cross-correlation was applied in the proposed registra-
tion model to construct the fidelity term for comparison of intensity features across different imaging
phases, which is challenging due to their distinct intensity appearance. Experiments on clinical
dataset showed that the means of dice similarity coefficient of liver were 98.6% and 98.1%, those of
surface distance were 0.38 and 0.54 mm, and those of Hausdorff distance were 4.34 and 6.16 mm,
indicating that quantitative estimation can be accomplished with high accuracy. For the classification
of APHE, the result obtained by our method was consistent with those acquired by experts. For the
WO, the effectiveness of the model was verified in terms of WO volume ratio.

Keywords: nonlinear registration; multiphase liver CT image; dynamic subtraction; 3D voxel-wise
assessment

1. Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignancy in the
liver and the third leading cause of cancer-related death worldwide, causing more than
700,000 deaths every year [1–3]. Thus far, several of its imaging characteristics can be used
for non-invasive diagnosis. Specifically, during hepatocarcinogenesis, the source of blood
supply of the lesion shifts from a portal vein-predominant supply to a dominant arterial
supply with venous drainage, whereas the normal liver receives approximately 25% of its
blood supply from the hepatic artery and 75% from the portal vein. After contrast media
(CM) injection, given that HCCs receive blood mainly from the hepatic arteries, they are
enhanced more strongly than background liver during imaging in the arterial phase (AP),
a phenomenon known as AP hyperenhancement (APHE). The normal liver then continues
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to enhance during the contrast-enhanced portal venous phase (PV). However, the lack
of portal venous blood supply to HCCs results in its characteristic washout (subsequent
washout, WO) in the PV, especially in the delayed phase (DP). In this paper, we demonstrate
these different imaging characteristics in multiphase computed tomography (CT) images,
which are usually employed for detection and diagnosis [4–7], see Figure 1. Compared
with background liver, the area marked with a red box is clearly hyperdense in the AP,
i.e., APHE, hypodense in the PV, and hypodense on DP images, i.e., WO. Given a situation
where the region is isodense in the PV, the pre-contrast phase (Pre), AP, and DP images
were selected for our study.

(a) Pre-Contrast Phase (b) Arterial Phase (c) Portal Venous Phase (d) Delayed Phase

Figure 1. Four-phase image of CT images. Lesion area is labeled by the red box: (a) shows the
pre-contrast phase image without injecting intravenous contrast media; (b) shows the lesion areas
tend to enhance more strongly than background liver during late arterial phase imaging (APHE);
(c) shows the liver continues to enhance, and the lack of portal venous blood supply to HCCs results
in the characteristic washout in the portal venous phase (WO); (d) shows the hypodense appearance
of HCC in the delayed phases (WO).

Based on typical image characteristics, particularly APHE and WO [8,9], which reflect
the probability of HCC or the presence of malignancy in veins, the American College of
Radiology first introduced the Liver Imaging Reporting and Data System (LI-RADS) in
2011, which was updated in 2018 (LI-RADS v2018) [10–12], to provide the standardized
qualitative reporting of liver lesions in CT and magnetic resonance imaging (MRI) in a
noninvasive diagnostic manner for patients at risk for HCC. In accordance with the eight
unique diagnostic categories (Figure 2) defined by LI-RADS, radiologists first routinely
examine multi-phase liver CT to estimate features, i.e., using two-dimensional (2D) slice
images to visually search for corresponding 2D regions of interest (ROIs) between 3D CT
volumes to qualitatively estimate features and then determine the diagnostic category for
these data by stepwise comparison of relevant imaging characteristics [11], i.e., giving a
diagnostic result.

However, a weakness of LI-RADS remains, namely, the subjectivity of qualitative
image feature interpretation, which will potentially affect inter-reader agreement and
ultimately diagnostic accuracy.
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Figure 2. Summary of CT and MRI diagnostic Liver Imaging Reporting and Data System (LI-RADS)
categories. APHE = arterial phase hyperenhancement; HBP = hepatobiliary phase; HCC = hepatocel-
lular carcinoma; TIV = tumor in vein; TP = transitional phase [11].

One of the solutions to overcome the weakness of LI-RADS is to investigate the quanti-
tative estimation of major imaging features. To date, several research studies have focused
on quantitative assessment of HCC features in contrast-enhanced liver CT [13,14] and
MRI [15–17]. For the APHE, Kim et al. [13] defined a quantitative color mapping of the ar-
terial enhancement fraction, which can increase the sensitivity and diagnostic performance
of multiphasic multidetector CT for detecting HCC. They also incorporated a diffemorphic
registration model, but to our knowledge, most of the approaches used to register medical
images assume that the entire deformation field should be smooth, which contradicts the
feature of deformation field between multi-phase CT images due to the sliding motion on
the liver; as a result, the registration problem becomes more complicated, that is, the discon-
tinuous deformation field between the abdominal organs and the abdominal–thoracic wall.
In addition, such approaches lack quantitative assessment of WO, which is also important
for diagnosis. For the WO, Liu et al. [14] set a threshold value (≥107) for defining WO after
calculating the percentage decay ratio, which correlated well with pathologically proven
diagnoses of HCC in explanted livers. In [15], Agarwal et al. defined the WO as a 10% or
greater decrease in signal intensity from 8 min to 20 min on 3D gradient echo images and
utilized to distinguish hemangiomas from metastases on liver MRI, which can increase
the accuracy of differentiating hemangiomas from metastases in gadoxetate disodium-
enhanced MRI. Kloeckner et al. [16] quantitatively assessed WO in focal liver lesions using
MRI and reported that the quantitative measure can provide more objective information
and support in the diagnosis of HCC. Stocker et al. [17] compared the qualitative and
quantitative results of APHE and WO appearance defined by LI-RADS v2018 in MRI; they
reported that for WO quantitative assessment required further improvement to match the
diagnostic accuracy of qualitative LI-RADS v2018. However, these WO-focused studies
were performed in 2D ROIs selected by the radiologist to describe the imaging feature
between the lesion and liver parenchyma. During selection, the radiologist must ensure
that the position of the ROI is as consistent as possible across the corresponding phases.
However, the following problems remain: (1) deformation: different breathing levels and
other physiological movements during imaging will cause deformation between four-phase
images; (2) 2D calculation: the information of the whole lesion is ignored, but only a part
of the 2D area is selected for estimation; (3) inconsistency: for different radiologists or the
same physician, the results of feature evaluation may be different at various times.
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Contributions and Organization

To solve the above mentioned problems, we propose a registration-based 3D voxel-
wise quantitative model. The contributions are summarized as follows:

• Piece-wise smooth nonlinear registration: an iterative reweighted local cross-correlation
(IRLCC) method was used to overcome the deformation caused by various reasons,
and it assumes that the entire deformation is piece-wise smooth.

• Three-dimensional calculation: imaging features were quantified voxel-wise, based on
registered images.

• Consistency: all 3D information of the whole lesion was used for quantitative analysis
and visualization.

In addition, we improved the quantitative assessment of WO by extracting the fea-
ture position based on its definition in LI-RADS and then calculating the corresponding
quantitative values. Figure 3 shows the flowchart of the entire process in this paper, which
takes two specific phases of images as an example, starting with image preprocessing, such
as liver segmentation, resampling, cropping, intensity normalization, and rigid registra-
tion. Then, Pre and DP CT images were registered to the AP CT images to deal with the
misalignments caused by respiratory and other physiological motions during different CT
image acquisition phases. Finally, a 3D voxel-wise quantitative assessment model was used
to calculate the value of each voxel to describe APHE and WO.

The remainder of this study is organized as follows. Section 2 describes in detail our
proposed registration-based 3D voxel-wise quantitative assessment model of the major
imaging features of HCC. Section 3 provides the parameter settings involved in the reg-
istration and the corresponding experimental results. Section 4 offers the discussion of
results and further research ideas. Section 5 provides the conclusions.

Figure 3. Illustration of 3D quantitative estimation model. Circle denotes a composition where
the warped image is reconstructed by the deformation field computed from nonlinear registration,
resulting in the warped image.

2. Materials and Methods

Images are acquired at different stages after the injection of the CM. The patient must
hold his or her breath during the imaging. However, patients usually cannot hold their
breath in the same respiratory position in different phases of image acquisition. Thus,
the liver and its diseased areas appear as deformations in different phase images due to
significant displacement in the cranio-caudal direction caused by respiratory movements
and distortion caused by diaphragm and rib movements. The entire deformation is highly
discontinuous due to the sliding movement on the liver. In this context, we introduced a
nonlinear registration model to handle deformations, and this model uses a robust function
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to obtain a piecewise smooth transformation and then voxel-wise quantify features in 3D
based on the aligned three-phase image.

2.1. Dataset

This retrospective study considers 35 multiphase CT images of patients who under-
went liver resection for HCC between 2014 and 2015. All data were pathologically proven
to be HCC. Liver CT examinations were performed by one of two manufacturers (Toshiba
Medical Systems, Tochigi, Japan, and Philips, Eindhoven, The Netherlands) at the First Affil-
iated Hospital of Zhejiang University. Typical scan parameters were as follows: 120–150 mL
iodinated contrast (iopamidol 300–370 mg iodine/mL) was power injected intravenously
at a rate of 2.5–3.0 mL/s. AP, PV, and DP images were acquired at 33, 65, and 100 s after
CM injection.

Table 1 provides the basic information of the clinical dataset, including the distribution
of gender, age, slice thickness, and slice plane resolution. The mean age of the patients
was 60 years old. Clinically, the tumor with the maximum diameter larger than 5 cm is the
greater tumor, and that less than 3 cm is the small tumor [18]. Therefore, the maximum
diameters of the tumors in the dataset were divided into three categories.

Table 1. Patient and data information.

Category Number of Patients Ratio (%)

Gender Male 29 83%
Female 6 17%

Age ≥60 23 66%
<60 12 34%

maximum diameter
≥5 cm 8 23%

3∼5 cm 21 60%
<3 cm 6 17%

Thickness 5 mm
Slice Resolution 512 × 512
Number of slice 38∼53 slices

2.2. Image Registration Framework

The first part of the quantization model, which uses an image registration framework
to recover the deformation caused by various reasons to improve the accuracy of quan-
tification, consists of two steps: (1) image preprocessing and (2) nonlinear registration.
In image preprocessing, the liver in each phase image was semi-automatically segmented,
and the lesion area was marked by experts. In addition, we employed rigid registration to
roughly match the images. The nonlinear registration was then used to estimate the final
transformation with piecewise smoothing and volume-preserving constraints.

2.2.1. Image Preprocessing

Prior to registration, several critical pre-processing steps were performed as follows.
First, semi-automatic segmentation of the liver was performed for each phase image
in accordance with the literature [19], and the lesion region of each phase image was
outlined by experts to ensure that the shape and volume of the region were as consistent
as possible. The images were then resampled to a new voxel spacing of 1× 1×mm3, and
liver segmentation was used to find a bounding box to crop unnecessary areas around the
target object. Next, the intensity of the images was normalized to [0, 1] using the window
center and window width. Finally, rigid pre-alignment based on the normalized correlation
coefficient metric was performed using SimpleITK [20–22].
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2.2.2. Nonlinear Registration: the IRLCC Method

Given the large amount of local deformations between the different phase images
caused by respiratory and other physiological movements, rigid pre-registration of the
images alone did not meet the high accuracy requirements of the subtraction operation
(quantitative assessment) [11]. Therefore, we introduced a nonlinear registration method
to capture local deformation; it is called the IRLCC method, and it was proposed in our
previous work [23]. Let the fixed and moving images, denoted by I1 : R3 → R and
I2 : R3 → R with compact supporting domain Ω ⊂ R3, be continuously differentiable.
The task of image registration is to find a reasonable spatial correspondence T : Ω→ R3

between I2(x) and I1(x) that makes the deformed moving and fixed images as similar
as possible. In general, the optimal spatial correspondence is given by minimizing the
following energy functional:

L(T) = D(I1(x), I2(T(x))) + αR(T(x)) + βP(I1(x), I2(T(x))), (1)

where D(·) is a similarity measure that describes the difference between the deformed
moving and fixed images, R(·) is a regularization term that penalizes irregular deforma-
tions, and P(·) is a priority constraint on images to make the result more reasonable for
real applications. Moreover, α is a regularization parameter, β is a priority constraint pa-
rameter, and they balance the minimization of image distance, smoothness of deformation,
and priority information of images.

Specifically for the deformation model, the IRLCC method estimates the displacement
field u : Ω → R3 to deform the moving image, i.e., T(x) = x + u(x). For the similarity
measure, the intensity corresponding to the anatomical location was inconsistent across
imaging stages due to the use of contrast agents but satisfies a potential functional rela-
tionship, which in this paper we assume can be approximated by a local linear function;
in addition, the local cross-correlation [24–26], described as the first term in Equation (2),
satisfies the local linearity assumption, and thus, we selected it as the similarity measure.
On the other hand, given that the sliding motion on the liver leads to high discontinuity
in the whole displacement field, and the different organs surrounding the liver lead to
multiple motion, which disrupts the smoothness of the whole deformation, we considered
a total variation-like regularization term [27–29] to describe a piecewise smooth defor-
mation field, defined as the second term in Equation (2). In addition, the liver can be
compressed globally in multiphase imaging, which led to a slight change in liver volume,
but it can be easily compensated by a normalization step. Therefore, we incorporated
the registration model with a global volume-preserving prior term [30,31], shown as the
third term in Equation (2), to capture the local deformation of the liver while preserving
liver volume during the registration process. Combining the above options, we registered
multiphase liver CT images by optimizing the energy functional:

L(u) := −
∫

Ω

υ12(x; u)2

υ1(x)υ2(x; u)
dx + α

∫
Ω

Φ(
3

∑
i=1
|∇3ui|2)dx + β

∫
Ω
∇`Rp · udx, (2)

where υ12(x; u), υ1(x), and υ2(x; u) represent the local covariance and variance of I1(x) and
Iu
2 (x) := I2(x + u(x)), respectively. Φ(x) =

√
x2 + ε2, where ε = 0.001. `Rp is the indicator

function over the ROI in the moving image.
The local covariance and variances in Equation (2) are defined as follows:

υ1(x) = 1
|ωx |

∫
z∈ωx

I1(z)2dz− (µ1(x))2dz,
υ2(x; u) = 1

|ωx |
∫

z∈ωx
Iu
2 (z)

2dz− (µu
2 (x))

2dz,
υ12(x; u) = 1

|ωx |
∫

z∈ωx
{I1(z)− µ1(x)}

{
Iu
2 (z)− µu

2 (x)
}

dz,
(3)

where ωx is the neighborhood of x set to 7× 7× 7, µ1(x) = 1
|ωx |

∫
z∈ωx

I1(z)dz and µu
2 (x) =

1
|ωx |

∫
z∈ωx

Iu
2 (z)dz.
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Evidently, the objective energy functional is highly nonconvex and nonlinear with
respect to u, which will lead to a challenging optimization formulation. Faced with this
situation, we applied the coarse-to-fine refinement scheme with a dense Gaussian pyramid
(e.g., with a downsampling rate η = 0.75) on the images, which can avoid falling into the
local optimum of the above functional and is considered the first-discretize-then-optimize
method to solve our model.

Discretization and Optimization—First, we discretized the domain Ω into a grid,
used the grid directly to obtain discretized images, and then constructed a coarse-to-fine
pyramid with Gaussian filtering of each discretized image. Let I1

1 (x) · · · IL
1 (x) be the L-level

coarse-to-fine pyramidal representation of the fixed image I1(x) from the coarsest resolution
I1
1 (x) to the finest resolution IL

1 (x) = I1(x) and I1
2 (x) · · · IL

2 (x) be the L-level coarse-to-fine
pyramidal representation of the moving image I2(x). At each level l(= 1, · · · , L), let the
deformation field ul−1(x) estimated from the previous level be the initial value. The defor-
mation field ul(x) between two given images can be replaced by ul(x) = ul−1(x) + h(x),
where h(x) = (h1(x), h2(x), h3(x)) is the incremental deformation. Therefore, the optimum
deformation ul(x) was calculated via estimating the optimum incremental deformation.
For the coarsest level, i.e., l = 1. The initial previous-level deformation was set to 0.

In accordance with the difference rule, the approximation of integrals and derivatives
can be obtained, and the continuous functional in Equation (2) can be discretized as follows:

L(h) = −∑
x

LCC(x; u + h) + ∑
x

αΦ(|∇(u(x) + h(x))|2) + ∑
x

β∇lRp · (u(x) + h(x)), (4)

where we have omitted the superscript l − 1 and l for convenience.
Let

A(x) = ∑y∈ωx (I1(y)− µ1(x))2,
B(x; h) = ∑y∈ωx (I2(y + u(y) + h(y))− µ2(x; u + h))2,
C(x; h) = (∑y∈ωx (I1(y)− µ1(x))(I2(y + u(y) + h(y))− µ2(x; u + h)))2,
I2(x + u(x) + h(x)) ≈ I2(x + u(x)) + ∇I2(x + u(x)) · h(x).

(5)

then, we can derive the derivative ∂L(h)
∂h1

, ∂L(h)
∂h2

, ∂L(h)
∂h3

at x = (x, y, z), set it equal to 0,
and rewrite it in a matrix form that omits the variables:

2C2

AB2 (I2x)
2 + αΦ̇∆ 2C2

AB2 I2x I2y
2C2

AB2 I2x I2z

2C2

AB2 I2x I2y
2C2

AB2 (I2y)
2 + αΦ̇∆ 2C2

AB2 I2y I2z

2C2

AB2 I2x I2z
2C2

AB2 I2x I2z
2C2

AB2 (I2z)
2 + αΦ̇∆




h1

h2

h3

 =


b1

b2

b3

, (6)

where ∆ denotes the discrete Laplace operator based on the second-order difference formula,
and Φ̇ denotes the derivative of Φ:

gt = (I1 − µ1)− C
B (I2 − µ2),

b1 = − 2C
AB gt I2x + αΦ̇∆u1 + β`Rpx

,
b2 = − 2C

AB gt I2y + αΦ̇∆u2 + β`Rpy
,

b3 = − 2C
AB gt I2z + αΦ̇∆u3 + β`Rpz

.

Finally, we vectorized h1, h2, and h3 into H1, H2, and H3, respectively, and used the
following fixed-point iteration method Algorithm 1, which includes the outer iteration
(OutIter) and inner iteration (InIter) to solve Equation (6).
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Algorithm 1: Fixed-Point Iteration Algorithm

Input: Il
1, Il

2, Ul−1, l is the current level.
Output: Ul .
Initialization: Upsample Ul−1 to the size in level l, then deform the moving image:

Il
2(x) = Il

2(x + Ul−1(x)) ;
while OutIter do

Initialization: Ul
1 = 0, Ul

2 = 0, Ul
3 = 0, Hl

1 = 0, Hl
2 = 0, Hl

3 = 0;
while InIter do

(2.1) Deform moving image: Tl
2(x) = Il

2(x + Ul(x)) and update
V l

i = Ul
i + Hl

i , i = 1, 2, 3.
(2.2) Compute all ’weight’ Φ̇ based on current V l

i , i = 1, 2, 3.
(2.3) Solve Equation (6) voxel by voxel in order using the SOR optimization

algorithm:

tk+1;l
1 (i) =

(
− 2C

AB gtTl
2z + αΦ̇∆U1 + βlpx

)
− 2C2

AB2 Tl
2xTl

2y Hk;l
2 (i)

− 2C2

AB2 Tl
2xTl

2z Hk;l
3 (i)−∑j∈N1(i) α Φ̇Hk+1;l

1 (j)
−∑j∈N2(i) α Φ̇Hk

1(j),

Ĥk+1;l
1 (i) = tk+1

1 (i)
2C2
AB2 (T

l
2x)

2+6αΦ̇
,

Hk+1;l
1 (i) = (1−ω)Hk;l

1 (i) + ωĤk+1;l
1 (i),

where i (1 ≤ i ≤ pixel_numbers) denote ith pixel, N1(i) denote the set of
index which in front of i and N2(i) denote the set of index which behind
of i; ω (= 1.8) denote the SOR coefficient. The other values without index
are the values of the corresponding pixels, i.e gt = gt(i), Il

2x = Il
2x(i),

and k denotes the kth iteration in the InIter loop.
end
Update Ul

i = Ul
i + HK;l

i , i = 1, 2, 3; K denotes the maximum number of
iterations in the InIter loop.

if Ul converge then
stop;

end
end

2.3. The 3D Voxel-Wise Quantitative Assessment of Imaging Features

As the second part of the quantitative model, we introduced a novel 3D voxel-wise
quantitative evaluation criterion (extraction location then quantification) of the two main
imaging features in HCC, inspired by the features measurement in LI-RADS v2018. The mea-
surement of such features at each image location was performed by evaluating the local
intensity changes across different CT imaging phases through the subtraction operation.

2.3.1. Locations Extraction

The first step of the quantitative method is to extract feature locations because deter-
mining a threshold to where the feature is difficult when the feature is estimated directly.
Specifically, the locations of two main features were extracted by the following operations.

Operations of extracting APHE location: Equations (7) and (8)—According to the
definition of APHE in LI-RADS v2018, the area must meet two conditions: (1) its enhance-
ment in AP must be unequivocally greater in whole or in part than the liver, and (2) the
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enhanced part must be brighter than the liver in AP. In this section, we use two subtraction
operations to describe these conditions:

Bap = Map − LMap,
Sub1 = Map −Mpre,
Esub1 = sub1 − LMsub1 ,

mask1(x) =
{

1, Esub1 > 0 condition (1)
0, otherwise

,

mask2(x) =
{

1, Bap(x) > 0 condition (2)
0, otherwise

,

(7)

where LMap and LMsub1 represent the adjacent liver values in the image matrix Map
and sub1, respectively. Map and Mpre represent the warped Pre and AP liver image
matrices, respectively.

By definition, the APHE location must satisfy values greater than zero in the Bap and
Esub1 images. Thus, we can obtain the location of APHE, that is, maskAPHE, using Equation (8),
where the value corresponding to the voxel with the APHE feature in maskAPHE is 1.

maskAPHE(x) = mask1(x) ∧mask2(x), (8)

where ∧ is the logical AND operation.
Operations of extracting WO location: Equations (9)–(11)—According to its defini-

tion in LI-RADS v2018, which is the visually assessed temporal reduction of enhancement
of the area in whole or in part relative to the composite liver tissue from earlier to later
phase, resulting in hypoenhancement in the post-AP, we divided the position extraction
into two steps. One step is to check that the area is at least slightly enhanced in the AP (not
necessarily APHE) by Equation (9).

mask3(x) =
{

1, sub1(x) > 0
0, otherwise

(9)

The other step is to determine whether the area is darker than the liver in the DP
image or the (DP−Pre) subtraction image by Equation (10) and then to extract the WO
location maskWO by Equation (11).

Bdp = Mdp − LMdp,
sub2 = Mdp −Mpre,
Wsub2 = sub2 − LMsub2 ,

mask4(x) =
{

1, Bdp(x) > 0
0, otherwise

,

mask5(x) =
{

1, Wsub2(x) > 0
0, otherwise

,

maskDP(x) = mask4(x) ∨mask5(x),

(10)

maskWO(x) = mask3(x) ∧maskDP(x), (11)

where Mdp is the warped DP image matrix. LMdp and LMsub2 represent the adjacent liver
value in image matrix Mdp and sub2, respectively, and ∨ is the logical OR operation.

Operation of calculating adjacent liver value: Equation (12)—Given that the extrac-
tion of APHE and WO location depends on comparison with the surrounding liver value,
their value must be obtained. In particular, we first determined the liver area using the liver
mask containing lesion and normal liver. Then, we removed the lesion area and calculated
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the mean (µ) and variance (σ) of the intensity corresponding to the remaining part. Finally,
we gave the adjacent liver value as follows:

LM =

{
µ + 2× σ, if the operations is used to extract APHE
µ− 2× σ, if the operations is used to extract WO

. (12)

Add Operation: Equation (13)—To show the APHE and WO features simultaneously,
we logically combined maskAPHE and maskWO:

S(x) = maskAPHE(x) ∧maskWO(x). (13)

2.3.2. Estimation

The second step was to quantitatively estimate these features by assigning values to each
voxel; it uses the feature position mask to quantify the features in the region voxel-wise.

To represent the degree of APHE, our model calculates the percentage of arterial
enhancement (PAE) [17] for the corresponding voxels as follows:

PAE(x) =
sub1(x)
Mpre(x)

. (14)

To describe the degree of WO, we improved the lesion-to-liver contrast ratio (LLCR),
which is similar to that in [17] but slightly more complicated. We needed to ensure that the
voxel is in mask4 or mask5. Figure 4 illustrates the typical quantitative results.

LLCR0(x) =


−Bdp(x)

LMdp
, mask4(x) = 1

−Wsub2
(x)

LMsub2
, mask5(x) = 1

0, Otherwise

. (15)

(a) (b)

Figure 4. The parameterization results: (a) shows two slices of APHE results and (b) shows two slices
of WO results. The green contour is the lesion contour in the AP image.

In summary, we can extract the location of features and quantify features voxel-wise
using Equations (7)–(15). Utilizing these location masks, we can calculate the volume over
features and lesion areas according to Equation (16). In addition, the ratio R, defined as
Equation (16), can be calculated and used to quantify how much the area of the features
accounts for the lesion area. Using the quantified results, the areas with features can be
displayed as a heat map.
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Vf eature = ∑x∈Ωlesion

mask f eature(x),
Vlesion = ∑x∈Ω masklesion(x),
R =

Vf eature
Vlesion

,
(16)

where f eature can be APHE or WO.

3. Results

In this section, we first show the parameter settings of the registration experiments.
Then, the results of the registration model are presented quantitatively and visually, and the
voxel-wise quantitative findings are displayed in 3D volume and 2D slices to visualize the
location of features and their corresponding values. Finally, the quantitative results are
used to classify the two features for quantitative analysis.

3.1. Setting of Registration Parameters

Tables 2 and 3 list the hyperparameters involved in the experiments, which were
selected based on experimental results. The number of levels can be calculated adaptively
based on the size of the input image, the given size of the coarsest level image, and the
downsampling factor η (=0.75).

Table 2. The parameters of nonlinear registration.

α β OutIter InIter SOR Size of Coarsest Level Image

0.001 0.001 5 1 20 32

Table 3. The parameters of fine registration.

α β OutIter InIter SOR Size of Coarsest Level Image

0.00015 0.0001 3 1 20 32

3.2. Registration Results

We performed experiments with three criteria metrics, namely, the dice similar-
ity coefficient (DSC, [32]), mean surface distance (MSD, [33]), and Hausdorff distance
(HDD, [34]), to evaluate the registration accuracy, and the results of the metrics are summa-
rized in Table 4. (1) Given that the pre and DP CT images were each registered to the AP
CT image by the nonlinear registration framework, the results of the registration experi-
ment were also evaluated separately. (2) With the liver registration, we finally registered
images according to the ROI defined by the lesion mask to achieve accurate lesion area
matching. In general, the larger the value of DSC and the smaller the value of MSD and
HDD, the better the effect of the algorithm.
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Table 4. Registration accuracy evaluated by DSC, MSD, and HDD (mean ± sd). The N refers to no
registration, R to the rigid registration in the image preprocessing, and NR to the proposed nonlinear
registration model with the volume preserving prior P(u) in Equation (2).

Region Phase Method DSC (%) MSD (mm) HDD (mm)

liver

Pre -AP
N 89.2± 5.7 2.64± 1.42 11.80± 3.45
R 93.0± 2.2 1.68± 0.39 9.22± 2.04

NR 98.6 ± 0.3 0.38 ± 0.11 4.34 ± 1.04

DP–AP
N 85.1± 10.5 3.74± 2.73 14.67± 6.88
R 90.1± 6.0 2.18± 1.27 10.72± 4.37

NR 98.1 ± 1.2 0.54 ± 0.38 6.16 ± 2.92

lesion

Pre -AP
N 67.5± 11.5 3.04± 1.76 10.13± 3.89
R 83.1± 4.1 2.03± 0.67 8.03± 2.52

NR 98.7 ± 0.5 0.31 ± 0.27 2.24 ± 0.58

DP–AP
N 68.8± 17.0 4.50± 3.26 13.02± 7.14
R 80.9± 8.6 2.42± 1.32 9.00± 3.61

NR 98.3 ± 0.8 0.64 ± 0.72 2.34 ± 0.82

Table 4 shows that after nonlinear registration, the DSC of the liver mask increased,
and the MSD and HDD of the liver surface decreased. Similarly, the DSC increased, and the
MSD and HDD of the lesion area decreased. Specifically, for the registration of Pre and
AP images, the mean of liver DSC was 98.6%, and the means of liver surface MSD and
HDD were 0.38 and 4.43 mm, respectively. In addition, the mean of lesion DSC was 98.7%,
the means of lesion MSD and HDD were 0.31 and 2.24 mm, respectively. For the registration
of DP and AP images, the mean of liver DSC was 98.1%, the means of liver surface MSD and
HDD were 0.54 and 6.16 mm, respectively. Moreover, the mean of lesion DSC was 98.3%,
the means of the lesion surface MSD and HDD are 0.64 mm and 2.34 mm, respectively.
Compared with the results of no and rigid registration, the proposed registration framework
significantly improved the accuracy.

The performance of the proposed registration framework was also displayed in visual
view. Figure 5 shows the three phase images with the corresponding liver and lesion
contours in registration and non-registration forms. Compared with the non-registered
results in RGBimage1, the registered results in RGB image 2 showed good visual agreement.
Furthermore, the liver and lesion contours in Pre, AP, and DP (Contour Image 2) achieved a
high degree of consistency after nonlinear registration. Figure 6 shows livers in 3D volume
view; subfigure (d) shows the three-phase liver volumes together and the many misalign-
ments between them, whereas subfigure (h) reveals the evidently reduced misalignments.
All the results indicate that our registration framework can achieve high accuracy, which
means that we can use the subtraction to extract the feature location.
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Figure 5. Registration illustration: RGB image shows AP, Pre, and DP image together without or with
deformation. Contours image shows three mask contours on AP image without or with deformation.

Figure 6. Three-dimensional view: (a–c) are fused together to show in (d); (f) shows deformed Pre
liver, (g) shows deformed DP liver; and (e–g) are fused together to show in (h).
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3.3. Voxel-Wise Quantitative Assessment Results and Visualization

Applying Equations (7)–(15) to the registered three-phase images, we can obtain the
voxel-wise quantitative assessment of the two main imaging features.

Figure 4 shows the voxel-wise quantitative assessment results of APHE and WO.
From Figure 4a, the enhancement of the lesion area in AP was unequivocally greater in
part than that in the liver. In Figure 4b, several areas are darker than the liver in the DP
source images or (DP—Pre) subtraction images.

Figure 7 shows the 3D feature location with 3 different views. From subfigures (a,d,g)
and (b,e,h), not all parts of the lesion area marked by the experts had the two features,
i.e., the lesion area contained normal liver tissue, which can be removed by the two feature
masks to obtain a more accurate lesion area. As shown in (c,f,i), the WO area was not
necessarily included in the APHE area in accordance with the definition of the two features.

Figure 7. Locations of three different view: (a,d,g) show the APHE location (green), (b,e,h) show
WO location (red), and (c,f,i) show the locations together. The purple area is the lesion delineated
by experts.

Figure 8 shows the locations of the features on the AP livers and the corresponding
quantified heat map. In subfigures (a,d), the APHE value corresponding to the extraction
position was unequivocally greater than the value corresponding to the surrounding liver,
which confirmed the correctness of the extraction position. From figures (b,e), the value
corresponding to WO was smaller than that of the surrounding liver, which can be used
to verify the correctness of the extracted location. Subfigures (c,f) show the locations with
both features. The figures reveal that not all regions with APHE in the AP showed WO in
the DP, but regions that exhibited WO in the DP must have a certain degree of enhancement
in the AP, which is consistent with the definition of the two features in LI-RADS.
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(a) APHE location & value (b) WO location & value (c) APHE-WO location

(d) APHE location & value (e) WO location & value (f) APHE-WO location

Figure 8. Images (a–c) are the same slice and (d–f) are the other same slice. The locations are shown
on the AP liver image, and the heat map displays the corresponding quantitative estimation results,
where the green contour is the lesion contour.

3.4. Quantitative Analysis

Experts first divided the data into three categories based on the features: B11 (with
two features), A10 (only has APHE), and W01 (only has WO). Then, we registered the data
in accordance with the proposed method and calculated the corresponding feature volume
ratio R based on the voxel-wise quantitative assessment results. Finally, we used the
volume ratio R to classify these data, and the results are shown in Figure 9. Figure 9a shows
the distribution of the APHE volume ratio of B11 and W01. No adjacent areas were observed,
and a significant difference (Student t-test; p = 4.3× 10−5 < 0.01)was detected in the two
distributions. Thus, for the classification of APHE, the result obtained by the proposed
method was consistent with that obtained by experts. Figure 9b shows the distribution of
the WO volume ratio of W01 and A10. A significant difference was observed (Student t-test;
p = 3.6× 10−3 < 0.01), but several adjacent areas were detected in the two distributions.
Figure 9c shows the receiver operating characteristic (ROC) curve of WO volume ratio;
the area under the curve (AUC) was 89.8%. For the classification of WO, the results were
consistent with those in [17] Stocker et al. (2020). The quantitative model needs further
improvement to reach the diagnostic accuracy of the qualitative LI-RADS.
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Figure 9. Classification results: (a,b) show the boxplot of APHE and WO volume ratio, respectively;
(c) shows the ROC curve of WO volume ratio.

4. Discussion

In this paper, we mainly studied the voxel-wise assessment of two imaging features
(APHE and WO) of HCC to reduce the subjective and qualitative interpretation of images by
experts. Compared with the general method (visual estimation of features by 2D slices) used
by radiologists, our method can provide a 3D quantified result, including the 3D feature
location (Figure 4) and the corresponding quantitative map (Figures 4 and 8) to assist them
in making faster and more accurate diagnoses. In addition, the inter-reader agreement can
be improved because the quantitative map, once calculated, can be considered fixed and
independent of the user.

Compared with the quantitative method mentioned in the introduction, although [13]
employed a registration step before 3D quantification, which assumes that the trans-
formation is diffeomorphic and the liver is incompressible, a sliding motion occurs on
the liver (Figure 10), which makes the registration problem more complicated, namely,
the discontinuous deformation field between the abdominal organs and the abdominal–
thoracic wall [35]. Our registration model uses the robust function Φ(x) to regularize a
piecewise-smooth deformation field. As shown in Figure 6d,f, the deformation field can
better recover the sliding motion.

Figure 10. Illustration of sliding and deformation by superimposing the PV image onto the AP in
axial (a ); frontal (b); and sagittal view (c); respectively.

Furthermore, these methods were first quantified, and the features were extracted
using a threshold, i.e., in studies [36,37], quantitative APHE was defined as PAE ≥ 0.1,
which implies an intensity increase of at least 10% from the Pre to the AP, but the choice of
threshold depends on the statistics of a large amount of data. However, from {Figure 8a,d,
not all of the area in the lesion, whose corresponding quantitative value is larger than
the surrounding liver, is the APHE, which makes the selection of threshold difficult and
time-consuming. From Figure 8b,e, the area that showed WO in the DP must have a certain
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degree of enhancement in the AP. This phenomenon is consistent with the description
of [17], which reported that “WO was only considered when the lesion had a PAE ≥ 0 in
the arterial phase, meaning that the lesion was iso- or hyperintense compared with the
liver”. Thus, compared with selecting a threshold, our model directly extracts the feature
location based on its definition in LIRADS v2018, avoids the error in selecting the threshold,
and is more accurate and convenient. In addition, our method uses all the 3D information
of the entire lesion for quantitative analysis and visualization, whereas other methods were
applied quantitatively over the ROI. For example, [16] WO was studied quantitatively
by placing one 25 mm2 ROI over each nodule and two 25 mm2 ROIs over adjacent liver
parenchyma, using only part of the lesion area for quantitative estimation.

As shown in Figure 7, our method obtains a 3D area of two features, that is, the method
can be used to detect features and give a relative area. However, the area may not be
smooth. In the future, we will incorporate a post-processing method to deal with this
issue to obtain a smooth segmentation mask of the lesion and integrate the quantitative
assessment method into software to assist radiologists in diagnosing patients with or at
risk for hepatocellular carcinoma. In addition, data will be collected and will be used to
detect and classify the lesion based on the quantitative results and further for treatment
evaluation, i.e., the quantified results can be used to calculate the volume of active tumors.
Our model requires the segmentation of the liver area, and a low segmentation accuracy
will lead to larger registration error. In this work, segmentation was implemented by a
semi-automatic method, which is time-consuming. We will further investigate an automatic
segmentation algorithm with high accuracy.

5. Conclusions

In this paper, we proposed a novel 3D voxel-wise quantitative criterion to evaluate
imaging characteristics across multiple CT acquisition phases based on the LI-RADS,
which was integrated with a piecewise smooth nonlinear image registration approach to
address the misalignment problem in different phase images. The metrics and visual results
showed the high accuracy of the registration framework. With the registered images, we
can perform the operations to obtain quantitative assessment results. The visualization
results demonstrated the effectiveness of the quantitative method for representing the
two major imaging features (APHE and WO) of HCC. Figure 8 shows the features voxels
on the fixed image (AP) with the quantitative assessment results. Compared with the
original CT liver image, the figures can show the features region of HCC more clearly.
From the application point of view, the operations involved in quantitative evaluation
can be regarded as a method for detecting the APHE and WO features of HCC in 3D
based on registered multiphase CT images. In the quantitative analysis, B11 and W01
have a significant difference and no adjacent areas from the distributions of APHE volume
ratio, while W01 and A10 have a significant difference but several adjacent areas from the
distributions of WO volume ratio. It shows the effectiveness of the quantitative evaluation
method. Evidently, the 3D voxel-wise quantitative model of APHE and WO in HCC can be
obtained with high accuracy using our method.
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Abbreviations
APHE Arterial phase hyperenhancement
WO Subsequent Washout
HCC Hepatocellular carcinoma
AUC Area under the curve
CT Computed tomography
CM Contrast media
MRI Magnetic resonance imaging
Pre Pre-contrast Phase
PAE Percentage of arterial enhancement
AP Arterial Phase
LI-RADS Liver Imaging Reporting and Data System
PV Portal Venous Phase
LLCR Lesion-to-liver contrast ratio
DP Delayed Phase
ROC Receiver operating characteristics
ROIs Regions of interests

References
1. Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, 379, 1245–1255.
2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.
3. Hennedige, T.; Venkatesh, S.K. Imaging of hepatocellular carcinoma: Diagnosis, staging and treatment monitoring. Cancer

Imaging 2013, 12, 530–547.
4. Bano, J.; Nicolau, S.A.E.A. Multiphase Liver Registration from Geodesic Distance Maps and Biomechanical Modelling. In

Abdominal Imaging. Computation and Clinical Applications, Proceedings of the 6th International Workshop, ABDI 2014, Held in Conjunction
with MICCAI, ambridge, MA, USA, 14 September 2014; Springer: Berlin/Heidelberg, Germany, 2013; pp. 165–174.

5. Hwang, G. Nodular hepatocellular cacinomas (Detection with arterial-, portal-, and delayed-phase images at spiral CT). Radiology
1997, 202, 383–388.

6. Kim, T.; Murakami, T.; Takahashi, S.; Tsuda, K.; Tomoda, K.; Narumi, Y.; Sakon, M.; Nakamura, H. Optimal phases of dynamic
CT for detecting hepatocellular carcinoma: evaluation of unenhanced and triple-phase images. Abdom. Imaging 1999, 24, 473–480.

7. Laghi, A.; Iannaccone, R.E.A. Hepatocellular carcinoma: Detection with triple-phase multi-detector row helical CT in patients
with chronic hepatitis. Radiology 2003, 226, 543–549.

8. Kitao, A.; Zen, Y.; Matsui, O.; Gabata, T.; Nakanuma, Y. Hepatocarcinogenesis: Multistep changes of drainage vessels at CT
during arterial portography and hepatic arteriography–radiologic-pathologic correlation. Radiology 2009, 252, 605–614.

9. Lee, Y.J.; Lee, J.M.; Lee, J.S.; Lee, H.Y.; Park, B.H.; Kim, Y.H.; Han, J.K.; Choi, B.I. Hepatocellular carcinoma: Diagnostic
performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015, 75, 97–109.

10. American College of Radiology. Liver Imaging Reporting and Data System. 2018. Available online: https://www.acr.org/
Clinical-Resources/Reporting-and-Data-Systems/LI-RADS (accessed on 2 February 2023).

11. Chernyak, V.; Fowler, K.J.; Kamaya, A.; Kielar, A.Z.; Elsayes, K.M.; Bashir, M.R.; Kono, Y.; Do, R.K.; Mitchell, D.G.; Singal, A.M.; et
al. Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients.
Radiology 2018, 289, 816–830.

12. Elsayes, K.M.; Hooker, J.C.; Agrons, M.M.; Kielar, A.Z.; Tang, A.; Fowler, K.J.; Chernyak, V.; Bashir, M.R.; Kono, Y.; Do, R.K.; et al.
2017 Version of LI-RADS for CT and MR Imaging: An Update. Radiographics 2017, 37, 1994–2017.

13. Kyung Won Kim, M.; Jeong Min Lee, M.; Ernst Klotz, P.; Hee Sun Park, M.; Dong Ho Lee, M.; Ji Young Kim, M.; Soo Jin Kim, M.;
Se Hyung Kim, M.; Jae Young Lee, M.; Joon Koo Han, M. Quantitative CT Color Mapping of the Arterial Enhancement Fraction
of the Liver to Detect Hepatocellular Carcinoma. Radiology 2009, 250, 425–434.

14. Liu, Y.I.; Shin, L.K.; Jeffrey, R.B.; Kamaya, A. Quantitatively defining washout in hepatocellular carcinoma. Am. J. Roentgenol.
2013, 200, 84–89.

15. Agarwal, S.; Grajo, J.R.; Fuentes-Orrego, J.M.; Abtahi, S.M.; Harisinghani, M.G.; Saini, S.; Hahn, P.F. Distinguishing hemangiomas
from metastases on liver MRI performed with gadoxetate disodium: Value of the extended washout sign. Eur. J. Radiol. 2016,
85, 635–640.

https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS


Diagnostics 2023, 13, 1170 19 of 19

16. Kloeckner, R.; Pinto, dos, Santos, D.; Kreitner, K.F.; Leicher-Duber, A.; Weinmann, A.; Mittler, J.; Duber, C. Quantitative assessment
of washout in hepatocellular carcinoma using MRI. BMC Cancer 2016, 16, 758.

17. Stocker, D.; Becker, A.S.; Barth, B.K.; Skawran, S.; Kaniewska, M.; Fischer, M.A.; Donati, O.; Reiner, C.S. Does quantitative
assessment of arterial phase hyperenhancement and washout improve LI-RADS v2018–based classification of liver lesions? Eur.
Radiol. 2020, 30, 2922–2933.

18. Zhao, H.C.; Wu, R.L.; Liu, F.B.; Zhao, Y.J.; Wang, G.B.; Zhang, Z.G.; Huang, F.; Xie, K.; Geng, X.-P. A retrospective analysis of long
term outcomes in patients undergoing hepatic resection for large (>5 cm) hepatocellular carcinoma. HPB 2016, 18, 943–949.

19. Jialin Peng, J.W.; Kong, D. A new convex variational model for liver segmentation. In Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3754–3757.

20. Beare, R.; Lowekamp, B.; Yaniv, Z. Image Segmentation, Registration and Characterization in R with SimpleITK. J. Stat. Softw.
2018, 86.

21. Yaniv, Z.; Lowekamp, B.C.; Johnson, H.J.; Beare, R. SimpleITK Image-Analysis Notebooks: A Collaborative Environment for
Education and Reproducible Research. J. Digit. Imaging 2017, 31, 290–303.

22. Lowekamp, B.C.; Chen, D.T.; Ibanez, L.; Blezek, D. The Design of SimpleITK. Front. Neuroinform. 2013, 7, 45.
23. Huang, C.; Qiu, C.; Peng, Z.; Yuan, J.; Kong, D. Iterative Reweighted Local Cross Correlation Method for Nonlinear Registration

of Multiphase Liver CT Images. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage,
Alaska, 19–22 September 2021; pp. 136–140.

24. Cachier, P.; Bardinet, E.; Dormont, D.; Pennec, X.; Ayache, N. Iconic Feature Based Nonrigid Registration: The PASHA Algorithm.
Comput. Vis. Image Underst. 2003, 89, 272–298.

25. Cachier, P.; Pennec, X. 3D Non-Rigid Registration by Gradient Descent on a Gaussian-Windowed Similarity Measure using
Convolutions. In Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, Burnaby, BC,
Canada, 12–15 December 2011.

26. Avants, B.B.; Epstein, C.L.; Grossman, M.; Gee, J.C. Symmetric diffeomorphic image registration with cross-correlation: evaluating
automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 2008, 12, 26–41.

27. Black, M.J.; Anandan, P. The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields. Comput. Vis.
Image Underst. 1996, 63, 75–104.

28. Brox, T.; Bruhn, A.; Papenberg, N.; Weickert, J. High Accuracy Optical Flow Estimation Based on a Theory for Warping. In
Proceedings of the Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14
May 2004; Volume 4, pp. 25–36.

29. Ce, L. Beyond Pixels: Exploring New Representationsand Applications for Motion Analysis. Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 2009.

30. Sun, Y.; Yuan, J.; Rajchl, M.; Qiu, W.; Romagnoli, C.; Fenster, A. Efficient convex optimization approach to 3D non-rigid MR-TRUS
registration. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention,
Nagoya, Japan, 22–26 September 2013.

31. Qiu, W.; Yuan, J.; Fenster, A. 3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving
constraint. In Medical Imaging 2016: Image Processing; Styner, M.A., Angelini, E.D., Eds; International Society for Optics and
Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9784, pp. 458–463.

32. Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302.
33. Heimann, T.; Van Ginneken, B.; Styner, M.A.; Arzhaeva, Y.; Aurich, V.; Bauer, C.; Beck, A.; Becker, C.; Beichel, R.; Bekes, G.; et al.

Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets. IEEE Trans. Med. Imaging 2009, 28, 1251–1265.
34. Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing Images Using the Hausdorff Distance. IEEE Trans. Pattern

Anal. Mach. Intell. 1993, 15, 850–863.
35. Zhu, W. Segmentation and Registration of CT Multi-Phase Images for Abdominal Surgical Planning. Ph.D. Thesis, University of

Strasbourg, Strasbourg, Germany, 2015.
36. Hecht, E.M.; Israel, G.M.; Krinsky, G.A.; Hahn, W.Y.; Kim, D.C.; Belitskaya-Levy, I.; Lee, V.S. Renal masses: Quantitative analysis

of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for
diagnosing malignancy at MR imaging. Radiology 2004, 232, 373–378.

37. Ho, V.B.; Allen, S.F.; Hood, M.N.; Choyke, P.L. Renal Masses: Quantitative Assessment of Enhancement with Dynamic MR
Imaging. Radiology 2002, 224, 695–700. https://doi.org/10.1148/radiol.2243011048.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	 Materials and Methods
	Dataset
	Image Registration Framework
	Image Preprocessing
	Nonlinear Registration: the IRLCC Method

	 The 3D Voxel-Wise Quantitative Assessment of Imaging Features
	Locations Extraction
	Estimation


	Results
	Setting of Registration Parameters
	Registration Results
	 Voxel-Wise Quantitative Assessment Results and Visualization
	Quantitative Analysis

	Discussion
	Conclusions
	References

